Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179)

Search Parameters:
Keywords = P–Q theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 943 KB  
Article
Harmonic Mitigation and Energy Savings in 13.2 kV Distribution Feeders via P–Q-Based Shunt Active Filters and Luminaire Retrofit
by Brandon Condemaita and Milton Ruiz
Energies 2025, 18(21), 5582; https://doi.org/10.3390/en18215582 - 23 Oct 2025
Abstract
This article designs and validates a P-Q-based shunt active power filter (SAPF) to mitigate voltage harmonics in EERSA’s 13.2 kV feeder 1500080T03. A CYMDIST feeder model, calibrated with field measurements, reveals worst-case voltage THD up to 9.48% due to legacy high-pressure sodium (HPS) [...] Read more.
This article designs and validates a P-Q-based shunt active power filter (SAPF) to mitigate voltage harmonics in EERSA’s 13.2 kV feeder 1500080T03. A CYMDIST feeder model, calibrated with field measurements, reveals worst-case voltage THD up to 9.48% due to legacy high-pressure sodium (HPS) street lighting. Co-simulation with a MATLAB/Simulink R2024b, controller guides the sizing of a 150 kVA SAPF at Substation 8. Simulations reduce peak THD at a representative node from 9.48% to 1.51%; replacing HPS with LEDs further improves efficiency while lowering distortion. The retrofit complies with IEEE Std 519-2022, enhances supply reliability, and yields an internal rate of return above 17%, indicating a technically and financially attractive solution for Latin American distribution networks. Full article
Show Figures

Figure 1

16 pages, 363 KB  
Article
Machine Learning-Enhanced Last-Mile Delivery Optimization: Integrating Deep Reinforcement Learning with Queueing Theory for Dynamic Vehicle Routing
by Tsai-Hsin Jiang and Yung-Chia Chang
Appl. Sci. 2025, 15(21), 11320; https://doi.org/10.3390/app152111320 - 22 Oct 2025
Abstract
We present the ML-CALMO framework, which integrates machine learning with queueing theory for last-mile delivery optimization under dynamic conditions. The system combines Long Short-Term Memory (LSTM) demand forecasting, Convolutional Neural Network (CNN) traffic prediction, and Deep Q-Network (DQN)-based routing with theoretical stability guarantees. [...] Read more.
We present the ML-CALMO framework, which integrates machine learning with queueing theory for last-mile delivery optimization under dynamic conditions. The system combines Long Short-Term Memory (LSTM) demand forecasting, Convolutional Neural Network (CNN) traffic prediction, and Deep Q-Network (DQN)-based routing with theoretical stability guarantees. Evaluation on modern benchmarks, including the 2022 Multi-Depot Dynamic VRP with Stochastic Road Capacity (MDDVRPSRC) dataset and real-world compatible data from OSMnx-based spatial extraction, demonstrates measurable improvements: 18.5% reduction in delivery time and +8.9 pp (≈12.2% relative) gain in service efficiency compared to current state-of-the-art methods, with statistical significance (p < 0.01). Critical limitations include (1) computational requirements that necessitate mid-range GPU hardware, (2) performance degradation under rapid parameter changes (drift rate > 0.5/min), and (3) validation limited to simulation environments. The framework provides a foundation for integrating predictive machine learning with operational guarantees, though field deployment requires addressing identified scalability and robustness constraints. All code, data, and experimental configurations are publicly available for reproducibility. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 325 KB  
Article
Integrating Environmental, Social, and Governance (ESG) Factors into the Investment Returns of American Companies
by Rachana Manoj Lunawat, Mahmoud Elmarzouky and Doaa Shohaieb
Sustainability 2025, 17(19), 8522; https://doi.org/10.3390/su17198522 - 23 Sep 2025
Viewed by 1509
Abstract
This study investigates the influence of Environmental, Social, and Governance (ESG) factors on the financial performance of publicly traded U.S. companies between 2013 and 2023. Using a balanced panel dataset of 386 S&P 500 firms and 4246 firm-year observations, the analysis applies panel [...] Read more.
This study investigates the influence of Environmental, Social, and Governance (ESG) factors on the financial performance of publicly traded U.S. companies between 2013 and 2023. Using a balanced panel dataset of 386 S&P 500 firms and 4246 firm-year observations, the analysis applies panel data regression models with fixed effects to evaluate the association between ESG scores and two financial indicators: Return on Assets (ROA) and Tobin’s Q. The results reveal a modest association with ROA, but a significantly stronger link with Tobin’s Q, suggesting that while ESG practices may not substantially boost short-term profitability, they are positively perceived by investors and contribute to long-term market value. These findings are consistent with stakeholder and signalling theories, indicating that strong ESG performance reflects effective management and lower investment risk. The limited impact on ROA may stem from the initial costs of implementing ESG initiatives. This study highlights practical implications for corporate leaders and policy-makers, advocating for ESG integration as a long-term value driver. Future research should explore alternative ESG rating systems and consider sectoral dynamics and broader market influences. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
25 pages, 8078 KB  
Article
Robust Sensorless Predictive Power Control of PWM Converters Using Adaptive Neural Network-Based Virtual Flux Estimation
by Noumidia Amoura, Adel Rahoui, Boussad Boukais, Koussaila Mesbah, Abdelhakim Saim and Azeddine Houari
Electronics 2025, 14(18), 3620; https://doi.org/10.3390/electronics14183620 - 12 Sep 2025
Viewed by 454
Abstract
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) [...] Read more.
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) converters must now ensure resilient and efficient operation under increasingly adverse and dynamic grid conditions. This paper proposes an adaptive neural network-based virtual flux (VF) estimator for sensorless predictive direct power control (PDPC) of PWM converters under nonideal grid voltage conditions. The proposed estimator is realized using an adaptive linear neuron (ADALINE) configured as a quadrature signal generator, offering robustness against grid voltage disturbances such as voltage unbalance, DC offset and harmonic distortion. In parallel, a PDPC scheme based on the extended pq theory is developed to reject active-power oscillations and to maintain near-sinusoidal grid currents under unbalanced conditions. The resulting VF-based PDPC (VF-PDPC) strategy is validated via real-time simulations on the OPAL-RT platform. Comparative analysis confirms that the ADALINE-based estimator surpasses conventional VF estimation techniques. Moreover, the VF-PDPC achieves superior performance over conventional PDPC and extended pq theory-based PDPC strategies, both of which rely on physical voltage sensors, confirming its robustness and effectiveness under non-ideal grid conditions. Full article
Show Figures

Figure 1

23 pages, 9118 KB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 396
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

26 pages, 355 KB  
Article
Extension of an Inequality on Three Intervals and Applications to Csiszár ϕ-Divergence and Landau–Kolmogorov Inequality
by Ðilda Pečarić, Josip Pečarić and Jinyan Miao
Axioms 2025, 14(8), 563; https://doi.org/10.3390/axioms14080563 - 24 Jul 2025
Cited by 1 | Viewed by 496
Abstract
In this paper, we generalize an inequality for a convex function in one dimension R1 on three intervals to a function with nondecreasing increments in k dimensions Rk on (2n+1) intervals. We prove all the situations [...] Read more.
In this paper, we generalize an inequality for a convex function in one dimension R1 on three intervals to a function with nondecreasing increments in k dimensions Rk on (2n+1) intervals. We prove all the situations when n=1,2 and prove a very special case for a general n as well as the discrete version. The proofs are based on a general conclusion for convex functions, and analogues of this conclusion are established. We apply the discrete case of the inequality to Csiszár ϕ-divergence Iϕ(p,q) in information theory, and the continuous case Iϕ(p1,q1)Iϕ(p2,q2) on a measurable set is also established. The same inequality for an ϵ-approximately convex function on a discrete set is also established and can be used to prove a similar Landau–Kolmogorov-type inequality. Full article
(This article belongs to the Special Issue Theory and Application of Integral Inequalities, 2nd Edition)
14 pages, 275 KB  
Article
New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
by Bahar Demirtürk
Mathematics 2025, 13(14), 2321; https://doi.org/10.3390/math13142321 - 21 Jul 2025
Viewed by 396
Abstract
Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the [...] Read more.
Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities An2An+1An1=k2n, An2AnAn1+1k2An12=k2n, and Bn2BnBn1+1k2Bn12=(k24)k2n, and some generalizations such as Bn+m2(k24)AntBn+mAt+m(k24)k2t2nAt+m2=k2m2tBnt2, At+m2BtnAn+mAt+m+k2n2tAn+m2=k2n2mAtn2, and more were derived, where m,n,t and tn. In addition to this, the solution pairs of the algebraic equations x2Bpxy+k2py2=k2qAp2, x2(k24)Apxy(k24)k2py2=k2qBp2, and x2Bpxy+k2py2=(k24)k2qAp2 are presented, where Ap and Bp are k-Oresme and k-Oresme–Lucas numbers, respectively. Full article
(This article belongs to the Section A: Algebra and Logic)
48 pages, 944 KB  
Article
Spaces of Polynomials as Grassmanians for Immersions and Embeddings
by Gabriel Katz
Int. J. Topol. 2025, 2(3), 9; https://doi.org/10.3390/ijt2030009 - 24 Jun 2025
Viewed by 402
Abstract
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to [...] Read more.
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to the fibers of the obvious projection π:R×YY. Then, for a fixed Y, we introduced an equivalence relation between such β’s; creating a crossover between pseudo-isotopies and bordisms. We called this relation quasitopy. In the presented study of quasitopies, the spaces PdcΘ of real univariate polynomials of degree d with real divisors, whose combinatorial patterns avoid a given closed poset Θ, play the classical role of Grassmanians. We computed the quasitopy classes Qdemb(Y,cΘ) of Θ-constrained embeddings β in terms of homotopy/homology theory of spaces Y and PdcΘ. We proved also that the quasitopies of embeddings stabilize, as d. Full article
Show Figures

Figure 1

14 pages, 569 KB  
Article
A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator
by Mohammad El-Ityan, Tariq Al-Hawary, Basem Aref Frasin and Ibtisam Aldawish
Symmetry 2025, 17(7), 982; https://doi.org/10.3390/sym17070982 - 21 Jun 2025
Cited by 4 | Viewed by 698
Abstract
In this work, we introduce a new subclass of bi-univalent functions using the (p,q)-derivative operator and the concept of subordination to generalized Laguerre polynomials Ltς(k), which satisfy the differential equation [...] Read more.
In this work, we introduce a new subclass of bi-univalent functions using the (p,q)-derivative operator and the concept of subordination to generalized Laguerre polynomials Ltς(k), which satisfy the differential equation ky+(1+ςk)y+ty=0, with 1+ς>0, kR, and t0. We focus on functions that blend the geometric features of starlike and convex mappings in a symmetric setting. The main goal is to estimate the initial coefficients of functions in this new class. Specifically, we obtain sharp upper bounds for |a2| and |a3| and for the Fekete–Szegö functional |a3ηa22| for some real number η. In the final section, we explore several special cases that arise from our general results. These results contribute to the ongoing development of bi-univalent function theory in the context of (p,q)-calculus. Full article
Show Figures

Figure 1

24 pages, 313 KB  
Article
Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
by Hanaa Alashwali and Anwar Saleh
Mathematics 2025, 13(11), 1834; https://doi.org/10.3390/math13111834 - 30 May 2025
Viewed by 465
Abstract
This paper explores the common neighborhood energy (ECN(Γ)) of graphs derived from the dihedral group D2n and generalized quaternion group Q4n, specifically the non-commuting graph (NCM-graph) and the commuting graph (CM-graph). [...] Read more.
This paper explores the common neighborhood energy (ECN(Γ)) of graphs derived from the dihedral group D2n and generalized quaternion group Q4n, specifically the non-commuting graph (NCM-graph) and the commuting graph (CM-graph). Studying graphs associated with groups offers a powerful approach to translating algebraic properties into combinatorial structures, enabling the application of graph-theoretic tools to understand group behavior. The common neighborhood energy, defined as the sum of the absolute values of the eigenvalues of the common neighborhood (CN) matrix, i.e., i=1p|ζi|, where {ζi}i=1p are the CN eigenvalues, provides insights into the structural properties of these graphs. We derive explicit formulas for the CN characteristic polynomials and corresponding CN eigenvalues for both the NCM-graph and CM-graph as functions of n. Consequently, we establish closed-form expressions for the ECN of these graphs, which are parameterized by n. The validity of our theoretical results is confirmed through computational examples. This study contributes to the spectral analysis of algebraic graphs, demonstrating a direct connection between the group-theoretic structure of D2n and Q4n, as well as the combinatorial energy of their associated graphs, thus furthering the understanding of group properties through spectral graph theory. Full article
(This article belongs to the Special Issue Algebraic Combinatorics and Spectral Graph Theory)
Show Figures

Figure 1

24 pages, 935 KB  
Article
Existence and Stability in Nonlocal Schrödinger–Poisson–Slater Equations
by Fangyuan Dong, Zhaoyang Wang, Hui Liu and Limei Cao
Fractal Fract. 2025, 9(6), 329; https://doi.org/10.3390/fractalfract9060329 - 22 May 2025
Viewed by 652
Abstract
In this paper, we study a class of nonlocal Schrödinger–Poisson–Slater equations: Δu+u+λIα|u|q|u|q2u=|u|p2u, where [...] Read more.
In this paper, we study a class of nonlocal Schrödinger–Poisson–Slater equations: Δu+u+λIα|u|q|u|q2u=|u|p2u, where q,p>1, λ>0, and Iα is the Riesz potential. We obtain the existence, stability, and symmetry-breaking of solutions for both radial and nonradial cases. In the radial case, we use variational methods to establish the coercivity and weak lower semicontinuity of the energy functional, ensuring the existence of a positive solution when p is below a critical threshold p¯=4q+2α2+α. In addition, we prove that the energy functional attains a minimum, guaranteeing the existence of a ground-state solution under specific conditions on the parameters. We also apply the Pohozaev identity to identify parameter regimes where only the trivial solution is possible. In the nonradial case, we use the Nehari manifold method to prove the existence of ground-state solutions, analyze symmetry-breaking by studying the behavior of the energy functional and identifying the parameter regimes in the nonradial case, and apply concentration-compactness methods to prove the global well-posedness of the Cauchy problem and demonstrate the orbital stability of the ground state. Our results demonstrate the stability of solutions in both radial and nonradial cases, identifying critical parameter regimes for stability and instability. This work enhances our understanding of the role of nonlocal interactions in symmetry-breaking and stability, while extending existing theories to multiparameter and higher-dimensional settings in the Schrödinger–Poisson–Slater model. Full article
Show Figures

Figure 1

18 pages, 3423 KB  
Article
Reexamination of Gain Theory for Intrinsic Photoconductive Devices
by Nenad Vrucinic and Yong Zhang
Photonics 2025, 12(5), 523; https://doi.org/10.3390/photonics12050523 - 21 May 2025
Viewed by 853
Abstract
The quantum efficiency (QE) or gain (G) of a photoconductive device is most commonly given in the literature as a ratio of carrier lifetime to transit time, allowing for a value much greater than unity. In this work, [...] Read more.
The quantum efficiency (QE) or gain (G) of a photoconductive device is most commonly given in the literature as a ratio of carrier lifetime to transit time, allowing for a value much greater than unity. In this work, by assuming primary photoconductivity, we reexamine the photoconductive theory for the device with an intrinsic (undoped) semiconductor, with nearly zero equilibrium carrier densities. Analytic gain formula is obtained for arbitrary drift and diffusion parameters under a bias voltage and by neglecting the polarization effect due to the relative displacement in the electron and hole distributions. We find that the lifetime/transit-time ratio formula is only valid in the limit of weak field and no diffusion. Numerical simulations are performed to examine the polarization effect, confirming that it does not change the qualitative conclusions. We discuss the distinction between two QE definitions used in the literature: accumulative QE QEacc, considering the contributions of the flow of all photocarriers, regardless of whether they reach the electrode; and apparent QE (QEapp), measuring the photocurrent at the electrode. In general, QEacc>QEapp, due to an inhomogeneous photocurrent in the channel; however, both approach the same unity limit for strong drift. We find that QEacc  QEapp is a deficiency of the commonly adopted constant-carrier-lifetime approximation in the recombination terms. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

20 pages, 12217 KB  
Article
Fc-Binding Cyclopeptide Induces Allostery from Fc to Fab: Revealed Through in Silico Structural Analysis to Anti-Phenobarbital Antibody
by Tao Zhou, Huiling Zhang, Xiaoting Yu, Kangliang Pan, Xiaojun Yao, Xing Shen and Hongtao Lei
Foods 2025, 14(8), 1360; https://doi.org/10.3390/foods14081360 - 15 Apr 2025
Cited by 1 | Viewed by 1002
Abstract
Allostery is a fundamental biological phenomenon that occurs when a molecule binds to a protein’s allosteric site, triggering conformational changes that regulate the protein’s activity. However, allostery in antibodies remains largely unexplored, and only a few reports have focused on allostery from antigen-binding [...] Read more.
Allostery is a fundamental biological phenomenon that occurs when a molecule binds to a protein’s allosteric site, triggering conformational changes that regulate the protein’s activity. However, allostery in antibodies remains largely unexplored, and only a few reports have focused on allostery from antigen-binding fragments (Fab) to crystallizable fragments (Fc). But this study, using anti-phenobarbital antibodies—which are widely applied for detecting the potential health food adulterant phenobarbital—as a model and employing multiple computational methods, is the first to identify a cyclopeptide (cyclo[Link-M-WFRHY-K]) that induces allostery from Fc to Fab in antibody and elucidates the underlying antibody allostery mechanism. The combination of molecular docking and multiple allosteric site prediction algorithms in these methods identified that the cyclopeptide binds to the interface of heavy chain region-1 (CH1) in antibody Fab and heavy chain region-2 (CH2) in antibody Fc. Meanwhile, molecular dynamics simulations combined with other analytical methods demonstrated that cyclopeptide induces global conformational shifts in the antibody, which ultimately alter the Fab domain and enhance its antigen-binding activity from Fc to Fab. This result will enable cyclopeptides as a potential Fab-targeted allosteric modulator to provide a new strategy for the regulation of antigen-binding activity and contribute to the construction of novel immunoassays for food safety and other applications using allosteric antibodies as the core technology. Furthermore, graph theory analysis further revealed a common allosteric signaling pathway within the antibody, involving residues Q123, S207, S326, C455, A558, Q778, D838, R975, R1102, P1146, V1200, and K1286, which will be very important for the engineering design of the anti-phenobarbital antibodies and other highly homologous antibodies. Finally, the non-covalent interaction analysis showed that allostery from Fc to Fab primarily involves residue signal transduction driven by hydrogen bonds and hydrophobic interactions. Full article
Show Figures

Figure 1

12 pages, 253 KB  
Article
Multiple Solutions for Double-Phase Elliptic Problem with NonLocal Interaction
by Khaled Kefi and Mohammed M. Al-Shomrani
Mathematics 2025, 13(8), 1281; https://doi.org/10.3390/math13081281 - 14 Apr 2025
Cited by 1 | Viewed by 416
Abstract
This study explores the existence and multiplicity of weak solutions for a double-phase elliptic problem with nonlocal interactions, formulated as a Dirichlet boundary value problem. The associated differential operator exhibits two distinct phases governed by exponents p and q, which satisfy a [...] Read more.
This study explores the existence and multiplicity of weak solutions for a double-phase elliptic problem with nonlocal interactions, formulated as a Dirichlet boundary value problem. The associated differential operator exhibits two distinct phases governed by exponents p and q, which satisfy a prescribed structural condition. By employing critical point theory, we establish the existence of at least one weak solution and, under appropriate assumptions, demonstrate the existence of three distinct solutions. The analysis is based on abstract variational methods, with a particular focus on the critical point theorems of Bonanno and Bonanno–Marano. Full article
71 pages, 8595 KB  
Review
Power Quality Impact and Its Assessment: A Review and a Survey of Lithuanian Industrial Companies
by Vladislav Liubčuk, Virginijus Radziukynas, Gediminas Kairaitis and Darius Naujokaitis
Inventions 2025, 10(2), 30; https://doi.org/10.3390/inventions10020030 - 5 Apr 2025
Viewed by 2039
Abstract
Poor PQ is a partial case of power system impact on society and the environment. Although the significance of good PQ is generally understood, the topic has not yet been sufficiently explored in the scientific literature. Firstly, this paper discusses the role of [...] Read more.
Poor PQ is a partial case of power system impact on society and the environment. Although the significance of good PQ is generally understood, the topic has not yet been sufficiently explored in the scientific literature. Firstly, this paper discusses the role of PQ in sustainable development by distinguishing economic, environmental, and social parts, including the existing PQ impact assessment methods. PQ problems must be studied through such prisms as financial losses of industrial companies, damage to end-use equipment, natural phenomena, interaction with animals, and social issues related to law, people’s well-being, health and safety. Secondly, this paper presents the results of the survey of Lithuanian industrial companies, which focuses on the assessment of industrial equipment immunity to both voltage sags and supply interruptions, as well as a unique methodology based on expert assessment, IEEE Std 1564-2014 and EN 50160:2010 voltage sag tables, matrix theory, a statistical hypothesis test, and convolution-based sample comparison that was developed for this purpose. The survey was carried out during the PQ monitoring campaign in the Lithuanian DSO grid, and is one of the few PQ surveys presented in the scientific literature. After counting the votes and introducing the rating system (with and without weights), the samples are compared both qualitatively and quantitatively in order to determine whether the PQ impact on various end-use equipment is similar or not. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

Back to TopTop