Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = Oscar Romero

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14333 KiB  
Article
A Transient Combustion Study in a Brick Kiln Using Natural Gas as Fuel by Means of CFD
by Sergio Alonso-Romero, Jorge Arturo Alfaro-Ayala, José Eduardo Frias-Chimal, Oscar A. López-Núñez, José de Jesús Ramírez-Minguela and Roberto Zitzumbo-Guzmán
Processes 2025, 13(8), 2437; https://doi.org/10.3390/pr13082437 - 1 Aug 2025
Viewed by 241
Abstract
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model [...] Read more.
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model based on computational fluid dynamics (CFD) was used to simulate the combustion of natural gas in the brick kiln as a hypothetical case, with the aim of investigating the potential benefits of fuel switching. The theoretical stoichiometric combustion of both pine wood and natural gas was employed to compare the mole fractions and the adiabatic flame temperature. Also, the transient hot gas temperature obtained from the experimental wood-fired kiln were compared with those from the simulated natural gas-fired kiln. Furthermore, numerical simulations were carried out to obtain the transient hot gas temperature and NOx emissions under stoichiometric, fuel-rich, and excess air conditions. The results of CO2 mole fractions from stoichiometric combustion demonstrate that natural gas may represent a cleaner alternative for use in brick kilns, due to a 44.08% reduction in emissions. Contour plots of transient hot gases temperature, velocity, and CO2 emission inside the kiln are presented. Moreover, the time-dependent emissions of CO2, H2O, and CO at the kiln outlet are shown. It can be concluded that the presence of CO mole fractions at the kiln outlet suggests that the transient combustion process could be further improved. The low firing efficiency of bricks and the thermal efficiency obtained are attributed to uneven temperatures distributions inside the kiln. Moreover, hot gas temperature and NOx emissions were found to be higher under stoichiometric conditions than under fuel-rich or excess of air conditions. Therefore, this work could be useful for improving the thermal–hydraulic and emissions performance of brick kilns, as well as for future kiln design improvements. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

31 pages, 1275 KiB  
Article
The Operational Nitrogen Indicator (ONI): An Intelligent Index for the Wastewater Treatment Plant’s Optimization
by Míriam Timiraos, Antonio Díaz-Longueira, Esteban Jove, Óscar Fontenla-Romero and José Luis Calvo-Rolle
Processes 2025, 13(7), 2301; https://doi.org/10.3390/pr13072301 - 19 Jul 2025
Viewed by 462
Abstract
In the context of wastewater treatment plant optimization, this study presents a novel approach based on a virtual sensor architecture designed to estimate total nitrogen levels in effluent and assess plant performance using an operational indicator. The core of the system is an [...] Read more.
In the context of wastewater treatment plant optimization, this study presents a novel approach based on a virtual sensor architecture designed to estimate total nitrogen levels in effluent and assess plant performance using an operational indicator. The core of the system is an intelligent agent that integrates real-time sensor data with machine learning models to infer nitrogen dynamics and anticipate deviations from optimal operating conditions. Central to this strategy is the operational nitrogen indicator (ONI), a weighted aggregation of four sub-indicators: legal compliance (Nactual%), the nitrogen dynamic trend (Tnitr%), removal efficiency (Enitr%), and microbial balance (NP%), each of which captures a critical dimension of the nitrogen removal process. The ONI enables the early detection of stress conditions and facilitates adaptive decision-making by quantifying operational status in terms of regulatory thresholds, biological requirements, and dynamic stability. This approach contributes to a shift toward smart wastewater treatment plants, where virtual sensing, autonomous control, and throttling-aware diagnostics converge to improve process efficiency, reduce operational risk, and promote environmental compliance. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

22 pages, 435 KiB  
Article
Sustainable Entrepreneurship in Emerging Economies: The Role of Financial Planning, Environmental Consciousness, and Artificial Intelligence in Ecuador—A Cross-Sectional Study
by Martha Cecilia Aguirre Benalcázar, Marcia Fabiola Jaramillo Paredes and Oscar Mauricio Romero Hidalgo
Sustainability 2025, 17(14), 6533; https://doi.org/10.3390/su17146533 - 17 Jul 2025
Viewed by 484
Abstract
This study investigates the interconnected roles of financial planning, environmental consciousness, and artificial intelligence (AI) in fostering sustainable entrepreneurship among merchants in Machala, Ecuador. Through structural equation modeling analysis of data from 300 entrepreneurs, we found that financial planning positively influences both sustainable [...] Read more.
This study investigates the interconnected roles of financial planning, environmental consciousness, and artificial intelligence (AI) in fostering sustainable entrepreneurship among merchants in Machala, Ecuador. Through structural equation modeling analysis of data from 300 entrepreneurs, we found that financial planning positively influences both sustainable entrepreneurship (β = 0.508, p < 0.001) and environmental consciousness (β = 0.421, p < 0.001). Environmental consciousness demonstrates a significant impact on sustainable business development (β = 0.504, p < 0.001), while AI integration emerges as a powerful enabler of both financial planning (β = 0.345, p < 0.001) and sustainable entrepreneurship (β = 0.664, p < 0.001). The findings reveal how AI technologies can democratize access to sophisticated sustainability planning tools in resource-constrained environments, potentially transforming how emerging market entrepreneurs approach environmental challenges. This research advances our understanding of sustainable entrepreneurship by demonstrating that successful environmental business practices in developing economies require an integrated approach combining financial literacy, ecological awareness, and technological adoption. The results suggest that policy interventions supporting sustainable entrepreneurship should simultaneously address financial capabilities, environmental education, and technological accessibility to maximize their impact on sustainable development. Full article
(This article belongs to the Special Issue AI-Driven Entrepreneurship and Sustainable Business Innovation)
Show Figures

Figure 1

19 pages, 2215 KiB  
Article
Ni-Co Electrodeposition Improvement Using Phenylsalicylimine Derivatives as Additives in Ethaline-Based Deep Eutectic Solvents (DES)
by Enrique Ordaz-Romero, Paola Roncagliolo-Barrera, Ricardo Ballinas-Indili, Oscar González-Antonio and Norberto Farfán
Coatings 2025, 15(7), 814; https://doi.org/10.3390/coatings15070814 - 11 Jul 2025
Viewed by 477
Abstract
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence [...] Read more.
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence on the electrodeposition process of these metals at an intermediate temperature of 60 °C, while circumventing aqueous reaction conditions. The findings demonstrated that the incorporation of PSIs markedly enhances coating uniformity, resulting in an optimal cobalt content of 37% and an average thickness of 24 µm. Electrochemical evaluations revealed improvements in charge and mass transfer, thereby optimizing process efficiency. Moreover, computational studies confirmed that PSIs form stable complexes with Co (II), modulating the electrochemical characteristics of the system through the introduction of the diethylamino electron-donating group, which significantly stabilizes the coordinated forms with both components of the DES. Additionally, the coatings displayed exceptional corrosion resistance, with a rate of 0.781 µm per year, and achieved an optimal hardness of 38 N HRC, conforming to ASTM B994 standards. This research contributes to the development of electroplating bath designs for metallic coating deposition and lays the groundwork for the advancement of sophisticated technologies in functional coatings that augment corrosion resistance and mechanical properties. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

10 pages, 687 KiB  
Data Descriptor
A DNA Barcode Dataset for the Aquatic Fauna of the Panama Canal: Novel Resources for Detecting Faunal Change in the Neotropics
by Kristin Saltonstall, Rachel Collin, Celestino Aguilar, Fernando Alda, Laura M. Baldrich-Mora, Victor Bravo, María Fernanda Castillo, Sheril Castro, Luis F. De León, Edgardo Díaz-Ferguson, Humberto A. Garcés, Eyda Gómez, Rigoberto G. González, Maribel A. González-Torres, Hector M. Guzman, Alexandra Hiller, Roberto Ibáñez, César Jaramillo, Klara L. Kaiser, Yulang Kam, Mayra Lemus Peralta, Oscar G. Lopez, Maycol E. Madrid C., Matthew J. Miller, Natalia Ossa-Hernandez, Ruth G. Reina, D. Ross Robertson, Tania E. Romero-Gonzalez, Milton Sandoval, Oris Sanjur, Carmen Schlöder, Ashley E. Sharpe, Diana Sharpe, Jakob Siepmann, David Strasiewsky, Mark E. Torchin, Melany Tumbaco, Marta Vargas, Miryam Venegas-Anaya, Benjamin C. Victor and Gustavo Castellanos-Galindoadd Show full author list remove Hide full author list
Data 2025, 10(7), 108; https://doi.org/10.3390/data10070108 - 2 Jul 2025
Viewed by 609
Abstract
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of [...] Read more.
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of the Panama Canal, a region that connects the Western Atlantic and Eastern Pacific oceans. This unique setting creates opportunities for trans-oceanic dispersal while acting as a modern physical dispersal barrier for some terrestrial organisms. We sequenced 852 specimens from a diverse array of taxa (e.g., fishes, zooplankton, mollusks, arthropods, reptiles, birds, and mammals) using COI, and in some cases, 12S and 16S barcodes. These data were collected for a variety of studies, many of which have sought to understand recent changes in aquatic communities in the Panama Canal. The DNA barcodes presented here are all from captured specimens, which confirms their presence in Panama and, in many cases, inside the Panama Canal. Both native and introduced taxa are included. This dataset represents a valuable resource for environmental DNA (eDNA) work in the Panama Canal region and across the Neotropics aimed at monitoring ecosystem health, tracking non-native and potentially invasive species, and understanding the ecology and distribution of these freshwater and euryhaline taxa. Full article
(This article belongs to the Special Issue Benchmarking Datasets in Bioinformatics, 2nd Edition)
Show Figures

Figure 1

23 pages, 3999 KiB  
Article
Genomic Characterization of Escherichia coli Isolates from Alpaca Crias (Vicugna pacos) in the Peruvian Highlands: Insights into Functional Diversity and Pathogenicity
by Celso Zapata, Lila Rodríguez, Yolanda Romero, Pedro Coila, Renán Dilton Hañari-Quispe, Oscar Oros, Victor Zanabria, Carlos Quilcate, Diórman Rojas, Juancarlos Cruz, Narda Ortiz and Richard Estrada
Microorganisms 2025, 13(7), 1533; https://doi.org/10.3390/microorganisms13071533 - 30 Jun 2025
Viewed by 418
Abstract
Diarrhea in alpaca crias significantly impacts livestock health in high-altitude regions, with Escherichia coli as a common pathogen. This study analyzed 10 E. coli isolates from diarrheic and healthy alpacas using whole-genome sequencing to assess genetic diversity, virulence factors, and antibiotic resistance. Predominant [...] Read more.
Diarrhea in alpaca crias significantly impacts livestock health in high-altitude regions, with Escherichia coli as a common pathogen. This study analyzed 10 E. coli isolates from diarrheic and healthy alpacas using whole-genome sequencing to assess genetic diversity, virulence factors, and antibiotic resistance. Predominant sequence types (ST73, ST29), serotypes (O22:H1, O109:H11), and phylogroups (B2, B1, A) were identified. Virulence profiling revealed ExPEC-like and EPEC pathotypes, while resistance genes for β-lactams (blaEC-15), fosfomycin (glpT_E448K), and colistin (pmrB) were prevalent. These findings highlight the need for genomic surveillance and antimicrobial stewardship to manage E. coli infections in alpacas and reduce public health risks. Full article
(This article belongs to the Special Issue Gut Microbiota in DiseaseThird Edition)
Show Figures

Figure 1

20 pages, 39672 KiB  
Article
Enhanced Mechanical Performance of SLM-Printed Inconel 718 Lattice Structures Through Heat Treatments
by María J. Briones-Montemayor, Rigoberto Guzmán-Nogales, Parisa Majari, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Daniel Olvera-Trejo, Oscar Martínez-Romero and Imperio A. Perales-Martínez
Metals 2025, 15(7), 686; https://doi.org/10.3390/met15070686 - 20 Jun 2025
Viewed by 386
Abstract
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. [...] Read more.
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. Four lattice geometries—body-centered cube (BCC), diamond, inverse woodpile (IWP), and gyroid—were selected for evaluation. Three heat treatment protocols were applied to assess their effect on mechanical behavior. Additionally, the influence of key SLM parameters such as laser power, scan speed, hatch spacing, and layer thickness on structural performance was investigated. By combining process tailoring and post-processing strategies, this work demonstrates a method to improve the mechanical response of complex IN718 lattices. The results highlight significant improvements in yield strength and energy absorption for high-performance applications in aerospace and automotive engineering. Full article
Show Figures

Figure 1

32 pages, 6763 KiB  
Article
Noise Levels Due to Commercial and Leisure Activities in Urban Areas: Experimental Validation of a Numerical Model Fed with Crowd Density Estimation Using Computer Vision
by Óscar Ramón-Turner, Jacob D. R. Bordón, Asunción González-Rodríguez, Javier Lorenzo-Navarro, Modesto Castrillón-Santana, Guillermo M. Álamo, Román Quevedo-Reina, Carlos Romero-Sánchez, Antonio T. Ester-Sánchez, Cristina Medina, Fidel García, Orlando Maeso and Juan J. Aznárez
Sensors 2025, 25(12), 3604; https://doi.org/10.3390/s25123604 - 8 Jun 2025
Viewed by 549
Abstract
Noise levels of anthropogenic origin in urban environments have reached thresholds that pose serious public health and quality of life problems. This paper/work aims to examine these noise levels, the underlying causes of their increase and possible solutions through the implementation of predictive [...] Read more.
Noise levels of anthropogenic origin in urban environments have reached thresholds that pose serious public health and quality of life problems. This paper/work aims to examine these noise levels, the underlying causes of their increase and possible solutions through the implementation of predictive models. To address this problem, as a first step, a simplified mathematical model capable of accurately predicting anthropogenic noise levels in a given area is developed. As variables, this model considers the crowd density, estimated using an Artificial Neural Network (ANN) capable of detecting people in images, as well as the geometric and architectural characteristics of the environment. To verify the model, several protocols have been developed for collecting experimental data. In a first phase, these experimental measurements were carried out in controlled environments, using loudspeakers as noise sources. In a second phase, these measurements were carried out in real environments, accounting for the specific noise sources present in each setting. The difference in sound levels between the model and reality is proven to be less than 3 dB in 75% and less than 3.5 dB in 100% of the cases examined in a controlled environment. In the real problem, in general terms and taking into account that the study is carried out on pedestrian streets, it seems that the model is able to reproduce most of the noise of anthropogenic origin. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

26 pages, 4898 KiB  
Article
Antibacterial Crosslinker for Ternary PCL-Reinforced Hydrogels Based on Chitosan, Polyvinyl Alcohol, and Gelatin for Tissue Engineering
by Karina Del Angel-Sánchez, Ana Victoria Treviño-Pacheco, Imperio Anel Perales-Martínez, Oscar Martínez-Romero, Daniel Olvera-Trejo and Alex Elías-Zúñiga
Polymers 2025, 17(11), 1520; https://doi.org/10.3390/polym17111520 - 29 May 2025
Cited by 1 | Viewed by 814
Abstract
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and [...] Read more.
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and chitosan (CH), with gentamicin sulfate (GS) as an antimicrobial agent and a crosslinker. The hydrogels were produced using two crosslinking methods, the freeze/thaw and heated cycles, and reinforced with forcespun polycaprolactone (PCL) nanofiber to improve mechanical performance. Chemical characterization revealed that GS forms weak hydrogen bonds with the ternary polymers, leading to esterification with PVA, and covalent bonds are formed as the result of the free amino group (-NH2) of chitosan that reacts with the carboxylic acid group (-COOH) of gelatin. SEM images help us to see how the hydrogels are reinforced with polycaprolactone (PCL) fibers produced via force spinning technology, while mechanical properties were evaluated via uniaxial tensile and compressive tests. Water retention measurements were performed to examine the crosslinking process’s influence on the hydrogel’s water retention, while the hydrogel surface roughness was obtained via confocal microscopy images. A constitutive model based on non-Gaussian strain energy density was introduced to predict experimental mechanical behavior data of the hydrogel, considering a non-monotonous softening function. Loading and unloading tests demonstrated that GS enhanced crosslinking without compromising water retention or biocompatibility because of the reaction between the free amino group of CH and the carboxylic group of gelatin. The PCL-reinforced PVA/GL/CH hydrogel shows strong potential for cartilage repair and tissue engineering applications. Full article
Show Figures

Figure 1

14 pages, 2132 KiB  
Article
Using He’s Two-Scale Fractal Transform to Predict the Dynamic Response of Viscohyperelastic Elastomers with Fractal Damping
by Alex Elías-Zúñiga, Oscar Martínez-Romero, Daniel Olvera-Trejo and Luis Manuel Palacios-Pineda
Fractal Fract. 2025, 9(6), 357; https://doi.org/10.3390/fractalfract9060357 - 29 May 2025
Viewed by 382
Abstract
This article aims to clarify the applicability of He’s two-scale fractal dimension transform by replacing tα with τ. It demonstrates the potential to capture the influence of the fractal parameter on the system’s damping frequency, particularly when the viscoelastic term (damping) [...] Read more.
This article aims to clarify the applicability of He’s two-scale fractal dimension transform by replacing tα with τ. It demonstrates the potential to capture the influence of the fractal parameter on the system’s damping frequency, particularly when the viscoelastic term (damping) does not equal half of the fractional inertia force term. The analysis examines the elastomer materials’ dynamic fractal amplitude–time response, considering the viscohyperelastic effects related to the material’s energy dissipation capacity. To determine the amplitude of oscillations for the nonlinear equation of motion of a body supported by a viscohyperelastic elastomer subjected to uniaxial stretching, the harmonic balance perturbation method, combined with the two-scale fractal dimension transform and Ross’s formula, is employed. Numerical calculations demonstrate the effectiveness of He’s two-scale fractal transformation in capturing fractal phenomena associated with the fractional time derivative of deformation. This is due to a correlation between the fractional rate of viscoelasticity and the fractal structure of media in elastomer materials, which is reflected in the oscillation amplitude decay. Furthermore, the approach introduced by El-Dib to replace the original fractional equation of motion with an equivalent linear oscillator with integer derivatives is used to further assess the qualitative and quantitative performance of our derived solution. The proposed approach elucidates the applicability of He’s two-scale fractal calculus for determining the amplitude of oscillations in viscohyperelastic systems, where the fractal derivative order of the inertia and damping terms varies. Full article
Show Figures

Figure 1

18 pages, 704 KiB  
Article
Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification
by Claudio Carvajal-Parodi, Gonzalo Arias-Álvarez, David Ulloa-Díaz, Luis Romero-Vera, Oscar Andrades-Ramírez, Francisco Guede-Rojas and Jesús G. Ponce-González
Appl. Sci. 2025, 15(11), 5956; https://doi.org/10.3390/app15115956 - 26 May 2025
Viewed by 647
Abstract
Fibromyalgia (FM) is characterized by persistent widespread pain that severely impacts quality of life. Immersive virtual reality-based exercise (iVRE) is emerging as a therapeutic modality for chronic pain management. However, research on iVRE in FM patients has primarily focused on perceived pain intensity [...] Read more.
Fibromyalgia (FM) is characterized by persistent widespread pain that severely impacts quality of life. Immersive virtual reality-based exercise (iVRE) is emerging as a therapeutic modality for chronic pain management. However, research on iVRE in FM patients has primarily focused on perceived pain intensity (PI), with limited exploration of underlying analgesic mechanisms. This study aims to explore the effects of iVRE on PI, considering risk of poor outcomes (RPO) stratification, and on mechanical pain sensitivity (MPS) in FM. A single-arm, uncontrolled, pre-post-test exploratory study was conducted in subjects with FM. The intervention included 2 weekly 15-min iVRE sessions for 6 weeks. PI (numeric rating scale [NRS]) and MPS (pressure pain thresholds [PPTs] at the upper trapezius, lumbar spine, and knee) were assessed at baseline, after the first session (to assess exercise-induced hypoalgesia), and postintervention. RPO was assessed using the Keele STarT MSK Tool. Eleven participants completed the study. No adverse effects were reported. Clinically important reductions were observed in PI (mean difference [MD]: −2.36, 95% CI: [−4.15, −0.58], d = 0.89; p < 0.05) with this effect being associated with baseline RPO. No observable changes were found in PPTs (all 95% CIs included 0, p > 0.05). In this sample, iVRE appears to reduce PI but not PPTs, suggesting the persistence of MPS and limitations in activating endogenous pain inhibitory mechanisms. Further randomized controlled trials with larger samples are needed to corroborate these results. Full article
Show Figures

Figure 1

23 pages, 5803 KiB  
Article
Gene Expression Profile of Cultured Human Coronary Arterial Endothelial Cells Exposed to Serum from Chronic Kidney Disease Patients: Role of MAPK Signaling Pathway
by Angélica Rangel-López, Minerva Mata-Rocha, Oscar Alberto Pérez-González, Ricardo López-Romero, Dulce María López-Sánchez, Sergio Juárez-Méndez, Vanessa Villegas-Ruiz, Alfonso Méndez-Tenorio, Juan Manuel Mejía-Araguré, Oscar Orihuela-Rodríguez, Cleto Álvarez-Aguilar, Abraham Majluf-Cruz, Dante Amato, Sergio Zavala-Vega, Silvia Melchor-Doncel de la Torre, Ramón Paniagua-Sierra and José Arellano-Galindo
Int. J. Mol. Sci. 2025, 26(8), 3732; https://doi.org/10.3390/ijms26083732 - 15 Apr 2025
Viewed by 820
Abstract
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene [...] Read more.
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene expression profile in uremic serum-induced human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also explored which pathways are involved in this process. We found 100 differentially expressed genes (DEGs) among the conditions of interest by supervised principal component analysis and hierarchical cluster analysis. The expressions of four major DEGs were validated by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze the interaction and expression patterns. Ten pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were, among others, positive regulation of inflammatory response, positive regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell development, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity (p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our study suggests that inflammation and the ERK-MAPK pathway are highly enriched in kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies and approaches based on MAPK pathway interfering strategies are needed to confirm these data. Full article
Show Figures

Figure 1

15 pages, 693 KiB  
Systematic Review
Charting the Pathways of Cardiometabolic Multimorbidity: A Systematic Review of Clinical Trajectories
by Ignatios Ioakeim-Skoufa, Rubén Ledesma-Calvo, Aida Moreno-Juste, Fátima Roque, Kerry Atkins, Miguel Ángel Hernández-Rodríguez, Mercedes Aza-Pascual-Salcedo, Francisca González-Rubio, Carmen Lasala-Aza, Óscar Esteban-Jiménez, Ana Avedillo-Salas, Celeste Cebollada-Herrera, Antonio Gimeno-Miguel and Jorge Vicente-Romero
J. Clin. Med. 2025, 14(8), 2615; https://doi.org/10.3390/jcm14082615 - 11 Apr 2025
Cited by 1 | Viewed by 935
Abstract
Background: Managing multimorbidity is a major challenge for healthcare systems. Cardiometabolic multimorbidity (CMM) is highly prevalent and linked to increased disease burden, functional decline, and mortality. While most studies focus on cross-sectional analyses, longitudinal approaches are essential for understanding disease progression and identifying [...] Read more.
Background: Managing multimorbidity is a major challenge for healthcare systems. Cardiometabolic multimorbidity (CMM) is highly prevalent and linked to increased disease burden, functional decline, and mortality. While most studies focus on cross-sectional analyses, longitudinal approaches are essential for understanding disease progression and identifying patient groups who may benefit from targeted interventions. Objectives: This systematic review synthesises evidence from longitudinal studies on the incidence and progression of CMM, exploring transitions between multimorbidity clusters and their clinical implications. Methods: A systematic search was conducted in MEDLINE and EMBASE following PRISMA guidelines. Studies were included if they employed longitudinal designs and clustering techniques to assess multimorbidity evolution. The quality of evidence was evaluated using the GRADE system. Results: Ten studies met the inclusion criteria. CMM occurs across all age groups and both sexes, showing the highest mortality and functional decline rates. Patients with CMM frequently develop additional cardiometabolic conditions or transition to related clusters. Many also experience neurodegenerative and mental health disorders. Individuals from respiratory multimorbidity clusters often transition to CMM. Moreover, CMM is more prevalent in lower socioeconomic populations. Conclusions: Understanding multimorbidity trajectories enables targeted preventive strategies. Identifying patients with predictable progression can help design adequate and effective interventions, reduce health disparities, and improve healthcare outcomes. Full article
(This article belongs to the Special Issue Chronicity, Multimorbidity, and Medication Appropriateness)
Show Figures

Figure 1

17 pages, 9451 KiB  
Article
Resistance to Azoles in Candida parapsilosis Isolates from Spain Is Associated with an Impairment in Filamentation and Biofilm Formation
by Alba Torres-Cano, Cristina de Armentia, Alejandra Roldán, Elena López-Peralta, Juliana Manosalva, Paloma Merino-Amador, Fernando González-Romo, Mireia Puig-Asensio, Carmen Ardanuy, María Teresa Martín-Gómez, Daniel Romero-Herrero, Ana Pérez-Ayala, Marta López-Lomba, María Teresa Durán-Valle, Isabel Sánchez-Romero, María Muñoz-Algarra, María Pía Roiz-Mesones, Isabel Lara-Plaza, Maite Ruíz Pérez de Pipaón, Gregoria Megías-Lobón, María Ángeles Mantecón-Vallejo, Laura Alcázar-Fuoli, Diego Megías and Oscar Zaragozaadd Show full author list remove Hide full author list
J. Fungi 2025, 11(4), 299; https://doi.org/10.3390/jof11040299 - 9 Apr 2025
Viewed by 872
Abstract
In recent years, there has been an increase in the incidence of fluconazole-non-susceptible (FNS) Candida parapsilosis. The reasons why these strains are able to colonize hospitals remain unknown. It is also unclear whether these strains exhibit resistance to the disinfectants used in [...] Read more.
In recent years, there has been an increase in the incidence of fluconazole-non-susceptible (FNS) Candida parapsilosis. The reasons why these strains are able to colonize hospitals remain unknown. It is also unclear whether these strains exhibit resistance to the disinfectants used in hospitals, facilitating their spread. For these reasons, in this work, we aimed to investigate whether fluconazole resistance was associated with virulence traits and the resistance of these strains to common hospital disinfectants. The general conclusion of the study was that more than 95% of the FNS strains, regardless of the resistance mutation they carried, had filamentation problems, whereas around 75% of the susceptible strains formed pseudohyphae and were capable of filamentation. This 95% of the FNS strains did not form pseudohyphae, did not invade agar, and did not form biofilms, while the susceptible strains exhibited the opposite behaviour. Through microfluidics experiments, we observed that both the susceptible and FNS strains were capable of adhering to a plastic surface under dynamic conditions, but the FNS strains formed unstable aggregates that did not remain attached to the surface, confirming the filamentation defect of these strains. In the second part of the study, we observed that FNS strains are susceptible to clinical disinfectants, although they presented a slight resistance to some of them, such as chlorhexidine, compared to susceptible isolates. In this work, we address important aspects to understand the dissemination of FNS strains in clinical outbreaks. Full article
(This article belongs to the Special Issue Recent Advances in Systemic and Emerging Mycoses)
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy
by Paula Zapata-Cobo, Sara Salvador-Martín, Sergio Gil-Manso, Marta Velasco Rodríguez-Belvís, Laura M. Palomino, Ana Moreno-Álvarez, Begoña Pérez-Moneo, Ruth García-Romero, María J. Fobelo, Diana García-Tirado, César Sánchez, Gemma Pujol-Muncunill, Oscar Segarra, Montserrat Montraveta, Lorena Magallares, Rafael Correa-Rocha, María Sanjurjo-Sáez, Marjorie Pion and Luis A. López-Fernández
Int. J. Mol. Sci. 2025, 26(7), 3323; https://doi.org/10.3390/ijms26073323 - 2 Apr 2025
Viewed by 869
Abstract
Failure of anti-TNF therapy is a real concern in children with inflammatory bowel disease (IBD) owing to the limited therapeutic arsenal. Anti-TNF drugs modulate the immune response, a key driver of chronic inflammation in IBD. Accordingly, we analyzed changes in the frequency of [...] Read more.
Failure of anti-TNF therapy is a real concern in children with inflammatory bowel disease (IBD) owing to the limited therapeutic arsenal. Anti-TNF drugs modulate the immune response, a key driver of chronic inflammation in IBD. Accordingly, we analyzed changes in the frequency of T-lymphocyte and cytokine levels after 6 weeks of treatment to identify potential biomarkers of response to anti-TNF drugs. We recruited 77 patients under 18 years of age diagnosed with IBD and treated with an anti-TNF drug. Using flow cytometry and multiplex ELISA, we analyzed 31 T-lymphocyte populations and four cytokines. We identified changes in 10 populations of T lymphocytes after 6 weeks of treatment. Naïve Tregs were associated with a primary response to anti-TNF drugs, while activated Tregs were associated with long-term response. Serum INF-γ levels were decreased after anti-TNF treatment in children with Crohn’s disease (CD), but not in those with ulcerative colitis (UC). The memory CD8+ Type 2 Cytotoxic T (Tc2) subset increased in non-responders with CD and the CD4+ memory Th17 cells increased in non-responders with UC. These findings could help us to understand the cellular regulation of anti-TNF therapy, to identify children at a higher risk of treatment failure, and, potentially, to develop more personalized therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop