Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Instruments for Outcomes Measurement and Stratification
2.3.1. Pain Intensity
2.3.2. Pressure Pain Threshold
2.3.3. Risk of Poor Outcomes Associated with Pain
2.3.4. Adverse Events Monitoring
2.4. Intervention Program
2.4.1. Equipment
2.4.2. Patient Instructions
2.4.3. Intervention Protocol
- Phase 1 (3 min): General joint mobility exercises for the spine and limbs, guided by the avatar in the FitXR app. This phase aimed to prepare the body for subsequent physical demands, promoting flexibility and blood circulation.
- Phase 2 (10 min): Interactive game, during which participants executed combinations of punches on virtual targets while also performing squats, lunges, and defensive actions. The patient followed on-screen prompts to determine which punches to execute. During this activity, the patient could skip or modify specific trunk or limb movements according to their preference if fatigue, discomfort, or pain occurred during execution, following the principle of preferred intensity [49].
- Phase 3 (2 min): Cool-down, which included slow breathing exercises and general mobility movements for the spine and limbs, again guided by the avatar. This phase aimed to facilitate recovery and reduce the risk of muscle pain or injury after the activity.
2.5. Data Analysis
3. Results
3.1. General and Feasibility Results
3.2. Post-iVRE Results for Pain Intensity and Pressure Pain Thresholds
3.3. Stratification Based on Risk and Pain Intensity Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FM | Fibromyalgia |
PI | Pain Intensity |
NRS | Numerical Rating Scale |
PPTs | Pressure Pain Thresholds |
MPS | Mechanical Pain Sensitivity |
VR | Virtual Reality |
iVR | Immersive Virtual Reality |
iVRE | Immersive Virtual Reality-Based Exercise |
RPO | Risk of Poor Outcomes |
KSMT | Keele STarT MSK Tool |
EULAR | European Alliance of Rheumatology Associations |
CBT | Cognitive–Behavioral Therapy |
References
- Giorgi, V.; Bazzichi, L.; Batticciotto, A.; Pellegrino, G.; Di Franco, M.; Sirotti, S.; Atzeni, F.; Alciati, A.; Salaffi, F.; Sarzi Puttini, P. Fibromyalgia: One Year in Review 2023. Clin. Exp. Rheumatol. 2023, 41, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Elgueta-Aguilera, N.; Guede-Rojas, F.; Mendoza, C.; Carvajal-Parodi, C.; Jerez-Mayorga, D.; Elgueta-Aguilera, N.; Guede-Rojas, F.; Mendoza, C.; Carvajal-Parodi, C.; Jerez-Mayorga, D. Self-Perceived Cognitive Function and Neuropsychological Performance in Women with Fibromyalgia. Rev. Médica Chile 2022, 150, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, B.F.; Akyol, A. Fibromyalgia Syndrome: Epidemiology, Diagnosis and Treatment. Reumatologia 2022, 60, 413–421. [Google Scholar] [CrossRef]
- Bawazir, Y. Prevalence of Fibromyalgia Syndrome in Saudi Arabia: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2023, 24, 692. [Google Scholar] [CrossRef]
- Wolfe, F.; Walitt, B.; Perrot, S.; Rasker, J.J.; Häuser, W. Fibromyalgia Diagnosis and Biased Assessment: Sex, Prevalence and Bias. PLoS ONE 2018, 13, e0203755. [Google Scholar] [CrossRef]
- Siracusa, R.; Paola, R.D.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef]
- Weinstein, J.; Rosero, S.; Seabury, J.; Varma, A.; Engebrecht, C.; Khosa, S.; Heatwole, J.; Dilek, N.; Kaat, A.; Matallana, L.K.; et al. Patient-Reported Impact of Symptoms in Fibromyalgia (PRISM-FM). J. Rheumatol. 2024, 51, 628–636. [Google Scholar] [CrossRef]
- Fernandez-Feijoo, F.; Samartin-Veiga, N.; Carrillo-de-la-Peña, M.T. Quality of Life in Patients with Fibromyalgia: Contributions of Disease Symptoms, Lifestyle and Multi-Medication. Front. Psychol. 2022, 13, 924405. [Google Scholar] [CrossRef]
- Bucourt, E.; Martaillé, V.; Goupille, P.; Joncker-Vannier, I.; Huttenberger, B.; Réveillère, C.; Mulleman, D.; Courtois, A.R. A Comparative Study of Fibromyalgia, Rheumatoid Arthritis, Spondyloarthritis, and Sjögren’s Syndrome; Impact of the Disease on Quality of Life, Psychological Adjustment, and Use of Coping Strategies. Pain Med. Malden Mass 2021, 22, 372–381. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The Revised International Association for the Study of Pain Definition of Pain: Concepts, Challenges, and Compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Guo, X.; Zhang, J.; Jiang, R. Pain Characteristics of Patients with Fibromyalgia: A Comparison Between Gender and Different Emotional States. Pain Physician 2024, 27, E109–E118. [Google Scholar]
- Amiri, M.; Alavinia, M.; Singh, M.; Kumbhare, D. Pressure Pain Threshold in Patients with Chronic Pain: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2021, 100, 656–674. [Google Scholar] [CrossRef] [PubMed]
- Maquet, D.; Croisier, J.-L.; Demoulin, C.; Crielaard, J.-M. Pressure Pain Thresholds of Tender Point Sites in Patients with Fibromyalgia and in Healthy Controls. Eur. J. Pain 2004, 8, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Petzke, F.; Harris, R.E.; Williams, D.A.; Clauw, D.J.; Gracely, R.H. Differences in Unpleasantness Induced by Experimental Pressure Pain between Patients with Fibromyalgia and Healthy Controls. Eur. J. Pain 2005, 9, 325–335. [Google Scholar] [CrossRef]
- Arroyo-Fernandez, R.; Bravo-Esteban, E.; Domenech-Garcia, V.; Ferri-Morales, A. Pressure-Induced Referred Pain as a Biomarker of Pain Sensitivity in Fibromyalgia. Pain Physician 2020, 23, E353–E362. [Google Scholar]
- Weber, T.; Tatzl, E.; Kashofer, K.; Holter, M.; Trajanoski, S.; Berghold, A.; Heinemann, A.; Holzer, P.; Herbert, M.K. Fibromyalgia-Associated Hyperalgesia Is Related to Psychopathological Alterations but Not to Gut Microbiome Changes. PLoS ONE 2022, 17, e0274026. [Google Scholar] [CrossRef]
- Staud, R.; Weyl, E.E.; Price, D.D.; Robinson, M.E. Mechanical and Heat Hyperalgesia Highly Predict Clinical Pain Intensity in Patients with Chronic Musculoskeletal Pain Syndromes. J. Pain 2012, 13, 725–735. [Google Scholar] [CrossRef]
- El Miedany, Y.; Gadallah, N.; Mohasseb, D.; Gaballah, N.M.; El Zohiery, A.K.; Hassan, M.; El Gaafary, M.; Hassan, W.; Mortada, M.; Eissa, M.; et al. Consensus Evidence-Based Clinical Practice Recommendations for the Management of Fibromyalgia. Egypt. Rheumatol. Rehabil. 2022, 49, 30. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR Revised Recommendations for the Management of Fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef]
- Busch, A.J.; Webber, S.C.; Brachaniec, M.; Bidonde, J.; Bello-Haas, V.D.; Danyliw, A.D.; Overend, T.J.; Richards, R.S.; Sawant, A.; Schachter, C.L. Exercise Therapy for Fibromyalgia. Curr. Pain Headache Rep. 2011, 15, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Mira, M.-A.; López-Roig, S.; Martínez-Zaragoza, F.; León, E.; Abad, E.; Lledó, A.; Peñacoba, C. Goal Preferences, Affect, Activity Patterns and Health Outcomes in Women with Fibromyalgia. Front. Psychol. 2019, 10, 1912. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Mira, M.-Á.; López-Roig, S.; Martínez-Zaragoza, F.; Toribio, E.; Nardi-Rodríguez, A.; Peñacoba, C. Motivational Determinants of Objective Physical Activity in Women with Fibromyalgia Who Attended Rehabilitation Settings. J. Clin. Med. 2021, 10, 5547. [Google Scholar] [CrossRef]
- Cortés-Pérez, I.; Zagalaz-Anula, N.; Ibancos-Losada, M.D.R.; Nieto-Escámez, F.A.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Virtual Reality-Based Therapy Reduces the Disabling Impact of Fibromyalgia Syndrome in Women: Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2021, 11, 1167. [Google Scholar] [CrossRef]
- Goudman, L.; Jansen, J.; Billot, M.; Vets, N.; De Smedt, A.; Roulaud, M.; Rigoard, P.; Moens, M. Virtual Reality Applications in Chronic Pain Management: Systematic Review and Meta-Analysis. JMIR Serious Games 2022, 10, e34402. [Google Scholar] [CrossRef]
- Wong, K.P.; Tse, M.M.Y.; Qin, J. Effectiveness of Virtual Reality-Based Interventions for Managing Chronic Pain on Pain Reduction, Anxiety, Depression and Mood: A Systematic Review. Healthcare 2022, 10, 2047. [Google Scholar] [CrossRef]
- Brady, N.; McVeigh, J.G.; McCreesh, K.; Rio, E.; Dekkers, T.; Lewis, J.S. Exploring the Effectiveness of Immersive Virtual Reality Interventions in the Management of Musculoskeletal Pain: A State-of-the-Art Review. Phys. Ther. Rev. 2021, 26, 262–275. [Google Scholar] [CrossRef]
- Bilika, P.; Karampatsou, N.; Stavrakakis, G.; Paliouras, A.; Theodorakis, Y.; Strimpakos, N.; Kapreli, E. Virtual Reality-Based Exercise Therapy for Patients with Chronic Musculoskeletal Pain: A Scoping Review. Healthcare 2023, 11, 2412. [Google Scholar] [CrossRef]
- Slitzky, M.; Yong, R.J.; Lo Bianco, G.; Emerick, T.; Schatman, M.E.; Robinson, C.L. The Future of Pain Medicine: Emerging Technologies, Treatments, and Education. J. Pain Res. 2024, 17, 2833–2836. [Google Scholar] [CrossRef]
- Gulsen, C.; Soke, F.; Eldemir, K.; Apaydin, Y.; Ozkul, C.; Guclu-Gunduz, A.; Akcali, D.T. Effect of Fully Immersive Virtual Reality Treatment Combined with Exercise in Fibromyalgia Patients: A Randomized Controlled Trial. Assist. Technol. 2022, 34, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Birckhead, B.; Khalil, C.; Liu, X.; Conovitz, S.; Rizzo, A.; Danovitch, I.; Bullock, K.; Spiegel, B. Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Ment. Health 2019, 6, e11973. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.T.; Young, J.P.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical Importance of Changes in Chronic Pain Intensity Measured on an 11-Point Numerical Pain Rating Scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Tahara, S.; Mitsuda, M.; Izumi, H.; Ikeda, S.; Seki, K.; Nishida, N.; Funaba, M.; Imajo, Y.; Yukata, K.; et al. Current Concept of Quantitative Sensory Testing and Pressure Pain Threshold in Neck/Shoulder and Low Back Pain. Healthcare 2022, 10, 1485. [Google Scholar] [CrossRef]
- Goubert, D.; Danneels, L.; Graven-Nielsen, T.; Descheemaeker, F.; Meeus, M. Differences in Pain Processing Between Patients with Chronic Low Back Pain, Recurrent Low Back Pain, and Fibromyalgia. Pain Physician 2017, 20, 307–318. [Google Scholar]
- Beltran-Alacreu, H.; López-de-Uralde-Villanueva, I.; Calvo-Lobo, C.; Fernández-Carnero, J.; La Touche, R. Clinical Features of Patients with Chronic Non-Specific Neck Pain per Disability Level: A Novel Observational Study. Rev. Assoc. Médica Bras. 2018, 64, 700–709. [Google Scholar] [CrossRef]
- Waller, R.; Straker, L.; O’Sullivan, P.; Sterling, M.; Smith, A. Reliability of Pressure Pain Threshold Testing in Healthy Pain Free Young Adults. Scand. J. Pain 2015, 9, 38–41. [Google Scholar] [CrossRef]
- Burrows, N.J.; Booth, J.; Sturnieks, D.L.; Barry, B.K. Acute Resistance Exercise and Pressure Pain Sensitivity in Knee Osteoarthritis: A Randomised Crossover Trial. Osteoarthr. Cartil. 2014, 22, 407–414. [Google Scholar] [CrossRef]
- Dunn, K.M.; Campbell, P.; Lewis, M.; Hill, J.C.; van der Windt, D.A.; Afolabi, E.; Protheroe, J.; Wathall, S.; Jowett, S.; Oppong, R.; et al. Refinement and Validation of a Tool for Stratifying Patients with Musculoskeletal Pain. Eur. J. Pain 2021, 25, 2081–2093. [Google Scholar] [CrossRef]
- Nativ, N.; Pincus, T.; Hill, J.; Ben Ami, N. Predicting Persisting Disability in Musculoskeletal Pain Patients with the STarT MSK Screening Tool: Results from a Prospective Cohort Study. Musculoskelet. Care 2023, 21, 1005–1010. [Google Scholar] [CrossRef]
- Campbell, P.; Hill, J.C.; Protheroe, J.; Afolabi, E.K.; Lewis, M.; Beardmore, R.; Hay, E.M.; Mallen, C.D.; Bartlam, B.; Saunders, B.; et al. Keele Aches and Pains Study Protocol: Validity, Acceptability, and Feasibility of the Keele STarT MSK Tool for Subgrouping Musculoskeletal Patients in Primary Care. J. Pain Res. 2016, 9, 807–818. [Google Scholar] [CrossRef] [PubMed]
- EULAR Outcome Measures Library. Available online: https://oml.eular.org/index.cfm (accessed on 27 December 2024).
- Weech, S.; Kenny, S.; Barnett-Cowan, M. Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front. Psychol. 2019, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Darnall, B.D.; Krishnamurthy, P.; Tsuei, J.; Minor, J.D. Self-Administered Skills-Based Virtual Reality Intervention for Chronic Pain: Randomized Controlled Pilot Study. JMIR Form. Res. 2020, 4, e17293. [Google Scholar] [CrossRef]
- Park, S.; Lee, G. Full-Immersion Virtual Reality: Adverse Effects Related to Static Balance. Neurosci. Lett. 2020, 733, 134974. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, B.; Hecht, H. Axis Rotation and Visually Induced Motion Sickness: The Role of Combined Roll, Pitch, and Yaw Motion. Aviat. Space Environ. Med. 2011, 82, 1023–1029. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Ruiz, J.R.; Álvarez-Gallardo, I.C.; Segura-Jiménez, V.; Santalla, A.; Munguía-Izquierdo, D. Validity and Reliability of Rating Perceived Exertion in Women with Fibromyalgia: Exertion-Pain Discrimination. J. Sports Sci. 2015, 33, 1515–1522. [Google Scholar] [CrossRef]
- Son, H.; Ross, A.; Mendoza-Tirado, E.; Lee, L.J. Virtual Reality in Clinical Practice and Research: Viewpoint on Novel Applications for Nursing. JMIR Nurs. 2022, 5, e34036. [Google Scholar] [CrossRef]
- Newcomb, L.W.; Koltyn, K.F.; Morgan, W.P.; Cook, D.B. Influence of Preferred versus Prescribed Exercise on Pain in Fibromyalgia. Med. Sci. Sports Exerc. 2011, 43, 1106–1113. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Ying, X.; Ehrhardt, S. Pilot Trial Characteristics, Postpilot Design Modifications, and Feasibility of Full-Scale Trials. JAMA Netw. Open 2023, 6, e2333642. [Google Scholar] [CrossRef]
- Polat, M.; Kahveci, A.; Muci, B.; Günendi, Z.; Kaymak Karataş, G. The Effect of Virtual Reality Exercises on Pain, Functionality, Cardiopulmonary Capacity, and Quality of Life in Fibromyalgia Syndrome: A Randomized Controlled Study. Games Health J. 2021, 10, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Palacios, A.; Herrero, R.; Vizcaíno, Y.; Belmonte, M.A.; Castilla, D.; Molinari, G.; Baños, R.M.; Botella, C. Integrating Virtual Reality with Activity Management for the Treatment of Fibromyalgia: Acceptability and Preliminary Efficacy. Clin. J. Pain 2015, 31, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, A.; Samad-Soltani, T.; Salahzadeh, Z.; Rezaei-Hachesu, P. Effectiveness of Virtual Reality-Based Exercise Therapy in Rehabilitation: A Scoping Review. Inform. Med. Unlocked 2021, 24, 100562. [Google Scholar] [CrossRef]
- Pretat, T.; Koller, C.; Hügle, T. Virtual Reality as a Treatment for Chronic Musculoskeletal Pain Syndromes. Jt. Bone Spine 2025, 92, 105769. [Google Scholar] [CrossRef]
- Ahern, M.M.; Dean, L.V.; Stoddard, C.C.; Agrawal, A.; Kim, K.; Cook, C.E.; Narciso Garcia, A. The Effectiveness of Virtual Reality in Patients with Spinal Pain: A Systematic Review and Meta-Analysis. Pain Pract. 2020, 20, 656–675. [Google Scholar] [CrossRef]
- Viderman, D.; Tapinova, K.; Dossov, M.; Seitenov, S.; Abdildin, Y.G. Virtual Reality for Pain Management: An Umbrella Review. Front. Med. 2023, 10, 1203670. [Google Scholar] [CrossRef]
- Cascella, M.; Shariff, M.N.; Bianco, G.L.; Monaco, F.; Gargano, F.; Simonini, A.; Ponsiglione, A.M.; Piazza, O. Employing the Artificial Intelligence Object Detection Tool YOLOv8 for Real-Time Pain Detection: A Feasibility Study. J. Pain Res. 2024, 17, 3681–3696. [Google Scholar] [CrossRef]
- Varallo, G.; Suso-Ribera, C.; Ghiggia, A.; Veneruso, M.; Cattivelli, R.; Guerrini Usubini, A.; Franceschini, C.; Musetti, A.; Plazzi, G.; Fontana, J.M.; et al. Catastrophizing, Kinesiophobia, and Acceptance as Mediators of the Relationship Between Perceived Pain Severity, Self-Reported and Performance-Based Physical Function in Women with Fibromyalgia and Obesity. J. Pain Res. 2022, 15, 3017–3029. [Google Scholar] [CrossRef]
- Paschali, M.; Lazaridou, A.; Paschalis, T.; Napadow, V.; Edwards, R.R. Modifiable Psychological Factors Affecting Functioning in Fibromyalgia. J. Clin. Med. 2021, 10, 803. [Google Scholar] [CrossRef]
- Botella, C.; Garcia-Palacios, A.; Vizcaíno, Y.; Herrero, R.; Baños, R.M.; Belmonte, M.A. Virtual Reality in the Treatment of Fibromyalgia: A Pilot Study. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 215–223. [Google Scholar] [CrossRef]
- Herrero, R.; García-Palacios, A.; Castilla, D.; Molinari, G.; Botella, C. Virtual Reality for the Induction of Positive Emotions in the Treatment of Fibromyalgia: A Pilot Study over Acceptability, Satisfaction, and the Effect of Virtual Reality on Mood. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 379–384. [Google Scholar] [CrossRef]
- Wiederhold, B.K.; Gao, K.; Sulea, C.; Wiederhold, M.D. Virtual Reality as a Distraction Technique in Chronic Pain Patients. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Geri, T.; Botticchio, A.; Rossettini, G.; Pournajaf, S.; Pellicciari, L.; Di Antonio, S.; Castaldo, M. Pressure Pain Threshold of the Upper Trapezius Trigger Point: A Systematic Review with Meta-Analysis of Baseline Values and Their Modification after Physical Therapy. J. Clin. Med. 2022, 11, 7243. [Google Scholar] [CrossRef]
- Pelfort, X.; Torres-Claramunt, R.; Sánchez-Soler, J.F.; Hinarejos, P.; Leal-Blanquet, J.; Valverde, D.; Monllau, J.C. Pressure Algometry Is a Useful Tool to Quantify Pain in the Medial Part of the Knee: An Intra- and Inter-Reliability Study in Healthy Subjects. Orthop. Traumatol. Surg. Res. 2015, 101, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Blumenstiel, K.; Gerhardt, A.; Rolke, R.; Bieber, C.; Tesarz, J.; Friederich, H.-C.; Eich, W.; Treede, R.-D. Quantitative Sensory Testing Profiles in Chronic Back Pain Are Distinct from Those in Fibromyalgia. Clin. J. Pain 2011, 27, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Gracely, R.H.; McLean, S.A.; Williams, D.A.; Giesecke, T.; Petzke, F.; Sen, A.; Clauw, D.J. Comparison of Clinical and Evoked Pain Measures in Fibromyalgia. J. Pain 2006, 7, 521–527. [Google Scholar] [CrossRef]
- Wodehouse, T.; Poply, K.; Ramaswamy, S.; Snidvongs, S.; Bourke, J.; Tahir, H.; Ullrich, K.; Mehta, V. A Pilot Study Investigating Whether Quantitative Sensory Testing Alters after Treatment in Patients with Fibromyalgia. Br. J. Pain 2018, 12, 250–256. [Google Scholar] [CrossRef]
- Sluka, K.A.; Law, L.F.; Bement, M.H. Exercise-Induced Pain and Analgesia? Underlying Mechanisms and Clinical Translation. Pain 2018, 159, S91–S97. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Jones, M.D. Exercise-Induced Hypoalgesia after Acute and Regular Exercise: Experimental and Clinical Manifestations and Possible Mechanisms in Individuals with and without Pain. Pain Rep. 2020, 5, e823. [Google Scholar] [CrossRef]
- Brea-Gómez, B.; Torres-Sánchez, I.; Ortiz-Rubio, A.; Calvache-Mateo, A.; Cabrera-Martos, I.; López-López, L.; Valenza, M.C. Virtual Reality in the Treatment of Adults with Chronic Low Back Pain: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 2021, 18, 11806. [Google Scholar] [CrossRef]
- Ram, P.R.; Jeyaraman, M.; Jeyaraman, N.; Nallakumarasamy, A.; Khanna, M.; Gupta, A.; Yadav, S. Beyond the Pain: A Systematic Narrative Review of the Latest Advancements in Fibromyalgia Treatment. Cureus 2023, 15, e48032. [Google Scholar] [CrossRef] [PubMed]
- Ghavidel-Parsa, B.; Bidari, A.; Amir Maafi, A.; Ghalebaghi, B. The Iceberg Nature of Fibromyalgia Burden: The Clinical and Economic Aspects. Korean J. Pain 2015, 28, 169–176. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, A.; Roorda, L.D.; Otten, R.H.J.; van der Leeden, M.; Dekker, J.; Steultjens, M.P.M. Predictors of Multidisciplinary Treatment Outcome in Fibromyalgia: A Systematic Review. Disabil. Rehabil. 2013, 35, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Nijs, J.; Roussel, N.; Van Oosterwijck, J.; De Kooning, M.; Ickmans, K.; Struyf, F.; Meeus, M.; Lundberg, M. Fear of Movement and Avoidance Behaviour toward Physical Activity in Chronic-Fatigue Syndrome and Fibromyalgia: State of the Art and Implications for Clinical Practice. Clin. Rheumatol. 2013, 32, 1121–1129. [Google Scholar] [CrossRef]
- D’Onghia, M.; Ciaffi, J.; McVeigh, J.G.; Di Martino, A.; Faldini, C.; Ablin, J.N.; Meliconi, R.; Ursini, F. Fibromyalgia Syndrome—A Risk Factor for Poor Outcomes Following Orthopaedic Surgery: A Systematic Review. Semin. Arthritis Rheum. 2021, 51, 793–803. [Google Scholar] [CrossRef]
General | Mean | SD |
---|---|---|
Age | 40.55 | 11.23 |
Anthropometry | ||
Height (cm) | 160.27 | 7.40 |
Weight (kg) | 76.06 | 11.93 |
2016 ACR diagnostic criteria (Range of Scores) | Mean | SD |
WPI (0–19) | 11.82 | 3.52 |
SS (0–12) | 8.09 | 1.70 |
Fatigue (0–3) | 2.55 | 0.52 |
Waking unrefreshed (0–3) | 2.36 | 0.51 |
Cognitive symptoms (0–3) | 1.82 | 0.60 |
Other symptoms (0–3) | 1.36 | 0.81 |
No. of Comorbidities | n | % |
0 | 3 | 27.3 |
1 | 5 | 45.5 |
2 | 1 | 9.1 |
3 | 1 | 9.1 |
4 | 1 | 9.1 |
Physical Activity Level | n | % |
Sedentary | 5 | 45.5 |
Lightly active | 4 | 36.4 |
Moderately active | 2 | 18.2 |
Vigorously active | 0 | 0 |
Educational Level | n | % |
Primary | 0 | 0 |
Secondary | 2 | 18.2 |
Technical | 5 | 45.5 |
Professional | 2 | 18.2 |
Postgraduate | 2 | 18.2 |
Outcome | Pre-Test | Post-Test 1 * | Post-Test 2 ** | p-Value | ES | MD ** | CI-MD (95%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||||
PI (NRS); points | 7.36 | 2.01 | -- | -- | 5.00 | 2.76 | 0.014 a | 0.89 | −2.36 | [−4.15, −0.58] |
PPTs TRA; kg/cm2 | 1.76 | 0.91 | 1.60 | 0.71 | 1.38 | 0.63 | 0.19 b | 0.15 | −0.38 | [−0.92, 0.17] |
PPTs LUM; kg/cm2 | 1.76 | 0.93 | 1.67 | 0.71 | 1.72 | 0.90 | 0.93 b | 0.01 | −0.04 | [−0.62, 0.54] |
PPTs KNEE; kg/cm2 | 1.91 | 0.89 | 1.85 | 0.89 | 1.78 | 0.78 | 0.89 b | 0.01 | −0.13 | [−0.78, 0.52] |
Total | High Risk Pre | Medium Risk Pre | |
---|---|---|---|
N (%) | 11 | 8 (72.73) | 3 (27.27) |
Responders; n (%) | 7 (63.63) | 4 (50) | 3 (100) |
Non responders; n (%) | 4 (36.37) | 4 (50) | 0 (0) |
NRS pre; mean (SD) | 7.36 (2.01) | 8.25 (1.28) | 5 (1.73) |
NRS post; mean (SD) | 5 (2.76) | 6.25 (2.05) | 1.67 (0.58) |
Reduction in NRS; mean (SD) | 2.36 (2.66) | 2 (3.02) | 3.33 (1.15) |
% Reduction in NRS; mean (SD) | 33.13 (36.33) | 20.56 (34.97) | 66.67 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvajal-Parodi, C.; Arias-Álvarez, G.; Ulloa-Díaz, D.; Romero-Vera, L.; Andrades-Ramírez, O.; Guede-Rojas, F.; Ponce-González, J.G. Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification. Appl. Sci. 2025, 15, 5956. https://doi.org/10.3390/app15115956
Carvajal-Parodi C, Arias-Álvarez G, Ulloa-Díaz D, Romero-Vera L, Andrades-Ramírez O, Guede-Rojas F, Ponce-González JG. Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification. Applied Sciences. 2025; 15(11):5956. https://doi.org/10.3390/app15115956
Chicago/Turabian StyleCarvajal-Parodi, Claudio, Gonzalo Arias-Álvarez, David Ulloa-Díaz, Luis Romero-Vera, Oscar Andrades-Ramírez, Francisco Guede-Rojas, and Jesús G. Ponce-González. 2025. "Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification" Applied Sciences 15, no. 11: 5956. https://doi.org/10.3390/app15115956
APA StyleCarvajal-Parodi, C., Arias-Álvarez, G., Ulloa-Díaz, D., Romero-Vera, L., Andrades-Ramírez, O., Guede-Rojas, F., & Ponce-González, J. G. (2025). Immersive Virtual Reality-Based Exercise for Pain Management in Fibromyalgia: An Exploratory Study with Risk of Poor Outcomes Stratification. Applied Sciences, 15(11), 5956. https://doi.org/10.3390/app15115956