Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = O2 and CO2 sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 805 KiB  
Article
Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves
by Daniel Jaffe, Devon Nirschl and Stephanie Birman
Atmosphere 2025, 16(7), 882; https://doi.org/10.3390/atmos16070882 - 18 Jul 2025
Abstract
We surveyed the air quality conditions in 18 homes with gas stoves for PM2.5, CO2, NO2 and CO using calibrated low-cost sensors. In each home, participants were asked to cook as usual, but to record their cooking activities [...] Read more.
We surveyed the air quality conditions in 18 homes with gas stoves for PM2.5, CO2, NO2 and CO using calibrated low-cost sensors. In each home, participants were asked to cook as usual, but to record their cooking activities and mitigation efforts (windows, ventilation fans, etc.). All homes showed enhanced pollutants during, and immediately after, times of cooking or stove use. For each home, we quantified the minutes per day and minutes per minute of cooking over known health thresholds for each pollutant. On average, homes exhibited 38 min per day over one or more of these thresholds, with PM2.5 and NO2 being the pollutants of greatest concern. Six homes had much higher occurrences over the health thresholds, averaging 73 min per day. We found an average of 1.0 min over one or more of the health thresholds per minute of cooking when no mitigation was used, whereas when mitigation was used (filtration or vent fan), this value was reduced by 34%. We further investigated several mitigation methods including natural diffusion, a commercial HEPA filter unit, a commercial O3 scrubber and a ventilation fan. We found that the HEPA unit was highly effective for PM2.5 but had no impact on any of the gaseous pollutants. The O3 scrubber was moderately effective for NO2 but had little impact on the other pollutants. The ventilation fan was highly effective for all pollutants and reduced the average pollutant lifetime significantly. Under controlled test conditions, the pollutant lifetime (or time to reach 37% of the original concentration), was reduced from an average of 45 min (with no ventilation) to 7 min. While no commercial filter showed efficacy for both PM2.5 and NO2, the fact that each could be removed individually suggests that a combined filter for both pollutants could be developed, which would significantly reduce health impacts in homes with gas stoves. Full article
20 pages, 18517 KiB  
Article
A Highly Sensitive Low-Temperature N-Butanol Gas Sensor Based on a Co-Doped MOF-ZnO Nanomaterial Under UV Excitation
by Yinzhong Liu, Xiaoshun Wei, Yun Guo, Lingchao Wang, Hui Guo, Qingjie Wang, Yiyu Qiao, Xiaotao Zhu, Xuechun Yang, Lingli Cheng and Zheng Jiao
Sensors 2025, 25(14), 4480; https://doi.org/10.3390/s25144480 - 18 Jul 2025
Abstract
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive [...] Read more.
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive n-butanol gas sensor utilizing cobalt-doped zinc oxide (ZnO) derived from a metal–organic framework (MOF). A series of x-Co/MOF-ZnO (x = 1, 3, 5, 7 wt%) nanomaterials with varying Co ratios were generated using the homogeneous co-precipitation method and assessed for their gas-sensing performances under a low operating temperature (191 °C) and UV excitation (220 mW/cm2). These findings demonstrated that the 5-Co/MOF-ZnO sensor presented the highest oxygen vacancy (Ov) concentration and the largest specific surface area (SSA), representing the optimal reactivity, selectivity, and durability for n-butanol detection. Regarding the sensor’s response to 100 ppm n-butanol under UV excitation, it achieved a value of 1259.06, 9.80 times greater than that of pure MOF-ZnO (128.56) and 2.07 times higher than that in darkness (608.38). Additionally, under UV illumination, the sensor achieved a rapid response time (11 s) and recovery rate (23 s). As a strategy to transform the functionality of ZnO-based sensors for n-butanol gas detection, this study also investigated potential possible redox reactions occurring during the detection process. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 186
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

13 pages, 2602 KiB  
Article
Hollow Mesoporous ZnO/ZnCo2O4 Based on Ostwald Ripening for H2S Detection
by Hongtao Wang, Yang Liu, Yuanchao Xie, Jianan Ma, Dan Han and Shengbo Sang
Chemosensors 2025, 13(7), 239; https://doi.org/10.3390/chemosensors13070239 - 5 Jul 2025
Viewed by 253
Abstract
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not [...] Read more.
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not significantly change the overall size of the ZnO/ZnCo2O4 nanocomposites, but the pore size and specific surface area were noticeably affected. The gas-sensing results showed that ZnO/ZnCo2O4 composites calcined at 500 °C exhibited the highest response to H2S at 200 °C, with a detection limit of 500 ppb. The ZnO/ZnCo2O4 composites also exhibited remarkable selectivity, response/recovery speed, and stability. Their excellent gas-sensing performance might be attributed to their porous structure, large specific surface area, and the heterogeneous interface between ZnO and ZnCo2O4. This work not only represents a new example of the Ostwald ripening-based formation of inorganic hollow structures in a template-free aqueous solution but also provides a novel and efficient sensing material for the detection of H2S gas. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

11 pages, 2689 KiB  
Article
Growth of Zn–N Co-Doped Ga2O3 Films by a New Scheme with Enhanced Optical Properties
by Daogui Liao, Yijun Zhang, Ruikang Wang, Tianyi Yan, Chao Li, He Tian, Hong Wang, Zuo-Guang Ye, Wei Ren and Gang Niu
Nanomaterials 2025, 15(13), 1020; https://doi.org/10.3390/nano15131020 - 1 Jul 2025
Viewed by 311
Abstract
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its [...] Read more.
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its devices become commercially viable. As is well known, doping is an effective method to modulate the various properties of semiconductor materials. In this study, Zn–N co-doped Ga2O3 films with various doping concentrations were grown in situ on sapphire substrates by atomic layer deposition (ALD) at 250 °C, followed by post-annealing at 900 °C. The post-annealed undoped Ga2O3 film showed a highly preferential orientation, whereas with the increase in Zn doping concentration, the preferential orientation of Ga2O3 films was deteriorated, turning it into an amorphous state. The surface roughness of the Ga2O3 thin films is largely affected by doping. As a result of post-annealing, the bandgaps of the Ga2O3 films can be modulated from 4.69 eV to 5.41 eV by controlling the Zn–N co-doping concentrations. When deposited under optimum conditions, high-quality Zn–N co-doped Ga2O3 films showed higher transmittance, a larger bandgap, and fewer defects compared with undoped ones. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Figure 1

13 pages, 2581 KiB  
Article
Triazine Calixarene as a Dual-Channel Chemosensor for the Reversible Detection of Cu2+ and I Ions via Water Content Modulation
by Fuyong Wu, Long Chen, Mei Yu, Liang Zhao, Lu Jiang, Tianzhu Shi, Ju Guo, Huayan Zheng, Ruixiao Wang and Mingrui Liao
Molecules 2025, 30(13), 2815; https://doi.org/10.3390/molecules30132815 - 30 Jun 2025
Viewed by 279
Abstract
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is [...] Read more.
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is able to recognize Cu2+ and I ions simultaneously in aqueous systems. The fluorescent sensor s4 was synthesized by displacement reaction of acridine with 1, 3-bis (dichloro-mono-triazinoxy) benzene in acetonitrile. Mass spectrometry (MS), UV-vis, and fluorescence spectra were acquired to characterize the fluorescence response of s4 to different cations and anions, while infrared (IR) spectroscopy and isothermal titration calorimetry (ITC) were employed to study the underlying selectivity mechanism of s4 to Cu2+ and I. In detail, s4 displayed extremely high sensitivity to Cu2+ with over 80% fluorescence decrement caused by the paramagnetic nature of Cu2+ in the aqueous media. The reversible fluorescence response to Cu2+ and the responses to Cu2+ in the solution of other potential interferent cations, such as Li+, Na+, K+, Ca2+, Cd2+, Zn2+, Sr2+, Ni2+, Co2+ were also investigated. Probe s4 also exhibited very good fluorescence selectivity to iodide ions under various anion (F, Cl, Br, NO3, HSO4, ClO4, PF6, AcO, H2PO4) interferences. In addition to the fluorescent response to I, s4 showed a highly selective naked-eye-detectable color change from colorless to yellow with the other tested anions. Full article
Show Figures

Figure 1

19 pages, 3123 KiB  
Article
Giant Chemo-Resistive Response of POSS Nano-Spacers in PS- and PMMA-Based Quantum Resistive Vapour Sensors (vQRS) Used for Cancer Biomarker Analysis
by Abhishek Sachan, Mickaël Castro, Veena Choudhary and Jean-François Feller
Chemosensors 2025, 13(7), 226; https://doi.org/10.3390/chemosensors13070226 - 21 Jun 2025
Viewed by 466
Abstract
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown [...] Read more.
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown that water molecules tend to compete or combine themselves with analytes, which requires either their removal or the development of more sensitive and discriminant sensors. In this later prospect, a positive effect of poly(hedral oligomeric silsesquioxanes) (POSS) is sought out to enhance the sensitivity of carbon nanotube-based quantum resistive vapour sensors (vQRS). POSS, once copolymerized with methyl methacrylate or styrene, can be used as nano-spacers amplifying the disconnection of the nano-junctions due to swelling of the polymer upon the diffusion of VOC. The amplitude of this phenomenon, which is at the origin of the chemo-resistive behaviour of vQRS, was compared with that of homologue transducers made of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA)-coated carbon nanotube (CNT) random networks. The presence of POSS in PS-based sensors has enhanced their sensitivity by 213 times for toluene, by 268 times for acetone, by 4 times for ethanol, and by 187 times for cyclohexane. Similarly, the presence of POSS in PMMA chains increases the sensitivity of sensors to cyclohexane by 10 times, to ethanol by 45 times, to toluene by 244 times, and to acetone and butanone by 4 times. All transducers were made by spray layer by layer (sLbL) to obtain a hierarchically structured conducting architecture. The transducers’ surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to observe the CNT coating and dispersion level in the matrix. All sensors were tested with twenty-one VOC part of lung and skin cancer biomarkers by using a dynamic vapour analysis (DVA). The vQRS based on POSS copolymers demonstrated much larger chemo-resistive responses (AR) than the sensors based only on pure polymers and were found to be very selective towards cyclohexane and hexene-1. The PMMA-co-POSS/CNT sensor was able to detect down to 12 ppm of VOC with a very high signal-to-noise ratio (SNR) and to discriminate six VOC among them all with a PCA (principal component analysis) projection. Full article
Show Figures

Figure 1

14 pages, 12010 KiB  
Article
A Highly Sensitive Formaldehyde Gas Sensor Based on Ag2O and PtO2 Co-Decorated LaFeO3 Nanofibers Prepared by Electrospinning
by Xin Wang, Fei Song, Huai’an Fu, Shanshan Yu, Kai Zhang, Zhipeng Tang, Qingkuan Meng, Qiang Jing and Bo Liu
Sensors 2025, 25(13), 3848; https://doi.org/10.3390/s25133848 - 20 Jun 2025
Viewed by 338
Abstract
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly [...] Read more.
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly sensitive formaldehyde gas sensor based on Ag2O and PtO2 co-decorated LaFeO3 nanofibers, prepared by electrospinning, with an ultra-low detection limit of 10 ppb. Operating at an optimal temperature of 210 °C, the sensor exhibits high sensitivity, with a response value of 283 to 100 ppm formaldehyde—nearly double the response of the Ag-only decorated LaFeO3 sensor. Additionally, the sensor demonstrated good selectivity, repeatability, and long-term stability over 80 days. The enhanced sensitivity is attributed to the strong adsorption ability of Ag towards both oxygen and formaldehyde, Ag’s catalytic oxidation of formaldehyde, PtO2’s catalytic action on oxygen, and the spillover effect of PtO2 on oxygen. This sensor holds significant potential for environmental monitoring due to its ultrahigh sensitivity and ease of fabrication. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 226
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

13 pages, 1877 KiB  
Article
Enhanced C3H6O and CO2 Sensory Properties of Nickel Oxide-Functionalized/Carbon Nanotube Composite: A Comprehensive Theoretical Study
by Evgeniy S. Dryuchkov, Sergey V. Boroznin, Irina V. Zaporotskova, Natalia P. Boroznina, Govindhasamy Murugadoss and Shaik Gouse Peera
J. Compos. Sci. 2025, 9(6), 311; https://doi.org/10.3390/jcs9060311 - 19 Jun 2025
Viewed by 340
Abstract
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications [...] Read more.
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications in sensors, supercapacitors, batteries, and catalytic systems. Among these, nickel oxide (NiO)-modified CNTs have garnered significant attention due to their cost-effectiveness, facile synthesis, and promising gas-sensing capabilities. This study employs quantum-chemical calculations within the framework of density functional theory (DFT) to elucidate the interaction mechanisms between CNTs and NiO. The results demonstrate that the adsorption process leads to the formation of stable CNT-NiO complexes, with detailed analysis of adsorption energies, equilibrium distances, and electronic structure modifications. The single-electron spectra and density of states (DOS) of the optimized complexes reveal significant alterations in the electronic properties, particularly the modulation of the energy gap induced by surface and edge functionalization. Furthermore, the interaction of CNT-NiO composites with acetone (C3H6O) and carbon dioxide (CO2) is modeled, revealing a physisorption-dominated mechanism. The adsorption of these gases induces notable changes in the electronic properties and charge distribution within the system, underscoring the potential of CNT-NiO composites for gas-sensing applications. This investigation provides a foundational understanding of the role of metal oxide modifications in tailoring the sensory activity of CNTs toward trace amounts of diverse substances, including metal atoms, inorganic molecules, and organic compounds. The findings suggest that CNT-NiO systems can serve as highly sensitive and selective sensing elements, with potential applications in medical diagnostics and environmental monitoring, thereby advancing the development of next-generation sensor technologies. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

19 pages, 8053 KiB  
Article
Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation
by Carlos Sánchez-Vicente, José Pedro Santos, Isabel Sayago, Vincent Mazzola and Leandro Sacco
Chemosensors 2025, 13(6), 219; https://doi.org/10.3390/chemosensors13060219 - 17 Jun 2025
Viewed by 546
Abstract
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were [...] Read more.
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were prepared using three fabrication methods: drop-casting, electrospray, and spark ablation coupled with an inertial impaction printer, to compare their performance. Multiple surface characterization techniques were carried out to investigate the surface morphology and elemental composition of the deposited layers such as SEM (scanning electron microscopy) and XPS (X-ray photoelectron spectroscopy) analyses. UV light photoactivation enabled the sensors to detect ultra-low concentrations of the target gases at room temperature (100 ppb NO2 and 1 ppm CO). The measurements were conducted at 50% relative humidity to simulate real environmental conditions. All sensors were capable of detecting the target gases. Drop-casting is the simplest and most cost-effective technique, but it is also the least reproducible. In contrast, sensors based on the spark ablation technique achieved more homogeneous sensing layers, with practically no nanoparticle agglomeration, resulting in devices with lower noise and drift in their electrical response. Full article
Show Figures

Graphical abstract

22 pages, 3803 KiB  
Article
Advanced Self-Powered Sensor for Carbon Dioxide Monitoring Utilizing Surface Acoustic Wave (SAW) Technology
by Hicham Mastouri, Mohammed Remaidi, Amine Ennawaoui, Meryiem Derraz and Chouaib Ennawaoui
Energies 2025, 18(12), 3082; https://doi.org/10.3390/en18123082 - 11 Jun 2025
Viewed by 496
Abstract
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) [...] Read more.
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) layer, chosen for its high electromechanical coupling and strong CO2 affinity. Finite element simulations were conducted to analyze the resonance frequency response under varying gas concentrations, film thicknesses, pressures, and temperatures. Results demonstrate a linear and sensitive frequency shift, with detection capability starting from 10 ppm. The sensor’s autonomy is ensured by a piezoelectric energy harvester composed of a cantilever beam structure with an attached seismic mass, where mechanical vibrations induce stress in a piezoelectric layer (PZT-5H or PVDF), generating electrical energy via the direct piezoelectric effect. Analytical and numerical analyses were performed to evaluate the influence of excitation frequency, material properties, and optimal load on power output. This integrated configuration offers a compact and energy-independent solution for real-time CO2 monitoring in low-power or inaccessible environments. Full article
Show Figures

Figure 1

17 pages, 7662 KiB  
Article
A TMO-ZnO Heterojunction-Based Sensor for Transformer Defect Detection: A DFT Study
by Jingyi Yan, Weiju Dai, Dexu Zou, Haoruo Sun, Chao Tang and Yingang Gui
Nanomaterials 2025, 15(11), 856; https://doi.org/10.3390/nano15110856 - 3 Jun 2025
Viewed by 306
Abstract
The gas adsorption and sensing properties of a transition metal oxide (TMO)-ZnO heterojunction-based sensor for H2, CO, and C2H4 are analyzed. It is found that CuO, Ag2O, and Cu2O stably composite onto the surface [...] Read more.
The gas adsorption and sensing properties of a transition metal oxide (TMO)-ZnO heterojunction-based sensor for H2, CO, and C2H4 are analyzed. It is found that CuO, Ag2O, and Cu2O stably composite onto the surface of ZnO by forming heterojunctions, which helps to improve the gas sensing and selectivity of the sensor. The adsorption results show that CuO-ZnO shows physical adsorption for H2 and good gas sensing performance for CO and C2H4, while Ag2O-ZnO and Cu2O-ZnO have significant responses for H2, CO, and C2H4. In addition, the introduction of the TMO-ZnO heterojunction structure can effectively avoid the sensor poisoning phenomenon, as the gas adsorption process does not destroy the original geometric configuration of the heterojunction. This study lays a theoretical foundation for preparing TMO-ZnO heterojunction-based sensors for transformer defect detection and energy efficiency analysis. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

16 pages, 871 KiB  
Article
Exposure to Air Pollution and Changes in Resting Blood Pressure from Morning to Evening: The MobiliSense Study
by Lisa Sekarimunda, Clelie Dureau, Basile Chaix and Sanjeev Bista
Int. J. Environ. Res. Public Health 2025, 22(6), 872; https://doi.org/10.3390/ijerph22060872 - 31 May 2025
Viewed by 584
Abstract
Several epidemiological studies have documented associations between air pollution exposure and cardiovascular responses, including adverse effects of air pollutants on blood pressure (BP). However, previous studies only considered the effect of specific air pollutants on resting BP, and did not sufficiently consider the [...] Read more.
Several epidemiological studies have documented associations between air pollution exposure and cardiovascular responses, including adverse effects of air pollutants on blood pressure (BP). However, previous studies only considered the effect of specific air pollutants on resting BP, and did not sufficiently consider the independent effects of various air pollution species as well as their overall mixture effect. We addressed this gap in our MobiliSense sensor-based study among 273 participants living in the Grand Paris region. Participants wore personal monitors to assess personal exposure to particles [black carbon and particulate matter smaller than 2.5 μm in diameter (PM2.5)] and gaseous pollutants [ozone (O3), nitrogen monoxide (NO), carbon monoxide (CO), and nitrogen dioxide (NO2)] along with noise exposure. Participants were asked to measure their blood pressure (BP) at rest in the mornings and evenings for three days. Multilevel models with a random intercept at the individual level explored the relationship between air pollution exposure (averaged over the day) and change in resting BP from morning to evening. We also used the quantile G-computation method to estimate the joint effect of the mixture of targeted air pollutants on resting BP. Sensitivity analyses examined the associations between air pollution exposure averaged at different temporal scales before evening BP measurements and the outcome. A quantile increase in the mixture of air pollutants (PM2.5, NO2, NO, CO, and O3) over the day did not affect changes in systolic BP [−0.33 mmHg (95% CI: −3.31, 2.65)] and diastolic BP [−0.53 mmHg (95% CI: −2.66, 1.60)] from morning to evening. When shorter time exposure windows were considered (from a few minutes to a few hours), both NO and the mixture showed positive associations with the morning-to-evening DBP change in only some of the models. Future studies with sufficient repeated BP measurements for more participants should test the association at varying temporal scales (minutes to days) to better understand how air pollution exposure influences resting BP. Full article
Show Figures

Figure 1

14 pages, 844 KiB  
Review
The Role of Chemical Modifications in the Genome of Negative-Sense RNA Viruses on the Innate Immune Response
by María-Alejandra Ceballos and Mónica L. Acevedo
Viruses 2025, 17(6), 795; https://doi.org/10.3390/v17060795 - 30 May 2025
Viewed by 713
Abstract
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the [...] Read more.
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the co-transcriptional and post-transcriptional phases, which are mediated by specific enzymatic activities. These chemical alterations play a critical role in shaping viral fitness, particularly in terms of evading innate immune responses. Key chemical modifications, such as adenosine methylation, 2′-O methylation of nucleosides, and adenosine-to-inosine editing, play critical roles in determining the stability, translational efficiency, and immune recognition of viral RNA. These modifications can reduce the activation of immune sensors, thereby suppressing interferon production and broader antiviral responses. In contrast, certain modifications may enhance immune recognition, which opens avenues for novel vaccine and antiviral strategy development. A comprehensive understanding of these RNA chemical modifications and their implications for virus–host interactions is essential for advancing therapeutic strategies aimed at manipulating innate immunity and optimizing the efficacy of RNA-based vaccines. This review examines the mechanisms and implications of RNA chemical modifications in negative-sense RNA viruses, emphasizing their dual roles in either evading or activating the innate immune system. Full article
(This article belongs to the Special Issue Functional and Structural Features of Viral RNA Elements)
Show Figures

Figure 1

Back to TopTop