Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,740)

Search Parameters:
Keywords = O-lattice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 (registering DOI) - 1 Aug 2025
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
15 pages, 5148 KiB  
Article
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 (registering DOI) - 31 Jul 2025
Viewed by 39
Abstract
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of [...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance. Full article
Show Figures

Figure 1

12 pages, 3668 KiB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 173
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

29 pages, 14906 KiB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 170
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 308
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 207
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

24 pages, 4603 KiB  
Article
Magnetic Resonance Imaging Evaluation of Photodynamic Therapy with Indocyanine Green in Atherosclerosis Plaques Before and After Gadovist Administration
by Piotr Wańczura, Wiktoria Mytych, Dorota Bartusik-Aebisher, Dawid Leksa, Adrian Truszkiewicz and David Aebisher
Int. J. Transl. Med. 2025, 5(3), 32; https://doi.org/10.3390/ijtm5030032 - 25 Jul 2025
Viewed by 284
Abstract
Background: Singlet oxygen (1O2) generation in biological samples remains a significant challenge. Studying the mechanism of 1O2 action during photodynamic therapy (PDT) in atherosclerotic plaques in vitro represents an innovative cardiological approach. Atherosclerosis, a chronic and progressive [...] Read more.
Background: Singlet oxygen (1O2) generation in biological samples remains a significant challenge. Studying the mechanism of 1O2 action during photodynamic therapy (PDT) in atherosclerotic plaques in vitro represents an innovative cardiological approach. Atherosclerosis, a chronic and progressive disease, is characterized by plaque buildup inside arterial walls. Objectives: This study focused on the use of spin–lattice (T1) and spin–spin (T2) relaxation times measured by Magnetic Resonance Imaging (MRI) before and after the administration of indocyanine green-mediated PDT (ICG-PDT). Methods: To enhance visualization of morphological changes in atherosclerotic plaques, the clinically approved MRI contrast agent Gadovist was utilized. A total of 12 atherosclerotic plaque samples were collected from six patients undergoing endarterectomy. The generation of 1O2 in these plaques was assessed using quantitative MRI measurements and microscopic imaging, which visualized structural changes induced by PDT. Results: This research explores the potential of T1 and T2 relaxation times as indicators of PDT efficacy, while Gadovist helped provide evidence of 1O2 diffusion within the samples. Conclusions: Considering advancements in modern treatment, PDT may offer a novel approach for targeting atherosclerosis. Full article
Show Figures

Figure 1

17 pages, 6395 KiB  
Article
Fe–P Alloy Production from High-Phosphorus Oolitic Iron Ore via Efficient Pre-Reduction and Smelting Separation
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(8), 778; https://doi.org/10.3390/min15080778 - 24 Jul 2025
Viewed by 186
Abstract
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or [...] Read more.
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or wear-resistant cast iron, indicating promising application prospects. Using oolitic magnetite concentrate (52.06% Fe, 0.37% P) as feedstock, optimized conditions including pre-reduction at 1050 °C for 2 h with C/Fe mass ratio of 2, followed by smelting separation at 1550 °C for 20 min with 5% coke, produced a metallic phase containing 99.24% Fe and 0.73% P. Iron and phosphorus recoveries reached 99.73% and 99.15%, respectively. EPMA microanalysis confirmed spatial correlation between iron and phosphorus in the metallic phase, with undetectable phosphorus signals in vitreous slag. This evidence suggests preferential phosphorus enrichment through interfacial mass transfer along the pathway of the slag phase to the metal interface and finally the iron matrix, forming homogeneous Fe–P solid solutions. The phosphorus migration mechanism involves sequential stages: apatite lattice decomposition liberates reactive P2O5 under SiO2/Al2O3 influence; slag–iron interfacial co-reduction generates Fe3P intermediates; Fe3P incorporation into the iron matrix establishes stable solid solutions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

15 pages, 5802 KiB  
Article
Study on the Influence Mechanism of Alkaline Earth Element Doping on the Thermoelectric Properties of ZnO
by Haitao Zhang, Bo Feng, Yonghong Chen, Peng Jin, Ruolin Ruan, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong and Yanhua Fan
Micromachines 2025, 16(8), 850; https://doi.org/10.3390/mi16080850 - 24 Jul 2025
Viewed by 246
Abstract
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were [...] Read more.
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were prepared using the methods of room-temperature powder synthesis and high-temperature block synthesis. The phase composition, crystal structure, and thermoelectric performances of ZnO samples with different Sr doping levels were analyzed using XRD, material simulation software and thermoelectric testing devices, and the optimal doping concentrations were obtained. The results show that Sr doping could cause the Zn-O bond to become shorter; in addition, the hybridization between Zn and O atoms would become stronger, and the Sr atom would modify the density of states near the Fermi level, which could significantly increase the carrier concentration, electrical conductivity, and corresponding power factor. Sr doping could cause lattice distortion, enhance the phonon scattering effect, and decrease the lattice thermal conductivity and thermal conductivity. Sr doping can achieve the effect of improving electrical transport performance and decreasing thermal transport performance. The ZT value increased to ~0.418 at 873 K, which is ~4.2 times the highest ZT of the undoped ZnO sample. The Vickers hardness was increased to ~351.1 HV, which is 45% higher than the pristine ZnO. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

15 pages, 7165 KiB  
Article
Structural and Performance Studies of Lanthanum–Nitrogen Co-Doped Titanium Dioxide Thin Films Under UV Aging
by Pengcheng Cao, Li Zhang and Yanbo Yuan
Micromachines 2025, 16(8), 842; https://doi.org/10.3390/mi16080842 - 23 Jul 2025
Viewed by 329
Abstract
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray [...] Read more.
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray diffraction (XRD) analysis revealed that La-N co-doping inhibits the phase transition from anatase to rutile, significantly enhancing the phase stability of the films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterizations indicated that co-doping increased the density and surface uniformity of the films, thereby delaying the expansion of cracks and increase in roughness induced by UV exposure. Energy-dispersive X-ray spectroscopy (EDS) results confirmed the successful incorporation of La and N into the TiO2 lattice, enhancing the chemical stability of the films. Contact angle tests demonstrated that La-N co-doping markedly improved the hydrophobicity of the films, inhibiting the rapid decay of hydrophilicity during UV aging. After three years of UV aging, the co-doped films maintained high structural integrity and photocatalytic performance, exhibiting excellent resistance to UV aging. These findings offer new insights into the long-term stability of photovoltaic self-cleaning materials. Full article
Show Figures

Figure 1

12 pages, 309 KiB  
Article
Theoretical Study of the Impact of Al, Ga and In Doping on Magnetization, Polarization, and Band Gap Energy of CuFeO2
by A. T. Apostolov, I. N. Apostolova and J. M. Wesselinowa
Appl. Sci. 2025, 15(14), 8097; https://doi.org/10.3390/app15148097 - 21 Jul 2025
Viewed by 230
Abstract
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across [...] Read more.
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across a broad energy spectrum highlights the potential of perovskite materials for advanced applications, including photovoltaics, photodetectors, lasers, light-emitting diodes, and high-energy particle sensors. The disparity in ionic radii between the dopant and host ions introduces local lattice distortions, leading to modifications in the exchange interaction parameters. As a result, the influence of ion doping on various properties of CuFeO2 has been elucidated at microscopic level. Our findings indicate that Al doping enhances magnetization and reduces the band gap energy. In contrast, doping with Ga or In results in a decrease in magnetization and an increase in band gap energy. Additionally, it is demonstrated that ferroelectric polarization can be induced either via external magnetic fields or by Al substitution at the Fe site. The theoretical results show good qualitative agreement with experimental data, confirming the validity of the proposed model and method. Full article
Show Figures

Figure 1

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 377
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

14 pages, 5943 KiB  
Article
Preparation and Optimization of Mn2+-Activated Na2ZnGeO4 Phosphors: Insights into Precursor Selection and Microwave-Assisted Solid-State Synthesis
by Xiaomeng Wang, Siyi Wei, Jiaping Zhang, Jiaren Du, Yukun Li, Ke Chen and Hengwei Lin
Nanomaterials 2025, 15(14), 1117; https://doi.org/10.3390/nano15141117 - 18 Jul 2025
Viewed by 309
Abstract
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for [...] Read more.
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for the preparation of Na2ZnGeO4:Mn2+. Leveraging the unique attributes of the MASS technique, a systematic investigation into the applicability of various Mn-source precursors was conducted. Additionally, the integration of the MASS approach with traditional solid-state reaction (SSR) methods was assessed. The findings indicate that the MASS technique effectively incorporates Mn ions from diverse precursors (including higher oxidation states of manganese) into the crystal lattice, resulting in efficient green emission from Mn2+. Notably, the photoluminescence quantum yield (PLQY) of the sample utilizing MnCO3 as the manganese precursor was recorded at 2.67%, whereas the sample synthesized from MnO2 exhibited a remarkable PLQY of 17.69%. Moreover, the post-treatment of SSR-derived samples through the MASS process significantly enhanced the PLQY from 0.67% to 8.66%. These results underscore the promise of the MASS method as a novel and efficient synthesis strategy for the rapid and scalable production of Mn2+-doped green luminescent materials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 254
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

Back to TopTop