Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,522)

Search Parameters:
Keywords = O&M strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2153 KiB  
Article
Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract
by S. S. Millavithanachchi, M. D. K. M. Gunasena, G. D. C. P. Galpaya, H. V. V. Priyadarshana, S. V. A. A. Indupama, D. K. A. Induranga, W. A. C. N. Kariyawasam, D. V. S. Kaluthanthri and K. R. Koswattage
Nanomaterials 2025, 15(15), 1203; https://doi.org/10.3390/nano15151203 - 6 Aug 2025
Abstract
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the [...] Read more.
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the eco-friendly fabrication of CuO nanoparticles. Using copper sulfate (CuSO4·5H2O) as a precursor, eight treatments were conducted by varying precursor concentration, temperature, and reaction time to determine optimal conditions. A visible color change in the reaction mixture initially indicated nanoparticle formation. Among all the conditions, treatment T4 (5 mM CuSO4, 80 °C, 2 h) yielded the most favorable results in terms of stability, morphology, and crystallinity. UV-Vis spectroscopic analysis confirmed the synthesis, with absorbance peaks between 265 and 285 nm. FTIR analysis revealed organic functional groups and characteristic metal–oxygen vibrations in the fingerprint region (500–650 cm−1), confirming formation. SEM imaging showed that particles were mainly spherical to polygonal, averaging 125–150 nm. However, dynamic light scattering showed larger diameters (~240 nm) due to surface capping agents. Zeta potential values ranged from −16.0 to −28.0 mV, indicating stability. XRD data revealed partial crystallinity with CuO-specific peaks. These findings support the potential of T. diversifolia in green nanoparticle synthesis, suggesting a low-cost, eco-conscious strategy for future applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 2722 KiB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Figure 1

14 pages, 3486 KiB  
Article
Spatiotemporal Activity Patterns of Sympatric Rodents and Their Predators in a Temperate Desert-Steppe Ecosystem
by Caibo Wei, Yijie Ma, Yuquan Fan, Xiaoliang Zhi and Limin Hua
Animals 2025, 15(15), 2290; https://doi.org/10.3390/ani15152290 - 5 Aug 2025
Abstract
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and [...] Read more.
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and Meriones meridianus (Midday gerbil)—and their primary predators, Otocolobus manul (Pallas’s cat) and Vulpes vulpes (Red fox), in a desert-steppe ecosystem on the northern slopes of the Qilian Mountains, China. Using over 8000 camera trap days and kernel density estimation, we quantified their activity intensity and spatiotemporal overlap. The two rodent species showed clear temporal niche differentiation but differed in their synchrony with predators. R. opimus exhibited a unimodal diurnal rhythm with spring activity peaks, while M. meridianus showed stable nocturnal activity with a distinct autumn peak. Notably, O. manul adjusted its activity pattern to partially align with that of R. opimus, whereas V. vulpes maintained a crepuscular–nocturnal rhythm overlapping more closely with that of M. meridianus. Despite distinct temporal rhythms, both rodent species shared high spatial overlap with their predators (overlap index OI = 0.64–0.83). These findings suggest that temporal partitioning may reduce predation risk for R. opimus, while M. meridianus co-occurs more extensively with its predators. Our results highlight the ecological role of native carnivores in rodent population dynamics and support their potential use in biodiversity-friendly rodent management strategies under arid grassland conditions. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

15 pages, 1507 KiB  
Article
Determination of Fumonisins B1 and B2 in Food Matrices: Optimisation of a Liquid Chromatographic Method with Fluorescence Detection
by Óscar Cebadero-Domínguez, Santiago Ruiz-Moyano, Alberto Martín and Elisabet Martín-Tornero
Toxins 2025, 17(8), 391; https://doi.org/10.3390/toxins17080391 - 5 Aug 2025
Abstract
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a [...] Read more.
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the quantification of fumonisin B1 (FB1) and B2 (FB2) in various food matrices. In contrast with conventional protocols employing potassium phosphate buffers as the mobile phase, the proposed method utilises formic acid, offering enhanced compatibility with liquid chromatography systems. An automated online precolumn derivatisation with o-phthaldialdehyde (OPA) was optimised through experimental design and response surface methodology, enabling baseline separation of FB1 and FB2 derivatives in less than 20 min. The method demonstrated high sensitivity, with limits of detection of 0.006 µg mL−1 for FB1 and 0.012 µg mL−1 for FB2, and excellent repeatability (intraday RSD values of 0.85% and 0.83%, respectively). Several solid-phase extraction (SPE) strategies were evaluated to enhance sample clean-up using a variety of food samples, including dried figs, raisins, dates, corn, cornmeal, wheat flour, and rice. FumoniStar Inmunoaffinity columns were the only clean-up method that provided optimal recoveries (70–120%) across all tested food matrices. However, the MultiSep™ 211 column yielded good recoveries for both fumonisins in dried figs and raisins. Additionally, the C18 cartridge achieved acceptable recoveries for both fumonisins in dried figs and wheat flour. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 12012 KiB  
Article
Complement Receptor 3 Regulates Microglial Exosome Release and Related Neurotoxicity via NADPH Oxidase in Neuroinflammation Associated with Parkinson’s Disease
by Yu Ma, Xiaomeng Zhang, Jiaqi Xu, Runnan Luo, Sheng Li, Hong Su, Qingshan Wang and Liyan Hou
Antioxidants 2025, 14(8), 963; https://doi.org/10.3390/antiox14080963 (registering DOI) - 5 Aug 2025
Abstract
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement [...] Read more.
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement receptor 3 (CR3) in regulating microglial activation in the process of progressive neurodegeneration. This study aimed to investigate whether CR3 can regulate exosome release from activated microglia, as well as the underlying mechanisms. We found that LPS, an inducer of microglial M1 activation, induced exosome release from activated microglia. Inhibition of exosome synthesis suppressed LPS-induced microglial activation, gene expression of proinflammatory factors, and related neurotoxicity. Silencing or knocking out CR3 attenuated LPS-induced exosome release in microglia. NADPH oxidase (NOX2) was further identified as a downstream signal of CR3, mediating microglial exosome release and related neurotoxicity. CR3 silencing blocked LPS-induced NOX2 activation and superoxide production through inhibition of p47phox phosphorylation and membrane translocation. Moreover, NOX2 activation elicited by PMA or supplementation of H2O2 recovered exosome release from CR3-silenced microglia. Subsequently, we demonstrated that the CR3-NOX2 axis regulates syntenin-1 to control microglial exosome release. Finally, we observed that the expression of CR3 was increased in the brain of LPS-treated mice, and genetic ablation of CR3 significantly reduced LPS-induced NOX2 activation, microglial M1 polarization, and exosome production in mice. Overall, our findings revealed a critical role of the CR3-NOX2 axis in controlling microglial exosome release and related neurotoxicity through syntenin-1, providing a novel target for the development of a therapeutic strategy for neuroinflammation-mediated neurodegeneration. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

17 pages, 5740 KiB  
Article
Synergistic Optimization of High-Temperature Mechanical Properties and Thermal Conductivity in B4C/Al Composites Through Nano-Al2O3 Phase Transformation and Process Engineering
by Chunfa Huang, Lingmin Li and Qiulin Li
Metals 2025, 15(8), 874; https://doi.org/10.3390/met15080874 (registering DOI) - 4 Aug 2025
Abstract
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al [...] Read more.
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al2O3 within an aluminum matrix. By combining plastic deformation and heat treatment, we aim to achieve a structurally integrated functional design. A systematic investigation was conducted on the microstructural evolution of Al2O3/10 wt.% B4C/Al composites in their forged, extruded, and heat-treated states. We also examined how these states affect high-temperature mechanical properties and thermal conductivity. The results indicate that applying hot extrusion deformation along with optimized heat treatment parameters (500 °C for 24 h) allows for a lamellar dispersion of nano-Al2O3 and a crystallographic transition from amorphous to γ-phase. As a result, the composite demonstrates a tensile strength of 144 MPa and an enhanced thermal conductivity of 181 W/(m·K) at 350 °C. These findings provide theoretical insights and technical support for ensuring the high density and long-term safety of spent fuel storage materials. Full article
12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Viewed by 61
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

13 pages, 2008 KiB  
Article
Hierarchical Flaky Spinel Structure with Al and Mn Co-Doping Towards Preferable Oxygen Evolution Performance
by Hengfen Shen, Hao Du, Peng Li and Mei Wang
Materials 2025, 18(15), 3633; https://doi.org/10.3390/ma18153633 - 1 Aug 2025
Viewed by 194
Abstract
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous [...] Read more.
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFe2O4 (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm−2, a minimal Tafel slope of 45.09 mV dec−1, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm−2 and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 212
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 221
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

14 pages, 876 KiB  
Article
Pecan Shell Extract Effectively Inhibits Listeria monocytogenes, E. coli O157:H7, and Pseudomonas spp. on Contaminated Lettuce Seeds
by Ivannova Lituma, Francisco Valle, Jong Hyun Ham and Achyut Adhikari
Agronomy 2025, 15(8), 1865; https://doi.org/10.3390/agronomy15081865 - 31 Jul 2025
Viewed by 135
Abstract
Contaminated seeds pose a major risk in hydroponic systems, as a single contaminated seed can compromise the entire setup. Effective decontamination strategies are essential to control seed-borne pathogens. Pecan shells, a byproduct comprising nearly 50% of the nut’s weight, have demonstrated antimicrobial properties [...] Read more.
Contaminated seeds pose a major risk in hydroponic systems, as a single contaminated seed can compromise the entire setup. Effective decontamination strategies are essential to control seed-borne pathogens. Pecan shells, a byproduct comprising nearly 50% of the nut’s weight, have demonstrated antimicrobial properties against key pathogens. This study evaluated pecan shell extract (PSE) as a treatment to inactivate Listeria monocytogenes, Escherichia coli O157:H7, and Pseudomonas spp. on lettuce seeds and its effect on germination. Lettuce seeds were inoculated with L. monocytogenes strains (101 M, V7, LCDC, and Scott A) and treated with PSE (1:10 w/v) either by coating in sodium alginate or priming for 6 h (4 °C or room temperature). Hydropriming was used as a control. Additional trials with E. coli and Pseudomonas spp. tested PSE at 1:10, 1:20, and 1:30 w/v ratios. Priming at refrigeration significantly reduced Listeria levels. E. coli priming treatments showed significant reductions at 1:20 and 1:30 w/v. For Pseudomonas, priming at 1:20 showed the highest reduction. PSE priming also enhanced germination (88.3%), outperforming other treatments. These findings suggest PSE is a sustainable and effective seed treatment to reduce microbial contamination and enhance seed germination in hydroponic systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Graphical abstract

Back to TopTop