Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of T. diversifolia Leaf Extract
2.2. Synthesis of CuO Nanoparticles (CuO NPs)
2.3. Characterization of Synthesized CuO NPs
2.4. Phytochemical Screening of Leaf Extract
3. Results
3.1. SEM Analysis
3.2. XRD Analysis
3.3. Dynamic Light Scattering Analysis
3.3.1. Particle Size
3.3.2. Zeta Potential
3.4. FTIR Analysis
3.5. UV–Visible Spectrophotometer Analysis
3.6. Phytochemical Screening of Leaf Extract
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DLS | Dynamic Light Scattering |
FTIR | Fourier-Transform Infrared |
SEM | Scanning Electron Microscope |
UV | Ultraviolet |
XRD | X-ray Diffraction |
References
- Galpaya, C.; Induranga, A.; Vithanage, V.; Mantilaka, P.; Koswattage, K.R. Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures. Energies 2024, 17, 732. [Google Scholar] [CrossRef]
- Gunasena, M.; Alahakoon, A.; Polwaththa, K.; Galpaya, G.; Priyanjani, H.; Koswattage, K.R.; Senarath, W. Transforming Plant Tissue Culture with Nanoparticles: A Review of Current Applications. Plant Nano Biol. 2024, 10, 100102. [Google Scholar] [CrossRef]
- Gunasena, M.; Galpaya, G.; Abeygunawardena, C.J.; Induranga, D.K.A.; Priyadarshana, H.V.V.; Millavithanachchi, S.S.; Bandara, P.; Koswattage, K.R. Advancements in Bio-Nanotechnology: Green Synthesis and Emerging Applications of Bio-Nanoparticles. Nanomaterials 2025, 15, 528. [Google Scholar] [CrossRef]
- Induranga, A.; Galpaya, C.; Vithanage, V.; Indupama, A.; Maduwantha, K.; Gunawardana, N.; Wijesekara, D.; Amarasinghe, P.; Nilmalgoda, H.; Gunasena, K. Nanofluids for Heat Transfer: Advances in Thermo-Physical Properties, Theoretical Insights, and Engineering Applications. Energies 2025, 18, 1935. [Google Scholar] [CrossRef]
- Induranga, A.; Galpaya, C.; Vithanage, V.; Koswattage, K.R. Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil. Energies 2023, 17, 49. [Google Scholar] [CrossRef]
- Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Omran, B.A.; Omran, B.A. Fundamentals of Nanotechnology and Nanobiotechnology. In Nanobiotechnology: A Multidisciplinary Field of Science; Springer Nature: Dordrecht, The Netherlands, 2020; pp. 1–36. [Google Scholar]
- Peddi, P.; Ptsrk, P.R.; Rani, N.U.; Tulasi, S.L. Green Synthesis, Characterization, Antioxidant, Antibacterial, and Photocatalytic Activity of Suaeda maritima (L.) Dumort Aqueous Extract-Mediated Copper Oxide Nanoparticles. J. Genet. Eng. Biotechnol. 2021, 19, 131. [Google Scholar] [CrossRef]
- Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green Synthesis of CuO Nanoparticles Using Gloriosa superba L. Extr. Their Antibact. Act. J. Taibah Univ. Sci. 2015, 9, 7–12. [Google Scholar] [CrossRef]
- Dauthal, P.; Mukhopadhyay, M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55, 9557–9577. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Singh, H.; Desimone, M.F.; Pandya, S.; Jasani, S.; George, N.; Adnan, M.; Aldarhami, A.; Bazaid, A.S.; Alderhami, S.A. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int. J. Nanomed. 2023, 18, 4727–4750. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Roopa, M.S.; Shubharani, R.; Rhetso, T.; Sivaram, V. Comparative Analysis of Phytochemical Constituents, Free Radical Scavenging Activity and GC-MS Analysis of Leaf and Flower Extract of Tithonia diversifolia (Hemsl.) A. Gray. Int. J. Pharm. Sci. Res. 2020, 11, 5081–5090. [Google Scholar]
- Robinson, T.N.; Justine, D.; Maxime, P.; Alexis, S.; Sidrine, K.I.; Hugues, R.J.; Ludovic, C.; Patrick, M. Biological Activities and Phytochemical Constituents in the Stimulatory Potential of Tithonia diversifolia Fermented Extracts: A Review. Eur. J. Med. Plants 2024, 35, 340–352. [Google Scholar] [CrossRef]
- Tagne, A.M.; Marino, F.; Cosentino, M. Tithonia diversifolia (Hemsl.) A. Gray as a Medicinal Plant: A Comprehensive Review of Its Ethnopharmacology, Phytochemistry, Pharmacotoxicology and Clinical Relevance. J. Ethnopharmacol. 2018, 220, 94–116. [Google Scholar] [CrossRef]
- Oyetola, E.O.; Nwosu, F.O.; Oyeleke, G.O.; Olawale, I.J.; Mofoluwake Adegoke, B.; Afolabi, U.O. Comparative Studies of Synthesized Copper Oxide Nanoparticles Using Aqueous Extract of Leaves. Nanochem. Res. 2023, 8, 141–151. [Google Scholar]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- Taghavi Fardood, S.; Ramazani, A. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. J. Nanostruct. 2016, 6, 167–171. [Google Scholar]
- Millavithanachchi, S.; Gunasena, M.; Koswattage, K.; Kaluthanthri, D.; Bandara, P.; Galpaya, G.; Jambugaswaththa, K.; Kirthika, V.; Hansini, A. Feasibility Study on the Green Synthesis of CuO Nanoparticles Using Tithonia diversifolia (Wild Sunflower) Leaf Extract. In Proceedings of the International Conference on Emerging Technologies (ICET), Belihuloya, Sri Lanka, 2 April 2025. [Google Scholar]
- Medjdoub, A.; Nedjimi, M.S.; Tlili, S.; Gherab, K.; Gherissi, K. Green Synthesis of CuO Nanoparticles Using Aqueous Extract of (Artemisia herba Alba) and Their Potential Applications as Antimicrobial Agents. Pak. J. Life Soc. Sci. 2024, 22, 2238–2254. [Google Scholar] [CrossRef]
- Khatamifar, M.; Fatemi, S.J. Green Synthesis of Pure Copper Oxide Nanoparticles Using Quercus Infectoria Galls Extract, Thermal Behavior and Their Antimicrobial Effects. Part. Sci. Technol. 2022, 40, 18–26. [Google Scholar] [CrossRef]
- Aroob, S.; Carabineiro, S.A.; Taj, M.B.; Bibi, I.; Raheel, A.; Javed, T.; Yahya, R.; Alelwani, W.; Verpoort, F.; Kamwilaisak, K. Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts 2023, 13, 502. [Google Scholar] [CrossRef]
- Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K.; Ighalo, J.O. Multifunctional CuO Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. Sustain. Environ. Res. 2022, 32, 2. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Oluwadiya, A.E.; Lau, S.Y.; Dada, A.O.; Akubuo-Casmir, D.; Adelani-Akande, T.A.; Bari, A.F.; Temidayo, S.O.; Rahman, M.M. Biosynthesis of Tithonia diversifolia Leaf Mediated Zinc Oxide Nanoparticles Loaded with Flamboyant Pods (Delonix regia) for the Treatment of Methylene Blue Wastewater. Arab. J. Chem. 2021, 14, 103363. [Google Scholar] [CrossRef]
- Velsankar, K.; RM, A.K.; Preethi, R.; Muthulakshmi, V.; Sudhahar, S. Green Synthesis of CuO Nanoparticles via Allium Sativum Extract and Its Characterizations on Antimicrobial, Antioxidant, Antilarvicidal Activities. J. Environ. Chem. Eng. 2020, 8, 104123. [Google Scholar] [CrossRef]
- Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M.R. Reduction of Aromatic Nitro Compounds Catalyzed by Biogenic CuO Nanoparticles. RSC Adv. 2014, 4, 53229–53236. [Google Scholar] [CrossRef]
- Narayanan, M.; Srinivasan, B.; Sambantham, M.T.; Al-Keridis, L.A.; AL-mekhlafi, F.A. Green Synthesizes and Characterization of Copper-Oxide Nanoparticles by Thespesia populnea against Skin-Infection Causing Microbes. J. King Saud Univ. Sci. 2022, 34, 101885. [Google Scholar] [CrossRef]
- Sarkar, J.; Chakraborty, N.; Chatterjee, A.; Bhattacharjee, A.; Dasgupta, D.; Acharya, K. Green Synthesized Copper Oxide Nanoparticles Ameliorate Defence and Antioxidant Enzymes in Lens culinaris. Nanomaterials 2020, 10, 312. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Álvarez-Chimal, R.; García-Pérez, V.I.; Álvarez-Pérez, M.A.; Tavera-Hernández, R.; Reyes-Carmona, L.; Martínez-Hernández, M.; Arenas-Alatorre, J.Á. Influence of the Particle Size on the Antibacterial Activity of Green Synthesized Zinc Oxide Nanoparticles Using Dysphania ambrosioides Extract, Supported by Molecular Docking Analysis. Arab. J. Chem. 2022, 15, 103804. [Google Scholar] [CrossRef]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium Citrinum. Trop. J. Pharm. Res. 2013, 12, 7–11. [Google Scholar] [CrossRef]
- Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green Synthesis of Copper Oxide Nanoparticles Using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig. J. Nanomater. Bios. 2012, 7, 999–1005. [Google Scholar]
- Dauthal, P.; Mukhopadhyay, M. Biosynthesis of Palladium Nanoparticles Using Delonix regia Leaf Extract and Its Catalytic Activity for Nitro-Aromatics Hydrogenation. Ind. Eng. Chem. Res. 2013, 52, 18131–18139. [Google Scholar] [CrossRef]
- Amin, F.; Fozia; Khattak, B.; Alotaibi, A.; Qasim, M.; Ahmad, I.; Ullah, R.; Bourhia, M.; Gul, A.; Zahoor, S. Green Synthesis of Copper Oxide Nanoparticles Using Aerva javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 5589703. [Google Scholar] [CrossRef]
- Nzilu, D.M.; Madivoli, E.S.; Makhanu, D.S.; Wanakai, S.I.; Kiprono, G.K.; Kareru, P.G. Green Synthesis of Copper Oxide Nanoparticles and Its Efficiency in Degradation of Rifampicin Antibiotic. Sci. Rep. 2023, 13, 14030. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Jain, D.; Rajpurohit, D.; Jat, G.; Kushwaha, H.S.; Singh, A.; Mohanty, S.R.; Al-Sadoon, M.K.; Zaman, W.; Upadhyay, S.K. Bacteria Assisted Green Synthesis of Copper Oxide Nanoparticles and Their Potential Applications as Antimicrobial Agents and Plant Growth Stimulants. Front. Chem. 2023, 11, 1154128. [Google Scholar] [CrossRef]
- Sukumar, S.; Rudrasenan, A.; Padmanabhan Nambiar, D. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia Bonducella Seed Extract and Their Applications. ACS Omega 2020, 5, 1040–1051. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Ghidan, A.Y.; Al-Antary, T.M.; Awwad, A.M. Green Synthesis of Copper Oxide Nanoparticles Using Punica granatum Peels Extract: Effect on Green Peach Aphid. Environ. Nanotechnol. Monit. Manag. 2016, 6, 95–98. [Google Scholar] [CrossRef]
- Elemike, E.E.; Onwudiwe, D.C.; Singh, M. Eco-Friendly Synthesis of Copper Oxide, Zinc Oxide and Copper Oxide–Zinc Oxide Nanocomposites, and Their Anticancer Applications. J. Inorg. Organomet. Polym. Mater. 2020, 30, 400–409. [Google Scholar] [CrossRef]
- Veisi, H.; Karmakar, B.; Tamoradi, T.; Hemmati, S.; Hekmati, M.; Hamelian, M. Biosynthesis of CuO Nanoparticles Using Aqueous Extract of Herbal Tea (Stachys Lavandulifolia) Flowers and Evaluation of Its Catalytic Activity. Sci. Rep. 2021, 11, 1983. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, Z.; Saleh, N. Advanced Concept of Green Synthesis of Metallic Nanoparticles by Reducing Phytochemicals. In Nanobotany; Springer: Cham, Switzerland, 2018; pp. 17–36. [Google Scholar]
- Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Acharya, K.; Sarkar, J. Green Synthesis of Copper/Copper Oxide Nanoparticles and Their Applications: A Review. Green Chem. Lett. Rev. 2022, 15, 187–215. [Google Scholar] [CrossRef]
Treatment | CuSO4 Concentration | Temperature | Stirring Time |
---|---|---|---|
T1 | 5 mM | 60 °C | 1 h |
T2 | 2 h | ||
T3 | 80 °C | 1 h | |
T4 | 2 h | ||
T5 | 10 mM | 60 °C | 1 h |
T6 | 2 h | ||
T7 | 80 °C | 1 h | |
T8 | 2 h |
Treatment | Particle Size Range (nm) | Dominant Particle Size (nm) | Average Particle Size (nm) | Polydispersity Index (PDI) |
---|---|---|---|---|
T1 | ~100–800 | ~200 | 297.2 ± 63 d | 0.222 |
T2 | ~50–1000 | ~250 | 795.0 ± 79 b | 0.376 |
T3 | ~100–700 | ~150 | 683.9 ± 62 bc | 0.303 |
T4 | ~10–800 | ~300 | 362.3 ± 88 d | 0.380 |
T5 | ~100–1000 | ~400 | 1638.1 ± 43 a | 0.307 |
T6 | ~200–900 | ~500 | 592.0 ± 24 c | 0.473 |
T7 | ~300–1000 | ~600 | 592.5 ± 43 c | 0.348 |
T8 | ~50–900 | ~300 | 735.2 ± 16 bc | 0.335 |
Treatment | Zeta Potential (mV) |
---|---|
T1 | −16.43 ± 0.41 c |
T2 | −19.50 ± 0.88 c |
T3 | −20.40 ± 1.15 bc |
T4 | −25.17 ± 4.51 ab |
T5 | −16.13 ± 0.68 c |
T6 | −18.03 ± 0.32 c |
T7 | −20.96 ± 1.60 bc |
T8 | −28.03 ± 2.05 a |
Treatment | Wavelength |
---|---|
T1 | ~275 nm |
T2 | ~285 nm |
T3 | ~265 nm |
T4 | ~280 nm |
T5 | ~280 nm |
T6 | ~270 nm |
T7 | ~267 nm |
T8 | ~273 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millavithanachchi, S.S.; Gunasena, M.D.K.M.; Galpaya, G.D.C.P.; Priyadarshana, H.V.V.; Indupama, S.V.A.A.; Induranga, D.K.A.; Kariyawasam, W.A.C.N.; Kaluthanthri, D.V.S.; Koswattage, K.R. Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract. Nanomaterials 2025, 15, 1203. https://doi.org/10.3390/nano15151203
Millavithanachchi SS, Gunasena MDKM, Galpaya GDCP, Priyadarshana HVV, Indupama SVAA, Induranga DKA, Kariyawasam WACN, Kaluthanthri DVS, Koswattage KR. Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract. Nanomaterials. 2025; 15(15):1203. https://doi.org/10.3390/nano15151203
Chicago/Turabian StyleMillavithanachchi, S. S., M. D. K. M. Gunasena, G. D. C. P. Galpaya, H. V. V. Priyadarshana, S. V. A. A. Indupama, D. K. A. Induranga, W. A. C. N. Kariyawasam, D. V. S. Kaluthanthri, and K. R. Koswattage. 2025. "Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract" Nanomaterials 15, no. 15: 1203. https://doi.org/10.3390/nano15151203
APA StyleMillavithanachchi, S. S., Gunasena, M. D. K. M., Galpaya, G. D. C. P., Priyadarshana, H. V. V., Indupama, S. V. A. A., Induranga, D. K. A., Kariyawasam, W. A. C. N., Kaluthanthri, D. V. S., & Koswattage, K. R. (2025). Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract. Nanomaterials, 15(15), 1203. https://doi.org/10.3390/nano15151203