Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (725)

Search Parameters:
Keywords = North China plain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4932 KB  
Article
Model Intercomparison and Resolution Dependence in Real-Time Numerical Air Quality Forecasting over North China
by Zijian Jiang, Zhiyin Zou, Wending Wang, Huansheng Chen, Zichen Wu, Xueshun Chen and Zhe Wang
Atmosphere 2026, 17(2), 123; https://doi.org/10.3390/atmos17020123 - 23 Jan 2026
Abstract
High-resolution air quality models (AQMs) are critical for real-time air quality forecasting and exposure assessment, although their computational costs increase cubically with resolution. Quantifying model sensitivity to resolution is therefore crucial for developing effective forecasting systems. This study conducts a systematic model intercomparison [...] Read more.
High-resolution air quality models (AQMs) are critical for real-time air quality forecasting and exposure assessment, although their computational costs increase cubically with resolution. Quantifying model sensitivity to resolution is therefore crucial for developing effective forecasting systems. This study conducts a systematic model intercomparison of three widely used AQMs (CAMx, CMAQ, NAQPMS) under identical input conditions at 45, 15, and 5 km resolutions to forecast PM2.5 and O3 in the North China Plain during 2021. Results indicate distinct, model-dependent responses to grid refinement. NAQPMS achieves the optimal PM2.5 forecasting performance at 5 km, with improvements in nearly all evaluated statistics. CMAQ excels in O3 prediction at 5 km resolution, with RMSE reducing 6.48 μg/m3 relative to the coarsest grids. We also found that terrain complexity significantly influences these resolution-dependent biases, leading to a substantial 19.51% reduction in NMB in the CAMx PM2.5 simulation over mountain areas. Moreover, the evaluation of 10-day forecasting accuracy suggests that a high-resolution setting is recommended for NAQPMS and CMAQ, whereas a coarser resolution is sufficient for CAMx. These findings underscore that optimizing real-time forecasting strategies requires a critical investigation of inter-model physicochemical discrepancies rather than universally pursuing higher resolution. Full article
(This article belongs to the Special Issue Secondary Atmospheric Pollution Formations and Its Precursors)
21 pages, 5218 KB  
Article
Groundwater Pollution Transport in Plain-Type Landfills: Numerical Simulation of Coupled Impacts of Precipitation and Pumping
by Tengchao Li, Shengyan Zhang, Xiaoming Mao, Yuqin He, Ninghao Wang, Daoyuan Zheng, Henghua Gong and Tianye Wang
Hydrology 2026, 13(1), 36; https://doi.org/10.3390/hydrology13010036 - 17 Jan 2026
Viewed by 144
Abstract
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become [...] Read more.
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become critically urgent. Focusing on a representative plain-based landfill in North China, this study integrated field investigations and groundwater monitoring to establish a monthly coupled groundwater flow–solute transport model (using MODFLOW and MT3DMS codes) based on site-specific hydrogeological boundaries and multi-year monitoring data, analyzing spatiotemporal plume evolution under the coupled impacts of precipitation variability (climate change) and intensive groundwater extraction (human activities), spanning the historical period (2021–2024) and future projections (2025–2040). Historical simulations demonstrated robust model performance with satisfactory calibration against observed water levels and chloride concentrations, revealing that the current contamination plume exhibits a distinct distribution beneath the site. Future projections indicate nonlinear concentration increases: in the plume core zone, concentrations rise with precipitation, whereas at the advancing front, concentrations escalate with extraction intensity. Spatially, high-risk zones (>200 mg/L) emerge earlier under wetter conditions—under the baseline scenario (S0), such zones form by 2033 and exceed site boundaries by 2037. Plume expansion scales positively with extraction intensity, reaching its maximum advancement and coverage under the high-extraction scenario. These findings demonstrate dual drivers—precipitation accelerates contaminant accumulation through enhanced leaching, while groundwater extraction promotes plume expansion via heightened hydraulic gradients. This work elucidates coupled climate–human activity impacts on landfill contamination mechanisms, proposing a transferable numerical modeling framework that provides a quantitative scientific basis for post-closure supervision, risk assessment, and regional groundwater protection strategies, thereby aligning with China’s Standard for Pollution Control on the Landfill Site of Municipal Solid Waste and the Zero-Waste City initiative. Full article
28 pages, 5718 KB  
Article
Differences in Geothermal Fluids in Sandstone and Carbonate Geothermal Reservoirs Based on Isotope Characteristics
by Hanxiong Zhang, Guiling Wang, Wei Zhang and Jiayi Zhao
Sustainability 2026, 18(2), 766; https://doi.org/10.3390/su18020766 - 12 Jan 2026
Viewed by 207
Abstract
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal [...] Read more.
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal resources. The North China Plain contains a typical carbonate thermal reservoir, and in this paper, the hydrochemical, isotopic, and redox characteristics of the geothermal fluids in sandstone and carbonate reservoirs are studied to obtain the differences in the geothermal fluids in the Rongcheng geothermal field in Xiong’an New Area. The results indicate that the geothermal fluids in the sandstone and carbonate reservoirs are mainly supplied by atmospheric rainfall, and the hydrochemical type is mainly Cl-Na type. By comparing and analyzing the stable isotope (O, H, C, S, and Sr) characteristics of the two types of geothermal fluids, it is found that the variation range of δ13C values for two types of sandstone thermal storage geothermal fluids was found to be −10.6‰~−12.8‰, while the variation range of δ13C values for carbonate thermal storage geothermal fluids was −3.3‰~−7.5‰. The 87Sr/86Sr ratio of sandstone thermal storage geothermal fluids was distributed between 0.708–0.718, and the 87Sr/86Sr ratio of carbonate thermal storage geothermal fluids was distributed between 0.708–0.713. The range of δ34S values for sandstone thermal storage geothermal fluids was +9.46‰~+10.5‰, and the range of δ34S values for carbonate thermal storage geothermal fluids was +24.84‰~+34.49‰. The two types of geothermal fluids have been subjected to varying degrees of oxidation-reduction, and their cycling and mixing characteristics are different. This has resulted in the formation of relatively oxidized geothermal fluids in the sandstone geothermal reservoir and relatively reduced geothermal fluids in the carbonate geothermal reservoir. In future development and utilization of geothermal resources, paying attention to the basic characteristics of the geothermal fluids in different reservoirs and identifying the differences in different geothermal fluids can further improve the efficiency of geothermal resource development and utilization. Full article
Show Figures

Figure 1

20 pages, 2452 KB  
Article
Simulation Study on the Yield Reduction Risk of Late Sowing Winter Wheat and the Compensation Effect of Soil Moisture in the North China Plain
by Chen Cheng, Jintao Yan, Yue Lyu, Shunjie Tang, Shaoqing Chen, Xianguan Chen, Lu Wu and Zhihong Gong
Agriculture 2026, 16(2), 183; https://doi.org/10.3390/agriculture16020183 - 11 Jan 2026
Viewed by 321
Abstract
The North China Plain, a major grain production base in China, is facing the chronic threat of climate-change-induced delays in winter wheat sowing, with late sowing constraining yields by shortening the pre-winter growth period, and soil moisture at sowing potentially serving as a [...] Read more.
The North China Plain, a major grain production base in China, is facing the chronic threat of climate-change-induced delays in winter wheat sowing, with late sowing constraining yields by shortening the pre-winter growth period, and soil moisture at sowing potentially serving as a key factor to alleviate late-sowing losses. However, previous studies have mostly independently analyzed the effects of sowing time or water stress, and there is still a lack of systematic quantitative evaluation on how the interaction effects between the two determine long-term yield potential and risk. To fill this gap, this study aims to quantify, in the context of long-term climate change, the independent and interactive effects of different sowing dates and baseline soil moisture on the growth, yield, and production risk of winter wheat in the North China Plain, and to propose regionally adaptive management strategies. We selected three representative stations—Beijing (BJ), Wuqiao (WQ), and Zhengzhou (ZZ)—and, using long-term meteorological data (1981–2025) and field trial data, undertook local calibration and validation of the APSIM-Wheat model. Based on the validated model, we simulated 20 management scenarios comprising four sowing dates and five baseline soil moisture levels to examine the responses of phenology, aboveground dry matter, and yield, and further defined yield-reduction risk probability and expected yield loss indicators to assess long-term production risk. The results show that the APSIM-Wheat model can reliably simulate the winter wheat growing period (RMSE 4.6 days), yield (RMSE 727.1 kg ha−1), and soil moisture dynamics for the North China Plain. Long-term trend analysis indicates that cumulative rainfall and the number of rainy days within the conventional sowing window have risen at all three sites. Delayed sowing leads to substantial yield reductions; specifically, compared with S1, the S4 treatment yields about 6.9%, 16.2%, and 16.0% less at BJ, WQ, and ZZ, respectively. Moreover, increasing the baseline soil moisture can effectively compensate for the losses caused by late sowing, although the effect is regionally heterogeneous. In BJ and WQ, raising the baseline moisture to a high level (P85) continues to promote biomass accumulation, whereas in ZZ this promotion diminishes as growth progresses. The risk assessment indicates that increasing baseline moisture can notably reduce the probability of yield loss; for example, in BJ under S4, elevating the baseline moisture from P45 to P85 can reduce risk from 93.2% to 0%. However, in ZZ, even the optimal management (S1P85) still carries a 22.7% risk of yield reduction, and under late sowing (S4P85) the risk reaches 68.2%, suggesting that moisture management alone cannot fully overcome late-sowing constraints in this region. Optimizing baseline soil moisture management is an effective adaptive strategy to mitigate late-sowing losses in winter wheat across the North China Plain, but the optimal approach must be region-specific: for BJ and WQ, irrigation should raise baseline moisture to high levels (P75-P85); for ZZ, the key lies in ensuring baseline moisture crosses a critical threshold (P65) and should be coupled with cultivar selection and fertilizer management to stabilize yields. The study thus provides a scientific basis for regionally differentiated adaptation of winter wheat in the North China Plain to address climate change and achieve stable production gains. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

20 pages, 27157 KB  
Article
Integrated Physical and Numerical Simulation of Normal Buried Ground Fissures in Sand–Clay Interlayers: A Case in Longyao, China
by Quanzhong Lu, Xinyu Mao, Feilong Chen, Cong Li, Xiao Chen, Weiguang Yang, Yuefei Wang and Jianbing Peng
Appl. Sci. 2026, 16(2), 591; https://doi.org/10.3390/app16020591 - 6 Jan 2026
Viewed by 239
Abstract
Ground fissures are widespread around the world and are particularly severe in the North China Plain. In order to investigate the crack propagation path and propagation mode of buried ground fissures from deep strata to the surface, physical simulation experiments and numerical simulation [...] Read more.
Ground fissures are widespread around the world and are particularly severe in the North China Plain. In order to investigate the crack propagation path and propagation mode of buried ground fissures from deep strata to the surface, physical simulation experiments and numerical simulation experiments were conducted based on the sand–clay interlayer strata in the Longyao area. The results show that during the settlement of the hanging wall strata, the propagation path of the cracks changes due to differences in soil properties. The crack propagation is interrupted in the sand layer and slowed down in the clay layer. The surface displacement is characterized by an alternating sequence of gradual and rapid growth phases. The process of crack propagation from depth to surface is divided into five stages, forming tensile cracks and causing the differential settlement of the surface. The strata are mainly under tensile stress, with the stress range of the hanging wall being 2.1 to 3.0 times that of the footwall. Under identical experimental conditions, buried ground fissures in the strata of sand–clay interlayers exhibit anti-dip crack propagation angles and surface deformation zone widths that are between those of homogeneous silty clay and sand. Based on the experimental results, an analytical formula for the hanging wall deformation zone was further proposed. The research results can provide an important reference and theoretical basis for the investigation and disaster prevention of buried ground fissures in the Longyao area of Hebei Province. Full article
Show Figures

Figure 1

24 pages, 13069 KB  
Article
China’s Seasonal Precipitation: Quantitative Attribution of Ocean-Atmosphere Teleconnections and Near-Surface Forcing
by Chang Lu, Long Ma, Bolin Sun, Xing Huang and Tingxi Liu
Hydrology 2026, 13(1), 19; https://doi.org/10.3390/hydrology13010019 - 4 Jan 2026
Viewed by 568
Abstract
Under concurrent global warming and multi-scale climate anomalies, regional precipitation has become more uneven and less stable, and extreme events occur more frequently, amplifying water scarcity and ecological risk. Focusing on mainland China, we analyze nearly 70 years of monthly station precipitation records [...] Read more.
Under concurrent global warming and multi-scale climate anomalies, regional precipitation has become more uneven and less stable, and extreme events occur more frequently, amplifying water scarcity and ecological risk. Focusing on mainland China, we analyze nearly 70 years of monthly station precipitation records together with eight climate drivers—the Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Multivariate ENSO Index (MEI), Arctic Oscillation (AO), surface air pressure (AP), wind speed (WS), relative humidity (RH), and surface solar radiation (SR)—and precipitation outputs from eight CMIP6 models. Using wavelet analysis and partial redundancy analysis, we systematically evaluate the qualitative relationships between climate drivers and precipitation and quantify the contribution of each driver. The results show that seasonal precipitation decreases stepwise from the southeast toward the northwest, and that stability is markedly lower in the northern arid and semi-arid regions than in the humid south, with widespread declines near the boundary between the second and third topographic steps of China. During the cold season, and in the northern arid and semi-arid zones and along the margins of the Tibetan Plateau, precipitation varies mainly with interdecadal swings of North Atlantic sea surface temperature and with the strength of polar and midlatitude circulation, and it is further amplified by variability in near-surface winds; the combined contribution reaches about 32% across the Northeast Plain, the Junggar Basin, and areas north of the Loess Plateau. During the warm season, and in the eastern and southern monsoon regions, precipitation is modulated primarily by tropical Pacific sea surface temperature and convection anomalies and by related changes in the position and strength of the subtropical high, moisture transport pathways, and relative humidity; the combined contribution is about 22% south of the Yangtze River and in adjacent areas. Our findings reveal the spatiotemporal variability of precipitation in China and its responses to multiple climate drivers and their relative contributions, providing a quantitative basis for water allocation and disaster risk management under climate change. Full article
Show Figures

Figure 1

21 pages, 10897 KB  
Article
Vertically Resolved Supercooled Liquid Water over the North China Plain Revealed by Ground-Based Synergetic Measurements
by Yuxiang Lu, Qiang Li, Hongrong Shi, Jiwei Xu, Zhipeng Yang, Yongheng Bi, Xiaoqiong Zhen, Yunjie Xia, Jiujiang Sheng, Ping Tian, Disong Fu, Jinqiang Zhang, Shuzhen Hu, Fa Tao, Jiefan Yang, Xuehua Fan, Hongbin Chen and Xiang’ao Xia
Remote Sens. 2026, 18(1), 160; https://doi.org/10.3390/rs18010160 - 4 Jan 2026
Viewed by 327
Abstract
Supercooled liquid water (SLW) in mixed-phase clouds significantly influences precipitation efficiency and aviation safety. However, a comprehensive understanding of its vertical structure has been hampered by a lack of sustained, vertically resolved observations over the North China Plain. This study presents the first [...] Read more.
Supercooled liquid water (SLW) in mixed-phase clouds significantly influences precipitation efficiency and aviation safety. However, a comprehensive understanding of its vertical structure has been hampered by a lack of sustained, vertically resolved observations over the North China Plain. This study presents the first systematic analysis of SLW vertical distribution and microphysics in this region, utilizing a year-long dataset (2022) from synergistic ground-based instruments in Beijing. Our retrieval approach integrates Ka-band cloud radar, microwave radiometer, ceilometer, and radiosonde data, combining fuzzy-logic phase classification with a liquid water content inversion constrained by column liquid water path. Key findings reveal a distinct bimodal seasonality: SLW primarily occurs at mid-to-upper levels (4–7.5 km) during spring and summer, driven by convective lofting, while winter SLW is confined to lower altitudes (1–2 km) under stable atmospheric conditions. The temperature-dependent occurrence probability of SLW clouds has an annual maximum at −12 °C. The diurnal variation in SLW in summer shows peaks in the afternoon and at night, corresponding to convective cloud activity. Spring, autumn, and winter do not exhibit strong diurnal variations. Retrieved microphysical properties, including liquid water content and droplet effective radius, are consistent with in situ aircraft measurements, validating our methodology. This analysis provides a critical observational benchmark and offers actionable insights for improving cloud microphysics parameterizations in models and optimizing weather modification strategies, such as seeding altitude and timing, in this water-stressed region. Full article
Show Figures

Figure 1

16 pages, 1980 KB  
Article
Legume-Based Rotations Enhance Ecosystem Sustainability in the North China Plain: Trade-Offs Between Greenhouse Gas Mitigation, Soil Carbon Sequestration, and Economic Viability
by Feng Lin, Yinzhan Liu, Li Zhang and Yaojun Zhang
Agriculture 2026, 16(1), 116; https://doi.org/10.3390/agriculture16010116 - 1 Jan 2026
Viewed by 336
Abstract
Reconciling agricultural productivity with greenhouse gas (GHG) mitigation remains a pivotal challenge for achieving climate-smart food systems. This study evaluates the capacity of legume-based crop rotations to balance economic viability, yield stability, and GHG reduction in the North China Plain. A two-year randomized [...] Read more.
Reconciling agricultural productivity with greenhouse gas (GHG) mitigation remains a pivotal challenge for achieving climate-smart food systems. This study evaluates the capacity of legume-based crop rotations to balance economic viability, yield stability, and GHG reduction in the North China Plain. A two-year randomized complete block field experiment compared six cropping systems: conventional wheat–maize (WM) rotations and legume-integrated systems (wheat–soybean, WS; wheat–soybean–maize, WSM), under fertilized and unfertilized regimes. Results revealed that nitrogen fertilization increased cumulative N2O emissions and global warming potential (GWP), with seasonal peaks occurring post-fertilization. Legume systems enhanced CH4 uptake but showed no significant effect on N2O emissions compared to conventional systems. N2O fluxes correlated positively with soil moisture and soil temperature, while CH4 uptake increased with soil moisture alone. Soybean phases reduced short-term yields by 32–52% relative to the maize yield of conventional systems, but boosted subsequent wheat/maize productivity by 2–47% through hydraulic redistribution and N priming. The wheat–soybean rotation with 200 kg N ha−1 (WS200) achieved optimal sustainability, delivering the highest net profit (8061.56 USD ha−1) alongside a 9% reduction in global warming potential (3980.21 kg CO2-eq ha−1) versus conventional systems. These findings provide actionable insights for sustainable intensification in global cereal systems, demonstrating that strategic legume integration can advance both food security and climate goals. Full article
Show Figures

Figure 1

16 pages, 8089 KB  
Article
Spatial Heterogeneity in Economic Benefits of Water Use: Sectoral Analysis of Chinese Cities in 2017
by Yuan Liang, Shaofeng Jia, Lihua Lan, Zikun Song, Jiabao Yan, Wenbin Zhu, Yan Han, Wenhua Liu, Kailibinuer Abulizi and Jieming Deng
Water 2026, 18(1), 71; https://doi.org/10.3390/w18010071 - 25 Dec 2025
Viewed by 373
Abstract
Spatial heterogeneity in economic benefits of water use provides crucial evidence for the evaluation of water diversion projects and the spatial equilibrium of water resource allocation. Using city-level data from 2017 on the sectoral water use and value added in 334 Chinese cities, [...] Read more.
Spatial heterogeneity in economic benefits of water use provides crucial evidence for the evaluation of water diversion projects and the spatial equilibrium of water resource allocation. Using city-level data from 2017 on the sectoral water use and value added in 334 Chinese cities, we estimated the economic benefits of water use in the agricultural, industrial, and service sectors using the allocation coefficient method. We then revealed the spatial heterogeneity combining an exploratory spatial data analysis (ESDA) method. For the agricultural sector, the high economic benefit of water use regions are primarily concentrated on both sides of the “Hu Huanyong Line”; regions with high economic benefit of industrial water use are mainly found in the North China Plain, the middle and lower Huanghe River basin, the Yangtze River Delta, the Pearl River Delta, Chongqing and Chengdu, and the economic benefit of service water use is higher in the north than in the south. ESDA provides significant evidence for the analysis of spatial heterogeneity with regard to the economic benefits of water use in China. Based on the fundamental distribution of water resources and the spatial heterogeneity in the economic benefits of water use, potential water diversion areas can be preliminarily identified. The Haihe River Basin in the North China Plain and some areas in the southeast coastal region are potential receiving areas, and the eastern regions of Southwest China with abundant water resources and lower elevations, along with the middle and lower reaches of the Yangtze River are potential source areas. Further research about marginal benefits and water use costs, along with dynamic updates, is required for water resource allocation of China. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

26 pages, 6607 KB  
Article
Spatiotemporal Evolution and Drivers of Harvest-Disrupting Rainfall Risk for Winter Wheat in the Huang–Huai–Hai Plain
by Zean Wang, Ying Zhou, Tingting Fang, Zhiqing Cheng, Junli Li, Fengwen Wang and Shuyun Yang
Agriculture 2026, 16(1), 46; https://doi.org/10.3390/agriculture16010046 - 24 Dec 2025
Viewed by 344
Abstract
Harvest-disrupting rain events (HDREs) are prolonged cloudy–rainy spells during winter wheat maturity that impede harvesting and drying, induce pre-harvest sprouting and grain mould, and threaten food security in the Huang–Huai–Hai Plain (HHHP), China’s core winter wheat region. Using daily meteorological records (1960–2019), remote [...] Read more.
Harvest-disrupting rain events (HDREs) are prolonged cloudy–rainy spells during winter wheat maturity that impede harvesting and drying, induce pre-harvest sprouting and grain mould, and threaten food security in the Huang–Huai–Hai Plain (HHHP), China’s core winter wheat region. Using daily meteorological records (1960–2019), remote sensing-derived land-use data and topography, we develop a hazard–exposure–vulnerability framework to quantify HDRE risk and its drivers at 1 km resolution. Results show that HDRE risk has increased markedly over the past six decades, with the area of medium-to-high risk rising from 26.9% to 73.1%. The spatial pattern evolved from a “high-south–low-north” structure to a concentrated high-risk belt in the central–northern HHHP, and the risk centroid migrated from Fuyang (Anhui) to Heze (Shandong), with an overall displacement of 124.57 km toward the north–northwest. GeoDetector analysis reveals a shift from a “humidity–temperature dominated” mechanism to a “sunshine–humidity–precipitation co-driven” mechanism; sunshine duration remains the leading factor (q > 0.8), and its interaction with relative humidity shows strong nonlinear enhancement (q = 0.91). High-risk hot spots coincide with low-lying plains and river valleys with dense winter wheat planting, indicating the joint amplification of meteorological conditions and underlying surface features. The results can support regional decision-making for harvest-season early warning, risk zoning, and disaster risk reduction in the HHHP. Full article
Show Figures

Figure 1

21 pages, 1893 KB  
Article
Improving Nitrogen and Water Use Efficiency in Intensive Cropping by Optimized Management and Crop Rotations
by Huanxuan Chen, Jiawen Qi, Shangyu Guo, Xinsheng Niu, Robert M. Rees, Chong Zhang and Xiaotang Ju
Plants 2026, 15(1), 7; https://doi.org/10.3390/plants15010007 - 19 Dec 2025
Viewed by 392
Abstract
Nitrogen (N) and water are key resources for crop production and improving the efficiency with which they are used remains a major global challenge in intensive cropping systems. Here, we report how crop yield, N and water use efficiency, N surplus, and economic [...] Read more.
Nitrogen (N) and water are key resources for crop production and improving the efficiency with which they are used remains a major global challenge in intensive cropping systems. Here, we report how crop yield, N and water use efficiency, N surplus, and economic benefits can be improved from optimized management and crop rotations. A conventional winter wheat–summer maize double cropping (CN/WM) rotation in a three-year field experiment in the North China Plain is compared with alternative optimized rotations. The first three optimized treatments were wheat–summer maize rotation with optimized N and irrigation rates, tillage and straw management (ON/WM), and partial manure substitution (ONM/WM) or biochar addition (ONB/WM); the fourth optimized treatment was winter wheat–summer maize–spring maize producing three harvests in two years (ON/WMM); and the last was spring maize incorporating green manure during the fallow season for one harvest per year (ON/GM). The results showed that the ON/WM, ONM/WM, and ONB/WM had comparable yields to CN/WM, but significantly increased N use efficiency by 19–41% and water use efficiency by 13–20% and reduced N surplus to 353–531 kg N ha−1 2yr−1. From these three optimized treatments, the ONM/WM performed better, with a comprehensive evaluation index of 0.66 and the highest economic benefits. The ON/WMM and ON/GM treatments also significantly increased N and water use efficiency but resulted in relatively low crop yields and profits; nevertheless, they significantly reduced water use and are suitable for water saving cropping systems. We concluded that optimized management-combined manure with synthetic N fertilization in wheat–summer maize rotations can achieve high crop productivity, environmental, and economic benefits, which contribute to a more sustainable crop production. Full article
(This article belongs to the Special Issue Macronutrients and Micronutrients in Plant Growth and Development)
Show Figures

Figure 1

24 pages, 4843 KB  
Article
Quantitative Assessment of Drought Risk in Major Rice-Growing Areas in China Driven by Process-Based Crop Growth Model
by Tao Lin, Hao Ding, Wangyu Chen, Yu Liu and Hao Guo
GeoHazards 2025, 6(4), 85; https://doi.org/10.3390/geohazards6040085 - 17 Dec 2025
Viewed by 416
Abstract
Drought remains one of the most damaging natural hazards to agricultural production and is projected to continue posing substantial risks to food security in the future, particularly in major rice-growing regions. Based on the RCP4.5 and RCP8.5 scenarios under CMIP5, this study used [...] Read more.
Drought remains one of the most damaging natural hazards to agricultural production and is projected to continue posing substantial risks to food security in the future, particularly in major rice-growing regions. Based on the RCP4.5 and RCP8.5 scenarios under CMIP5, this study used a process-based crop growth model to simulate the growth of rice in China in different future periods (short-term (2031–2050), medium-term (2051–2070), and long-term (2071–2090)). We fitted rice vulnerability curves to evaluate the rice drought risk quantitatively according to the simulated water stress (WS) and yield. The results showed that the drought hazard in major rice-growing areas in China (MRAC) were low in the middle and high in the north and south. The areas without rice yield loss will decline in the future, while the areas with a high yield loss will increase, especially in southwestern China and the middle and lower Yangtze Plain (MLYP). Owing to the markedly increased evaporative demand and the reduced moisture transport caused by a weakening East Asian summer monsoon, northeastern China will be a high-risk area in the future, with the expected yield loss rates in scenarios RCP4.5 and RCP8.5 being 39.75% and 45.5%, respectively. In addition, under the RCP8.5 scenario, the yield loss rate of different return periods in south China will exceed 80%. A significant gap between rice supply and demand affected by drought is expected in the short-term future. The gaps will be 67,770 kt and 78,110 kt under the RCP4.5-SSP2 and RCP8.5-SSP3 scenarios, respectively. The methodology developed in this paper can support the quantitative assessment of drought loss risk in different scenarios using crop growth models. In the context of the future expansion of Chinese grain demand, this study can serve as a reference to improve the capacity for regional drought risk prevention and ensure regional food security. Full article
Show Figures

Figure 1

17 pages, 3453 KB  
Article
Capturing Spatiotemporal Hydraulic Connectivity for Groundwater Level Prediction in Over-Exploited Aquifers: A Multi-Source Fusion Graph Learning Approach (MF-STGCN)
by Rong Liu and Ziyu Guan
Mathematics 2025, 13(24), 3978; https://doi.org/10.3390/math13243978 - 13 Dec 2025
Viewed by 259
Abstract
Accurate prediction of shallow groundwater levels is crucial for water resource management in over-exploited regions like the North China Plain, where intensive pumping has created non-steady flow fields with strong spatial hydraulic interactions. Traditional approaches—whether physical models constrained by parameter equifinality or machine [...] Read more.
Accurate prediction of shallow groundwater levels is crucial for water resource management in over-exploited regions like the North China Plain, where intensive pumping has created non-steady flow fields with strong spatial hydraulic interactions. Traditional approaches—whether physical models constrained by parameter equifinality or machine learning methods assuming spatial independence—fail to explicitly characterize aquifer hydraulic connectivity and effectively integrate multi-source monitoring data. This study proposes a Multi-source Fusion Spatiotemporal Graph Convolutional Network (MF-STGCN) that represents the monitoring well network as a hydraulic connectivity graph, employing graph convolutions to capture spatial water level propagation patterns while integrating temporal dynamics through LSTM modules. An adaptive fusion mechanism quantifies contributions of natural drivers (precipitation, evaporation) and anthropogenic extraction to water level responses. Validation using 518 monitoring stations (2018–2022) demonstrates that MF-STGCN reduces RMSE compared to traditional time series models, with improvement primarily attributed to explicit modeling of spatial hydraulic dependencies. Interpretability analysis identifies Hebi and Shijiazhuang as severe over-exploitation zones and reveals significant response lag effects in the Handan-Xingtai corridor. This study demonstrates that spatial propagation patterns, rather than single-point temporal features, are key to improving prediction accuracy in over-exploited aquifers, providing a new data-driven paradigm for regional groundwater dynamics assessment and targeted management strategies. Full article
Show Figures

Figure 1

23 pages, 1903 KB  
Article
Long-Term Straw Return Combined with Chemical Fertilizer Enhances Crop Yields in Wheat-Maize Rotation Systems by Improving Soil Nutrients Stoichiometry and Aggregate Stability in the Shajiang Black Soil (Vertisol) Region of North China Plain
by Xian Tang, Yangfan Qu, Yu Wu, Shasha Li, Fuwei Wang, Dongxue Li, Xiaoliang Li, Jianfei Wang and Jianrong Zhao
Agronomy 2025, 15(12), 2861; https://doi.org/10.3390/agronomy15122861 - 12 Dec 2025
Viewed by 406
Abstract
The sustainability of wheat-maize rotation systems in the North China Plain is challenged by the over-reliance on chemical fertilizers, which leads to the decline of soil organic matter and structural degradation, particularly in the unique Shajiang black soil (Vertisol). While straw return is [...] Read more.
The sustainability of wheat-maize rotation systems in the North China Plain is challenged by the over-reliance on chemical fertilizers, which leads to the decline of soil organic matter and structural degradation, particularly in the unique Shajiang black soil (Vertisol). While straw return is widely recommended to mitigate these issues, the synergistic mechanisms of its long-term combination with chemical fertilizers on soil nutrient stoichiometry and aggregate stability remain inadequately quantified. A long-term field experiment was conducted with the five fertilization treatments including: (1) no fertilizer or straw (CK), (2) chemical fertilizer alone (NPK), (3) straw return chemical fertilizer (NPKS), (4) straw return with 10% straw-decomposing microbial inoculant combined with chemical fertilizer (10%NPKS), and (5) straw return with 20% straw-decomposing microbial inoculant combined with chemical fertilizer (20%NPKS) in the Shajiang black soil (Vertisol) region to investigate the effects of straw return combined with chemical fertilizers on soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) stoichiometry, aggregate stability, and crop yield in winter wheat-summer maize rotation systems of North China Plain. Our study demonstrated that the co-application of straw with a straw-decomposing microbial inoculant is a highly effective strategy for enhancing soil health and crop productivity, with its efficacy being critically dose-dependent. Our results identified the 10%NPKS treatment as the optimal practice. It most effectively improved soil physical structure by significantly increasing the content of large macroaggregates (>0.5 mm) and key stability indices (MWD, GMD, WA), while concurrently enhancing nutrient cycling, as evidenced by elevated SOC, TN, and shifted C/P and N/P stoichiometry. Multivariate analyses confirmed strong positive correlations among these soil properties, indicating a synergistic improvement in soil quality. Crucially, these enhancements translated into significant yield gains, with a notable crop-specific response: maize yield was maximized under the 10%NPKS treatment, whereas wheat yield benefited sufficiently from NPKS treatment. A key mechanistic insight was that 20%NPKS treatment, despite leading to the highest SOC and TN, induced a relative phosphorus limitation and likely caused transient nutrient immobilization, thereby attenuating its benefits for soil structure and yield. We conclude that co-applying straw with a 10% microbial inoculant combined with chemical fertilizer represents the superior strategy, offering a sustainable pathway to synergistically improve soil structure, nutrient availability, and crop productivity, particularly in maize-dominated systems. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

15 pages, 7215 KB  
Article
Application of the Self-Organizing Map (SOM) Algorithm to Identify Hydrochemical Characteristics and Genetic Mechanism of High-Nitrate Groundwater in Baoding Area, North China Plain
by Jue Gao, Jianqing Zhao, Yang Yang, Jun Zheng, Zhiguang Wang, Shurui Liu and Shouchuan Zhang
Water 2025, 17(24), 3517; https://doi.org/10.3390/w17243517 - 12 Dec 2025
Viewed by 407
Abstract
Nitrate pollution poses a pervasive environmental issue for groundwater systems worldwide, which is particularly pronounced in the agricultural heartlands of the North China Plain. Combining hydrochemical analysis, the Self-Organizing Map algorithm, and Human Health Risk Assessment, 91 shallow groundwater samples were collected to [...] Read more.
Nitrate pollution poses a pervasive environmental issue for groundwater systems worldwide, which is particularly pronounced in the agricultural heartlands of the North China Plain. Combining hydrochemical analysis, the Self-Organizing Map algorithm, and Human Health Risk Assessment, 91 shallow groundwater samples were collected to identify the hydrochemical characteristic and the genetic mechanisms of high NO3 concentration groundwater. The SOM analysis identified three distinct hydrochemical clusters. Cluster 1, with the hydrochemical characteristic of HCO3-Ca and HCO3-Mg, is severely contaminated, showing the highest NO3, Ca2+, and TDS. In contrast, the majority of samples fell into Cluster 3, which is characterized by the lowest ion concentrations and an HCO3-Ca type. Cluster 2, characterized by HCO3-Ca/Mg, exhibits an intermediate chemical signature with elevated Na+, Mg2+, and HCO3. Nitrate concentrations varied widely, with 30.43% of collected samples exceeding the anthropogenic pollution threshold. Agricultural activities are identified as the primary nitrate source, with domestic sewage as a secondary contributor. The Human Health Risk Assessment further reveals that long-term exposure poses non-carcinogenic health risks, particularly for children, who are found to be the most vulnerable group. This study provides a hydrogeochemical perspective on nitrogen pollution in shallow groundwater and offers scientific support for sustainable groundwater management in typical agricultural regions worldwide. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop