Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Nitroxoline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1311 KB  
Article
Mapping Escherichia coli in Women with Simple Urinary Tract Infections: Phenotypic ESBL/AmpC Screening and Whole-Genome Insights from Oman
by Aisha Al-Mufarji, Meher Rizvi, Nawal Al-Kindi, Nada Al-Tamtami and Zaaima Al-Jabri
Antibiotics 2026, 15(2), 124; https://doi.org/10.3390/antibiotics15020124 - 27 Jan 2026
Viewed by 178
Abstract
Background/Objectives: Simple urinary tract infections (sUTIs) are common in women and increasingly affected by multidrug-resistant (MDR) Escherichia coli. Extended-spectrum β-lactamase (ESBL) and AmpC producers restrict oral treatment options and promote carbapenem use. This study aimed to (i) describe the etiology and antimicrobial [...] Read more.
Background/Objectives: Simple urinary tract infections (sUTIs) are common in women and increasingly affected by multidrug-resistant (MDR) Escherichia coli. Extended-spectrum β-lactamase (ESBL) and AmpC producers restrict oral treatment options and promote carbapenem use. This study aimed to (i) describe the etiology and antimicrobial susceptibility of sUTIs in women of reproductive age in Oman, (ii) determine the prevalence of ESBL/AmpC-producing E. coli, (iii) evaluate nitroxoline, fosfomycin, mecillinam, and temocillin against ESBL and non-ESBL E. coli, and (iv) characterize circulating clones and resistance/virulence determinants using whole-genome sequencing (WGS). Methods: In this multicentric study (September 2022–August 2023), 795 uropathogens from 762 women (15–50 years) with sUTI were collected from four Omani hospitals. Identification and susceptibility testing of E. coli (n = 489) and Klebsiella pneumoniae (n = 140) using BD Phoenix and MALDI-TOF MS was performed (CLSI 2022). Thirty ESBL-producing and 82 non-ESBL E. coli underwent phenotypic ESBL/AmpC testing and evaluation of mecillinam, temocillin, nitroxoline, and fosfomycin. WGS was performed on 26 isolates (23 ESBL, 3 wild type) and analyzed for MLST, and SNP phylogeny using ResFinder, CARD, PlasmidFinder, VirulenceFinder. Statistical significance was set at p < 0.05. Results: E. coli (62%) and K. pneumoniae (18%) were the predominant pathogens. E. coli showed high susceptibility to nitrofurantoin (~97%), carbapenems, aminoglycosides, and piperacillin–tazobactam, but reduced susceptibility to cephalosporins, fluoroquinolones, cotrimoxazole, and ampicillin. ESBL prevalence ranged from 38–51%; AmpC producers were rare (4.6%). Mecillinam, nitroxoline, and fosfomycin exhibited 100% activity against both ESBL and non-ESBL isolates; temocillin showed 89.3% activity in ESBL strains. WGS identified 15 sequence types dominated by ST-131, ST-1193, ST-73, and ST-174, with blaCTX-M-15 as the major ESBL genotype. Conclusions: sUTIs in Oman show a high burden of ESBL-producing E. coli. Nitrofurantoin, mecillinam, fosfomycin, temocillin, and nitroxoline would be effective carbapenem-sparing oral options. Continuous phenotypic and genomic surveillance are crucial to guide antimicrobial therapy and stewardship. Full article
Show Figures

Figure 1

29 pages, 3739 KB  
Article
In Vitro and In Vivo Evaluation of Nitroxoline as an Effective Antimicrobial Alternative to Poultry Production
by Yuqing Zhou, Maria M. Trush, Lewis Ibbotson, Laura Espina, Aditya Kumar Lankapalli, Alistair J. M. Farley, Huangwei Song, Congming Wu, Xingyuan Cao, Xi Xia, Charlotte J. Gray-Hammerton, Alice Moorey, Amelie Delaitre, George Siegwart, Shaolin Wang, Yang Wang, Jianzhong Shen, Christopher J. Schofield and Timothy R. Walsh
Antibiotics 2026, 15(1), 62; https://doi.org/10.3390/antibiotics15010062 - 6 Jan 2026
Viewed by 716
Abstract
Background: Antimicrobial resistance is a major global challenge that is exacerbated by extensive antibiotic use in livestock farming. Identifying effective alternatives to widely used human antibiotics in animal production is vital to safeguard vital human medicines and ensure sustainable food systems. Here we [...] Read more.
Background: Antimicrobial resistance is a major global challenge that is exacerbated by extensive antibiotic use in livestock farming. Identifying effective alternatives to widely used human antibiotics in animal production is vital to safeguard vital human medicines and ensure sustainable food systems. Here we describe studies identifying nitroxoline (NTX) as a promising antimicrobial candidate for use in poultry production. Methods: The antibacterial activity and resistance potential of NTX were assessed in vitro. In vivo studies in chickens evaluated tolerance, therapeutic efficacy in Salmonella-infected birds, pharmacokinetics, tissue residue depletion, growth performance, and effects on caecal microbiota. NTX was administered in-feed at different dose levels. Pharmacokinetic parameters and withdrawal periods were determined, and caecal microbiota composition was analysed using ribosomal RNA 16S sequencing. Results: NTX exhibits potent broad-spectrum antibacterial activity in vitro and low levels of resistance. NTX is well-tolerated in chickens at 500 mg/kg in-feed for 7 days and substantially reduces liver bacterial loads at 100 mg/kg in Salmonella-infected chickens. Pharmacokinetic and residue analyses reveal NTX manifests rapid absorption and distribution, high oral bioavailability (86%), and efficient tissue clearance with a 17-day withdrawal period required for skin-plus-fat clearance. NTX supplementation is associated with increased weight gain and improved feed efficiency compared to the control group, with performance comparable to chlortetracycline. Microbiota analysis indicates modulation of caecal bacterial communities, including increased Faecalibacterium and Lactobacillus. Conclusions: These results indicate that NTX is a viable alternative to important human antibiotics widely deployed in poultry production, offering a potential approach to minimise antimicrobial resistance whilst maintaining animal health and food biosafety. Full article
Show Figures

Figure 1

32 pages, 1280 KB  
Review
Deciphering Drug Repurposing Strategies: Antiviral Properties of Candidate Agents Against the Mpox Virus
by Aganze Gloire-Aimé Mushebenge and David Ditaba Mphuthi
Sci. Pharm. 2025, 93(4), 51; https://doi.org/10.3390/scipharm93040051 - 17 Oct 2025
Cited by 2 | Viewed by 2276
Abstract
Monkeypox (Mpox) has re-emerged as a global public health threat, with recent outbreaks linked to novel mutations that enhance viral transmissibility and immune evasion. The Mpox virus (MPXV), a double-stranded deoxyribonucleic acid (DNA) orthopoxvirus, shares high structural and enzymatic similarity with the variola [...] Read more.
Monkeypox (Mpox) has re-emerged as a global public health threat, with recent outbreaks linked to novel mutations that enhance viral transmissibility and immune evasion. The Mpox virus (MPXV), a double-stranded deoxyribonucleic acid (DNA) orthopoxvirus, shares high structural and enzymatic similarity with the variola virus, underscoring the need for urgent therapeutic interventions. While conventional antiviral development is time-intensive and costly, drug repurposing offers a rapid and cost-effective strategy by leveraging the established safety and pharmacological profiles of existing medications. This is a narrative integrative review synthesizing published evidence on drug repurposing strategies against MPXV. To address these issues, this review explores MPXV molecular targets critical for genome replication, transcription, and viral assembly, highlighting how the Food and Drug Administration (FDA)-approved antivirals (cidofovir, tecovirimat), antibiotics (minocycline, nitroxoline), antimalarials (atovaquone, mefloquine), immunomodulators (infliximab, adalimumab), and chemotherapeutics (doxorubicin) have demonstrated inhibitory activity against the virus using computational or experimental approaches. This review further evaluates advances in computational methodologies that have accelerated the identification of host-directed and viral-directed therapeutic candidates. Nonetheless, translational challenges persist, including pharmacokinetic limitations, toxicity concerns, and the limited efficacy of current antivirals such as tecovirimat in severe Mpox cases. Future research should integrate computational predictions with high-throughput screening, organ-on-chip technologies, and clinical pipelines, while using real-time genomic surveillance to track viral evolution. These strategies establish a scalable and sustainable framework for the MPXV drug discovery. Full article
Show Figures

Figure 1

16 pages, 1786 KB  
Article
Repurposing Analysis of Nitroxoline (8-Hydroxy-5-nitroquinoline) as an Antichagasic Compound
by Carlos J. Bethencourt-Estrella, Atteneri López-Arencibia, Isabel M. Calero-Docina, Frieder Fuchs, Patrick Scheid, Jacob Lorenzo-Morales and José E. Piñero
Pharmaceuticals 2025, 18(8), 1106; https://doi.org/10.3390/ph18081106 - 25 Jul 2025
Cited by 1 | Viewed by 1481
Abstract
Background/Objectives: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a major neglected tropical disease, with over six million cases concentrated, primarily in Latin America. Despite decades of research, treatment continues to rely on two outdated drugs—benznidazole and nifurtimox—both of which [...] Read more.
Background/Objectives: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a major neglected tropical disease, with over six million cases concentrated, primarily in Latin America. Despite decades of research, treatment continues to rely on two outdated drugs—benznidazole and nifurtimox—both of which exhibit limited efficacy and are associated with severe side effects. In this context, drug repurposing presents a promising strategy to accelerate the development of safer and more effective therapies. Nitroxoline, a hydroxyquinoline compound widely used in Europe to treat bacterial urinary tract infections, has recently garnered attention for its broad-spectrum antimicrobial and anticancer activities. This study evaluated the antitrypanosomal potential of nitroxoline against both epimastigote and intracellular amastigote forms of T. cruzi, demonstrating significantly greater efficacy than benznidazole. Methods: In addition to its antiparasitic activity, we investigated the mechanism of parasite death and found that nitroxoline induces hallmarks of programmed cell death, including chromatin condensation, mitochondrial membrane depolarization, ATP depletion, reactive oxygen species accumulation, and increased membrane permeability. These cellular events are critical for minimizing host tissue inflammation and suggest a safer therapeutic profile. Results: The nitroxoline was shown to induce greater activity than the reference treatment, benznidazole, in addition to triggering events related to apoptotic or silent cell death. Conclusions: Given its established clinical use and favorable safety data, nitroxoline emerges as a strong candidate for further investigation as a repurposed treatment for Chagas disease. Future work should focus on in vivo efficacy, pharmacokinetics, and drug delivery strategies to enhance systemic bioavailability. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

5 pages, 2150 KB  
Proceeding Paper
Perspectives on Synthetic Adducts (Salts) of NitroxolineTM and 2-Aminoquinolin-8-ol as Promising Antibacterial Agents
by Tibor Maliar, Renata Gašparová and Mária Maliarová
Chem. Proc. 2024, 16(1), 92; https://doi.org/10.3390/ecsoc-28-20260 - 15 Nov 2024
Cited by 1 | Viewed by 552
Abstract
The threatening phenomenon of antibiotic failure in the future determines the intensive research of antibacterial active compounds, which are promising candidates as antibiotics. Quinolines, with only the representative in clinical practice being NitroxolineTM, are, in addition to being effective beta-lactams, macrolides, [...] Read more.
The threatening phenomenon of antibiotic failure in the future determines the intensive research of antibacterial active compounds, which are promising candidates as antibiotics. Quinolines, with only the representative in clinical practice being NitroxolineTM, are, in addition to being effective beta-lactams, macrolides, tetracyclines, and other antibiotic categories, forgotten antibiotics. The antibacterial efficiency of NitroxolineTM and 2-aminoquinolin-8-ol on eight selected highly resistant bacterial species that are the most problematic (Klebsiella ssp., Enterococcus ssp., Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus) could lead to higher solubility and thus bioavailability and increased antibacterial effects. In the first phase, the basic salts of NitroxolineTM, with sodium hydroxide, benzylamine, 4-(aminomethyl)pyridine, and other primary amines, were synthesized. In the second phase, the corresponding acidic salts of 2-aminoquinolin-8-ol were synthesized with the following acids: oxalic acid, pyrazine-2,3-dicarboxylic acid, chelidonic acid, quinaldic acid, 3,5-dinitrosalycilic acid, quinoline-2-carboxylic acid, quinoline-3-carboxylic acid, kynurenic acid, and xanthurenic acid. NitroxolineTM and 2-aminoquinolin-8-ol both demonstrated moderate antibacterial effects, with the average value for the eight mentioned bacterial strains being 16 mg/L (84 μM) and 50 mg/L (301 μM), respectively. The synthetized salts of both quinolinols demonstrated significantly higher solubility and slightly increased antibacterial activity. The identity and purity of the prepared products were determined by NMR and IR spectroscopy. The MW values of both quinolinols are relatively low and offer better use of the largest molecule limit, defined by Lipinski’s rule of five at 500 g/M. The options of amines and acids offer the achievement of quaternary salts with improved antibacterial activity. Full article
9 pages, 219 KB  
Communication
Recurrent Cystitis in Women—A Real-World Analysis of Bacteria Spectrum and Resistance Situation for Calculated Therapy
by Philipp J. Spachmann, Maximilian Radlmaier, Stefan Denzinger, Maximilian Burger, Johannes Breyer, Wolfgang Otto, Marco J. Schnabel and Daniel Vergho
Antibiotics 2024, 13(9), 890; https://doi.org/10.3390/antibiotics13090890 - 16 Sep 2024
Viewed by 2724
Abstract
Recurrent cystitis in women represents an everyday challenge; however, little to no data regarding this population are available. This study aimed to evaluate this collective with respect to a rational calculated antibiotic therapy. Urine cultures and antibiograms from a urological office were retrospectively [...] Read more.
Recurrent cystitis in women represents an everyday challenge; however, little to no data regarding this population are available. This study aimed to evaluate this collective with respect to a rational calculated antibiotic therapy. Urine cultures and antibiograms from a urological office were retrospectively evaluated from patient data collected between January 2017 and June 2019. The evaluation was conducted using SPSS ©. In total, 84 female patients, who were aged between 18 and 87 years old (median 60 years), suffered from recurrent cystitis. Escherichia coli was found in 53.9% of cases, Staphylococcus aureus and enterococci were each found in 6.7%, and Proteus spp. and Streptococcus agalactiae were each found in 5.6%. The resistance levels to ciprofloxacin (CIP), trimethoprim–sulfamethoxazole (TRS), nitrofurantoin (NIT), and nitroxoline (NOX) were 18.2%, 30.7%, 16.1%, and 12.5% in the tested cases, respectively. Regarding E. coli, resistance to CIP, TRS, and NIT was found in 17.8%, 25%, and 4.2% of the tested cases, and no resistance to NOX was found. The resistance level to CIP was in a tolerable range of <20% in the overall cohort and the E. coli subgroup. More than a quarter of the bacteria were resistant to TRS. The low resistance rates for NIT and NOX are remarkable, promoting the use of these substances if they are not yet used. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
19 pages, 2117 KB  
Article
Combinatory Effect of Nitroxoline and Gentamicin in the Control of Uropathogenic Enterococci Infections
by Davorka Repac Antić, Bruno Kovač, Marko Kolenc, Irena Brčić Karačonji, Ivana Gobin and Mirna Petković Didović
Antibiotics 2024, 13(9), 829; https://doi.org/10.3390/antibiotics13090829 - 1 Sep 2024
Cited by 5 | Viewed by 2752
Abstract
Enterococcus faecalis, responsible for a majority of human and nosocomial enterococcal infections, is intrinsically resistant to aminoglycoside antibiotics (such as gentamicin, GEN), which must be used in a combined therapy to be effective. Nitroxoline (NTX) is an old antibiotic, underused for decades, [...] Read more.
Enterococcus faecalis, responsible for a majority of human and nosocomial enterococcal infections, is intrinsically resistant to aminoglycoside antibiotics (such as gentamicin, GEN), which must be used in a combined therapy to be effective. Nitroxoline (NTX) is an old antibiotic, underused for decades, but rediscovered now in an era of growing antibiotic resistance. In this in vitro study, the types of interactions between NTX and GEN on 29 E. faecalis strains were analyzed with an aim to find synergistic antimicrobial and antiadhesion combinations. Transmission electron microscopy (TEM) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to analyze changes in cell morphology and bacterial proteome after monotreatments and combined treatments. The results showed the synergistic effect for six combinations on eight strains, including the ATCC29212, and an additive effect for most strains. Combinations causing a complete inhibition of adhesion were established. Cell membrane integrity was affected by NTX, while combined NTX/GEN treatment caused dramatic changes in cell morphology. Upregulation of the expression of many proteins was established, with some emerging only after combined treatment. The results strongly imply that NTX has the potential for use in combined therapy with GEN against enterococci and it could further provide a substantial contribution to an ongoing fight against antimicrobial resistance and nosocomial infections. Full article
(This article belongs to the Special Issue Combination Therapy against Multidrug-Resistant Pathogens)
Show Figures

Figure 1

12 pages, 883 KB  
Article
Evaluation of In Vitro Synergistic Effects of Tetracycline with Alkaloid-Related Compounds against Diarrhoeic Bacteria
by Hayford Osei-Owusu, Johana Rondevaldova, Marketa Houdkova, Tomas Kudera, Tersia Needham, Anna Mascellani and Ladislav Kokoska
Int. J. Mol. Sci. 2024, 25(11), 6038; https://doi.org/10.3390/ijms25116038 - 30 May 2024
Cited by 4 | Viewed by 2358
Abstract
Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect [...] Read more.
Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect of tetracycline together with either nitroxoline, sanguinarine, or zinc pyrithione (representing various classes of plant-based compounds) was evaluated in vitro against selected diarrhoeic bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Shigella flexneri, Vibrio parahaemolyticus, and Yersinia enterocolitica). The chequerboard method in 96-well microtiter plates was used to determine the sum of the fractional inhibitory concentration indices (FICIs). Three independent experiments were performed per combination, each in triplicate. It was observed that the combination of tetracycline with either nitroxoline, sanguinarine, or zinc pyrithione produced synergistic effects against most of the pathogenic bacteria tested, with FICI values ranging from 0.086 to 0.5. Tetracycline–nitroxoline combinations produced the greatest synergistic action against S. flexneri at a FICI value of 0.086. The combinations of the agents tested in this study can thus be used for the development of new anti-diarrhoeic medications. However, studies focusing on their in vivo anti-diarrhoeic activity and safety are required before any consideration for utilization in human medicine. Full article
(This article belongs to the Special Issue Antibacterial and Antioxidant Effects of Plant-Sourced Compounds)
Show Figures

Figure 1

18 pages, 7758 KB  
Article
Induction of Programmed Cell Death in Acanthamoeba culbertsoni by the Repurposed Compound Nitroxoline
by Rubén L. Rodríguez-Expósito, Ines Sifaoui, María Reyes-Batlle, Frieder Fuchs, Patrick L. Scheid, José E. Piñero, Robert Sutak and Jacob Lorenzo-Morales
Antioxidants 2023, 12(12), 2081; https://doi.org/10.3390/antiox12122081 - 6 Dec 2023
Cited by 12 | Viewed by 2652
Abstract
Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for [...] Read more.
Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for health services. Therefore, there is a need to search for new active substances against Acanthamoebae. In the present study, we evaluated the amoebicidal activity of nitroxoline against the trophozoite and cyst stages of six different strains of Acanthamoeba. The strain A. griffini showed the lowest IC50 value in the trophozoite stage (0.69 ± 0.01 µM), while the strain A. castellanii L-10 showed the lowest IC50 value in the cyst stage (0.11 ± 0.03 µM). In addition, nitroxoline induced in treated trophozoites of A. culbertsoni features compatibles with apoptosis and autophagy pathways, including chromatin condensation, mitochondrial malfunction, oxidative stress, changes in cell permeability and the formation of autophagic vacuoles. Furthermore, proteomic analysis of the effect of nitroxoline on trophozoites revealed that this antibiotic induced the overexpression and the downregulation of proteins involved in the apoptotic process and in metabolic and biosynthesis pathways. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

16 pages, 6861 KB  
Article
Repurposing of Nitroxoline as an Alternative Primary Amoebic Meningoencephalitis Treatment
by Javier Chao-Pellicer, Iñigo Arberas-Jiménez, Frieder Fuchs, Ines Sifaoui, José E. Piñero, Jacob Lorenzo-Morales and Patrick Scheid
Antibiotics 2023, 12(8), 1280; https://doi.org/10.3390/antibiotics12081280 - 3 Aug 2023
Cited by 13 | Viewed by 3796
Abstract
Among the pathogenic free-living amoebae (FLA), Naegleria fowleri is the etiological agent of a fatal disease known as primary amoebic meningoencephalitis (PAM). Once infection begins, the lesions generated in the central nervous system (CNS) result in the onset of symptoms leading to death [...] Read more.
Among the pathogenic free-living amoebae (FLA), Naegleria fowleri is the etiological agent of a fatal disease known as primary amoebic meningoencephalitis (PAM). Once infection begins, the lesions generated in the central nervous system (CNS) result in the onset of symptoms leading to death in a short period of time. Currently, there is no standardized treatment against the infection, which, due to the high virulence of the parasite, results in a high case fatality rate (>97%). Therefore, it is essential to search for new therapeutic sources that can generate a rapid elimination of the parasite. In recent years, there have already been several successful examples of drug repurposing, such as Nitroxoline, for which, in addition to its known bioactive properties, anti-Balamuthia activity has recently been described. Following this approach, the anti-Naegleria activity of Nitroxoline was tested. Nitroxoline displayed low micromolar activity against two different strains of N. fowleri trophozoites (IC50 values of 1.63 ± 0.37 µM and 1.17 ± 0.21 µM) and against cyst stages (IC50 of 1.26 ± 0.42 μM). The potent anti-parasitic activity compared to the toxicity produced (selectivity index of 3.78 and 5.25, respectively) in murine macrophages and human cell lines (reported in previous studies), together with the induction of programmed cell death (PCD)-related events in N. fowleri make Nitroxoline a great candidate for an alternative PAM treatment. Full article
Show Figures

Graphical abstract

21 pages, 4898 KB  
Review
Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond
by Davorka Repac Antić, Marijo Parčina, Ivana Gobin and Mirna Petković Didović
Antibiotics 2022, 11(8), 1105; https://doi.org/10.3390/antibiotics11081105 - 15 Aug 2022
Cited by 39 | Viewed by 10545
Abstract
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems [...] Read more.
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes. Full article
Show Figures

Figure 1

22 pages, 7208 KB  
Article
Identification of 8-Hydroxyquinoline Derivatives That Decrease Cystathionine Beta Synthase (CBS) Activity
by Pierre Conan, Alice Léon, Mathilde Gourdel, Claire Rollet, Loubna Chaïr, Noéline Caroff, Nelig Le Goux, Catherine Le Jossic-Corcos, Maha Sinane, Lucile Gentile, Louise Maillebouis, Nadège Loaëc, Jennifer Martin, Marie Vilaire, Laurent Corcos, Olivier Mignen, Mikael Croyal, Cécile Voisset, Frédéric Bihel and Gaëlle Friocourt
Int. J. Mol. Sci. 2022, 23(12), 6769; https://doi.org/10.3390/ijms23126769 - 17 Jun 2022
Cited by 5 | Viewed by 3546
Abstract
CBS encodes a pyridoxal 5′-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. [...] Read more.
CBS encodes a pyridoxal 5′-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity—copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

2 pages, 190 KB  
Abstract
Etiological Spectrum and Antimicrobial Resistance of Most Frequently Isolated Pathogens, Associated with Urinary Tract Infections in Ambulatory Patients
by Viktoriya Snegarova, Neli Ermenlieva, Denis Nyazi, Marina Miroshnikova, Stoyan Stoyanov and Temenuga Stoeva
Med. Sci. Forum 2022, 12(1), 25; https://doi.org/10.3390/eca2022-12703 - 15 Jun 2022
Viewed by 1248
Abstract
Introduction: Urinary tract infections (UTIs) are one of the most common infections both in the community and in the hospital setting. Aim: The aim of this study is to investigate the etiological spectrum and antimicrobial resistance of the most frequently isolated pathogens associated [...] Read more.
Introduction: Urinary tract infections (UTIs) are one of the most common infections both in the community and in the hospital setting. Aim: The aim of this study is to investigate the etiological spectrum and antimicrobial resistance of the most frequently isolated pathogens associated with UTIs in ambulatory patients in Varna city, Bulgaria during a seven-month period (October 2020–April 2021). Materials and methods: A total of 1600 urine samples, collected from patients with suspected UTIs were tested. Screening for bacterial growth was performed using an HB&L Uroquattro instrument (ALIFAX, Italy). Species identification and antimicrobial susceptibility testing were performed using a VITEK 2 Compact System (bioMerieux) and the Kirby–Bauer disk diffusion method. Results: A total of 127 urine samples (7.9%) were positive for bacterial growth using the HB&L. From these samples, 127 bacterial pathogens were isolated: Gram negative bacteria were found in 62.2% (n = 79) and Gram positive bacteria were found in 37.8% (n = 48). E. coli was the predominant species associated with UTIs in the group of patients studied (77%, n = 61). The Gram-positive bacteria accounted for 37.8% (n = 48), with E. faecalis being the leading pathogen in this group (87.5%, n = 42). Staphylococcus saprophyticus and Streptococcus agalactiae were diagnosed in 8% (n = 4) and 4% (n = 2), respectively. The resistance rates in the group of Gram-negative isolates (n = 79) in decreasing order were as follows: ampicillin, 64.5% > trimethoprim/sulfamethoxazole, 35.4% > ciprofloxacin, 29.1% > amoxicillin-clavulanic acid, 27.8% > cefuroxime, levofloxacin, 21.5% > fosfomycin, 12.6% > ceftriaxone, 13.9% > ceftazidime, 10.1% > gentamicin, nitrofurantoin, 6.3% > nitroxoline, 5%. The resistance rates among the isolates of E. faecalis (n = 42) were as follows: ciprofloxacin, 28.6% > gentamicin, 23.8% > levofloxacin, 19% > nitrofurantoin, 4.7% > amoxicillin, 2.4%. A low rate of third-generation cephalosporin resistance (ceftazidime, cefotaxime and ceftriaxone) was detected among the representative of order Enterobacterales in this study. The rates of ESBL-producing isolates, confirmed by the phenotypic DDST, were as follows: 5% in E. coli (n = 4), and 2.5% in K. pneumoniae (n = 2) and Enterobacter cloacae (n = 2). No resistance to meropenem, amikacin, vancomycin and teicoplanin was found in the collection of isolates studied (n = 127). Conclusion: The etiological spectrum of UTIs in ambulatory patients was dominated by E. coli, followed by E. faecalis. In the group of Gram-negative uropathogens, high resistance rates to ampicillin, trimethoprim/sulfamethoxazole and quinolones were detected. Third-generation cephalosporins, fosfomycin, nitrofurantoin and nitroxoline retained very good activity. Among the Enterococcus faecalis isolates, the second most commonly isolated bacterial species, decreased activity of the quinolones was found too, but the aminopenicillins and nitrofurantoin remained highly active. Full article
31 pages, 2356 KB  
Review
What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models)
by Andrea Palicelli, Stefania Croci, Alessandra Bisagni, Eleonora Zanetti, Dario De Biase, Beatrice Melli, Francesca Sanguedolce, Moira Ragazzi, Magda Zanelli, Alcides Chaux, Sofia Cañete-Portillo, Maria Paola Bonasoni, Alessandra Soriano, Stefano Ascani, Maurizio Zizzo, Carolina Castro Ruiz, Antonio De Leo, Guido Giordano, Matteo Landriscina, Giuseppe Carrieri, Luigi Cormio, Daniel M. Berney, Jatin Gandhi, Giacomo Santandrea and Martina Bonaciniadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2021, 22(22), 12297; https://doi.org/10.3390/ijms222212297 - 14 Nov 2021
Cited by 13 | Viewed by 6846
Abstract
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic [...] Read more.
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic literature review (PRISMA guidelines) to delineate the landscape of pre-clinical studies (including cell lines and mouse models) that tested treatments with effects on PD-L1 signaling in PC. NF-kB, MEK, JAK, or STAT inhibitors on human/mouse, primary/metastatic PC-cell lines variably down-modulated PD-L1-expression, reducing chemoresistance and tumor cell migration. If PC-cells were co-cultured with NK, CD8+ T-cells or CAR-T cells, the immune cell cytotoxicity increased when PD-L1 was downregulated (opposite effects for PD-L1 upregulation). In mouse models, radiotherapy, CDK4/6-inhibitors, and RB deletion induced PD-L1-upregulation, causing PC-immune-evasion. Epigenetic drugs may reduce PD-L1 expression. In some PC experimental models, blocking only the PD-1/PD-L1 pathway had limited efficacy in reducing the tumor growth. Anti-tumor effects could be increased by combining the PD-1/PD-L1 blockade with other approaches (inhibitors of tyrosine kinase, PI3K/mTOR or JAK/STAT3 pathways, p300/CBP; anti-RANKL and/or anti-CTLA-4 antibodies; cytokines; nitroxoline; DNA/cell vaccines; radiotherapy/Radium-223). Full article
(This article belongs to the Special Issue Biomarker-Oriented Treatment of Urogenital Cancers)
Show Figures

Figure 1

14 pages, 1506 KB  
Article
Compared with Cotrimoxazole Nitroxoline Seems to Be a Better Option for the Treatment and Prophylaxis of Urinary Tract Infections Caused by Multidrug-Resistant Uropathogens: An In Vitro Study
by Ulrich Dobrindt, Haleluya T. Wami, Torsten Schmidt-Wieland, Daniela Bertsch, Klaus Oberdorfer and Herbert Hof
Antibiotics 2021, 10(6), 645; https://doi.org/10.3390/antibiotics10060645 - 28 May 2021
Cited by 8 | Viewed by 5634
Abstract
The resistance of uropathogens to various antibiotics is increasing, but nitroxoline remains active in vitro against some relevant multidrug resistant uropathogenic bacteria. E. coli strains, which are among the most common uropathogens, are unanimously susceptible. Thus, nitroxoline is an option for the therapy [...] Read more.
The resistance of uropathogens to various antibiotics is increasing, but nitroxoline remains active in vitro against some relevant multidrug resistant uropathogenic bacteria. E. coli strains, which are among the most common uropathogens, are unanimously susceptible. Thus, nitroxoline is an option for the therapy of urinary tract infections caused by multiresistant bacteria. Since nitroxoline is active against bacteria in biofilms, it will also be effective in patients with indwelling catheters or foreign bodies in the urinary tract. Cotrimoxazole, on the other hand, which, in principle, can also act on bacteria in biofilms, is frequently inactive against multiresistant uropathogens. Based on phenotypic resistance data from a large number of urine isolates, structural characterisation of an MDR plasmid of a recent ST131 uropathogenic E. coli isolate, and publicly available genomic data of resistant enterobacteria, we show that nitroxoline could be used instead of cotrimoxazole for intervention against MDR uropathogens. Particularly in uropathogenic E. coli, but also in other enterobacterial uropathogens, the frequent parallel resistance to different antibiotics due to the accumulation of multiple antibiotic resistance determinants on mobile genetic elements argues for greater consideration of nitroxoline in the treatment of uncomplicated urinary tract infections. Full article
Show Figures

Figure 1

Back to TopTop