Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = Ni2MnGa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 (registering DOI) - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

12 pages, 5245 KiB  
Article
Evaluation of Fly Ash Composition from Municipal Solid Waste Incinerators: The Role of the Incinerator Type and Flue Gas Deacidification Process
by Xuetong Qu, Yanan Wang, Feifei Chen, Chuqiao Li, Yunfei He, Jibo Dou, Shuai Zhang, Jiafeng Ding, Hangjun Zhang and Yuchi Zhong
Toxics 2025, 13(7), 588; https://doi.org/10.3390/toxics13070588 - 14 Jul 2025
Viewed by 318
Abstract
The resource utilization potential and environmental impact of fly ash from municipal solid waste incinerators (MSWIs) have attracted wide attention. In this study, four MSWIs in Hangzhou, Zhejiang Province were selected to systematically evaluate the effects of different incinerator types and flue gas [...] Read more.
The resource utilization potential and environmental impact of fly ash from municipal solid waste incinerators (MSWIs) have attracted wide attention. In this study, four MSWIs in Hangzhou, Zhejiang Province were selected to systematically evaluate the effects of different incinerator types and flue gas deacidification processes on fly ash’s oxide and heavy metal components and their temporal changes as well as conduct risk assessment. The results showed that the contents of MgO, Al2O3, SiO2, and Fe2O3 in the grate furnace fly ash were significantly lower than those in the fluidized bed fly ash, but the compressive strength of its fly ash was high. Chemicals added during the flue gas deacidification process such as CaO and NaHCO3 significantly affected the contents of CaO and Na2O. In addition, heavy metals such as Cu, Mn, Cr, and Ni were mainly distributed in the fluidized bed fly ash, while heavy metals such as Pb and Cd were mainly collected in the grate furnace fly ash. The concentrations of various components in the fly ash fluctuated but were not significant under different time dimensions. Risk assessment indicated that heavy metals such as Cd, Pb, and Sb posed a high risk. This study is expected to provide theoretical support for the safe management and resource utilization of fly ash. Full article
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

15 pages, 2054 KiB  
Data Descriptor
Data on Brazilian Powdered Milk Formulations for Infants of Various Age Groups: 0–6 Months, 6–12 Months, and 12–36 Months
by Francisco José Mendes dos Reis, Antonio Marcos Jacques Barbosa, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Flavio Santana Michels, Daniele Bogo, Karine de Cássia Freitas Gielow, Diego Azevedo Zoccal Garcia, Geovanna Vilalva Freire, João Batista Gomes de Souza and Valter Aragão do Nascimento
Data 2025, 10(7), 114; https://doi.org/10.3390/data10070114 - 9 Jul 2025
Viewed by 338
Abstract
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset [...] Read more.
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset contains the result of an analysis of the aflatoxins, macroelement and microelement concentrations, oxidative stability, and fatty acid profile of infant formula milk powder. The concentrations of Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, V, and Zn in digested powdered milk samples were quantified through inductively coupled plasma optical emission spectrometry (ICP OES). Thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to estimate the oxidative stability of infant formula milk powder, while the methyl esters of the fatty acids were analyzed by gas chromatography. Most milk samples showed significant concentrations of As (0.5583–1.3101 mg/kg) and Pb (0.2588–0.0847 mg/kg). The concentrations of aflatoxins G2 and B2 are below the limits established by Brazilian regulatory agencies. The thermal degradation behavior of the samples is not the same due to their fatty acid compositions. The data presented may be useful in identifying compounds present in infant milk powder used as a substitute for breast milk and understanding the mechanism of thermal stability and degradation, ensuring food safety for those who consume them. Full article
Show Figures

Figure 1

14 pages, 2670 KiB  
Communication
The Potential of MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) as Adsorbents for the Efficient Separation of CH4 from CO2 and H2S
by Shiqian Wei, Xinyu Tian, Zhen Rao, Chunxia Wang, Rui Tang, Ying He, Yu Luo, Qiang Fan, Weifeng Fan and Yu Hu
Materials 2025, 18(12), 2907; https://doi.org/10.3390/ma18122907 - 19 Jun 2025
Viewed by 340
Abstract
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting [...] Read more.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting appropriate adsorbents is crucial to eliminate these harmful gases. The adsorption of CH4, CO2, and H2S has been studied based on the density functional theory (DFT) in this work to evaluate the feasibility of transition metal (M = Mn, Fe, Co, Ni, Cu, Mo) porphyrin-like moieties embedded in graphene sheets (MN4-GPs) as adsorbents. It was found that the interactions between gas molecules and MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) are different. The weaker interactions between CH4 and MN4-GPs (M = Co, Ni, Cu, Mo) than those between CO2 and MN4-GPs or between H2S and MN4-GPs are beneficial to the separation of CH4 from CO2 and H2S. The maximum difference in the interactions between gas molecules and MoN4-GPs means that MoN4-GPs have the greatest potential to become adsorbents. The different interfacial interactions are related to the amount of charge transfer, which could promote the formation of bonds between gas molecules and MN4-GPs to effectively enhance the interfacial interactions. Full article
Show Figures

Figure 1

16 pages, 2624 KiB  
Article
Grain Size Engineering and Tuning of Magnetic Properties in Ultra-Thin NiMnGa Glass-Coated Microwires: Insights from Annealing Effects
by Mohamed Salaheldeen, Valentina Zhukova, Julian Gonzalez and Arcady Zhukov
Crystals 2025, 15(6), 565; https://doi.org/10.3390/cryst15060565 - 16 Jun 2025
Cited by 1 | Viewed by 326
Abstract
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, [...] Read more.
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, characterized by a coercivity exceeding 3 kOe at room temperature. Furthermore, their Curie temperature (Tc) lies above room temperature. Additionally, a spontaneous exchange bias of approximately 120 Oe is observed in the as-prepared sample at 100 K. Annealing the microwires leads to a decrease in coercivity, spontaneous exchange bias, and Tc values. Notably, the annealing process shifts the Tc of the samples closer to room temperature, making them more suitable for magnetic solid-state refrigeration applications. Moreover, the hysteresis observed in the temperature dependence of magnetization for the samples annealed for 1 h and 2 h, along with the magnetic softening observed at around 260 K, is attributed to a first-order phase transformation. The observed changes are discussed in the context of internal stress relaxation after annealing, the nanocrystalline structure of both the as-prepared and annealed samples, the recrystallization process, and the magnetic ordering of phases identified in the as-prepared sample and those appearing during recrystallization. The glass coating on microwires offers benefits like better flexibility and resistance to damage and corrosion. However, it is important to recognize that this coating can substantially alter the microwires’ magnetic characteristics. Consequently, precise control over the annealing process is vital to obtain the specific martensitic transformation needed. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

15 pages, 1018 KiB  
Article
Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment
by Thitisuda Kanchana-at, Win Trivitayanurak, Sopannha Chy and Narisa Kengtrong Bordeerat
Atmosphere 2025, 16(6), 678; https://doi.org/10.3390/atmos16060678 - 3 Jun 2025
Viewed by 517
Abstract
Particulate matter (PM) has been associated with various health issues. However, the most hazardous constituents of fine particles remain unclear, particularly in Asia where the chemical compositions are highly diverse and understudied. This study investigated the concentration and health risks of particulate-bound polycyclic [...] Read more.
Particulate matter (PM) has been associated with various health issues. However, the most hazardous constituents of fine particles remain unclear, particularly in Asia where the chemical compositions are highly diverse and understudied. This study investigated the concentration and health risks of particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the indoor air of religious spaces in Bangkok, Thailand. Air samples were collected from four religious sites during periods of high activity using a six-stage NanoSampler to capture particle sizes ranging from <0.1 to >10 µm. Chemical analyses were conducted using gas chromatography-mass spectrometry (GC-MS/MS) for PAHs and inductively coupled plasma-mass spectrometry (ICP-MS) for heavy metals. The results revealed significantly elevated concentrations of PM2.5, PAHs (notably benzo[a]anthracene (BaA), chrysene (CHR), and fluoranthene (FLU)), and heavy metals (particularly Mn, Ni, and Cu). Health risk assessments indicated that both the incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) values for several pollutants exceeded the U.S. EPA safety thresholds, suggesting serious cancer and non-cancer health risks for workers exposed to these environments over prolonged periods. This study highlights incense burning as a dominant source of toxic indoor air pollutants and underscores the urgent need for mitigation strategies to reduce occupational exposure in religious buildings. Full article
Show Figures

Figure 1

14 pages, 2689 KiB  
Article
Tunable Electronic Bandgaps and Optical and Magnetic Properties in Antiferromagnetic MPS3/GaN (M = Mn, Fe, and Ni) Heterobilayers
by Shijian Tian, Li Han, Libo Zhang, Kaixuan Zhang, Mengjie Jiang, Jie Wang, Shiqi Lan, Xuyang Lv, Yichong Zhang, Aijiang Lu, Yan Huang, Huaizhong Xing and Xiaoshuang Chen
Nanomaterials 2025, 15(11), 832; https://doi.org/10.3390/nano15110832 - 30 May 2025
Viewed by 479
Abstract
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS [...] Read more.
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS3 (M = Mn, Fe, and Ni) monolayers via first-principles calculations, and explored their potential applications in optoelectronics and spintronics. Through phonon spectrum analysis, the dynamic stability of MPS3 monolayers was confirmed, and their bond lengths, charge distributions, and wide-bandgap semiconductor properties were analyzed in detail. In addition, the potential applications of MPS3 monolayers in UV detection were explored. Upon constructing the MPS3/GaN heterobilayer structure, a significant reduction in the bandgap was observed, thereby expanding its potential applications in the visible light spectrum. The intrinsic antiferromagnetic nature of MPS3 monolayers was confirmed through calculations, with the magnetic moments of the magnetic atoms M being 4.560, 3.672, and 1.517, respectively. Moreover, the heterobilayer structures further enhanced the magnetic moments of these elements. The magnetic properties of MPS3 monolayers were further analyzed using spin-orbit coupling (SOC), confirming their magnetic anisotropy. These results provide a theoretical basis for the design of novel two-dimensional spintronic and optoelectronic devices based on MPS3. Full article
Show Figures

Figure 1

16 pages, 48638 KiB  
Article
Epitaxial Growth of Ni-Mn-Ga on Al2O3(112¯0) Single-Crystal Substrates by Pulsed Laser Deposition
by Manuel G. Pinedo-Cuba, José M. Caicedo-Roque, Jessica Padilla-Pantoja, Justiniano Quispe-Marcatoma, Carlos V. Landauro, Víctor A. Peña-Rodríguez and José Santiso
Surfaces 2025, 8(2), 35; https://doi.org/10.3390/surfaces8020035 - 30 May 2025
Viewed by 2820
Abstract
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, [...] Read more.
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, it is essential to develop nanomaterials with a crystal structure closely resembling that of a single crystal. In this study, an epitaxial Ni-Mn-Ga thin film was fabricated using Pulsed Laser Deposition on an Al2O3 (112¯0) single-crystal substrate. The crystal structure was characterised through X-ray diffraction methodologies, such as symmetrical 2θω scans, pole figures, and reciprocal space maps. The results indicated that the sample was mainly in a slightly distorted cubic austenite phase, and some incipient martensite phase also appeared. A detailed microstructural analysis, performed by transmission electron microscopy, confirmed that certain regions of the sample exhibited an incipient transformation to the martensite phase. Regions closer to the substrate retained the austenite phase, suggesting that the constraint imposed by the substrate inhibits the phase transition. These results indicate that it is possible to grow high crystalline quality thin films of Ni-Mn-Ga by Pulsed Laser Deposition. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

46 pages, 18469 KiB  
Review
Optimising Additive Manufacturing of NiTi and NiMnGa Shape Memory Alloys: A Review
by Ali Ramezannejad, Daniel East, Anthony Bruce Murphy, Guoxing Lu and Kun Vanna Yang
Metals 2025, 15(5), 488; https://doi.org/10.3390/met15050488 - 25 Apr 2025
Cited by 1 | Viewed by 849
Abstract
NiTi and NiMnGa stand out as prime thermal and magnetic shape memory alloys (SMAs), possessing a superior shape memory effect (SME) and superelasticity (SE). These alloys have crucial current and potential future applications across industries. Additive manufacturing (AM) offers a transformative approach to [...] Read more.
NiTi and NiMnGa stand out as prime thermal and magnetic shape memory alloys (SMAs), possessing a superior shape memory effect (SME) and superelasticity (SE). These alloys have crucial current and potential future applications across industries. Additive manufacturing (AM) offers a transformative approach to fabricating these materials into complex geometries; however, the quest to create integral additively manufactured structures with reliable thermal or magnetic shape memory properties remains a recent and fast-emerging research frontier. This article provides a comprehensive review on (i) the intricate principles giving rise to the thermal SME and SE in NiTi, and the magnetic SME in NiMnGa alloys, emphasising their specific relevance in the realm of AM, and (ii) the latest developments, recent findings, and ongoing challenges in the AM of NiTi- and NiMnGa-based SMAs, including their functional lattice structures. Based on this review, for the first time, novel, empirically derived AM process design maps tailored to maximise SME and SE in laser powder bed fusion- and directed-energy deposition-processed NiTi structures are proposed. Similarly, promising avenues to resolve the key challenges regarding the AM of NiMnGa magnetic SMAs are suggested. This article concludes by outlining the most promising future research directions shaping the trajectory of AM of these SMAs. Full article
Show Figures

Figure 1

17 pages, 1486 KiB  
Article
Effect of Lignite Composition on Mercury Removal from Flue Gas in Sulfide Forced Wet Flue Gas Desulfurization (WFGD) Installations—Full-Scale Experiments
by Dariusz Łuszkiewicz, Maria Jędrusik, Arkadiusz Świerczok, Mariola Kobylańska-Pawlisz, Karel Borovec and Lukas Pilar
Energies 2025, 18(8), 1982; https://doi.org/10.3390/en18081982 - 12 Apr 2025
Viewed by 313
Abstract
In this article, the results of full-scale experiments on the addition of a sodium sulfide to the CaCO3 slurry circuit in a wet flue gas desulfurization (WFGD) plant are presented. Tests are performed on two comparable WFGD installations (spray tower, 4 spraying [...] Read more.
In this article, the results of full-scale experiments on the addition of a sodium sulfide to the CaCO3 slurry circuit in a wet flue gas desulfurization (WFGD) plant are presented. Tests are performed on two comparable WFGD installations (spray tower, 4 spraying levels and two stage gypsum de-watering by hydrocyclones and vacuum belt filter) which allows the investigation of the influence of lignite composition (lignite mined in Poland and the Czech Republic are compared) on the reduction in mercury emission. Additionally, the efficiency of precipitation of metals from the slurry (Hg, Zn, Pb, Cd, Cr, Cu, Ni, Fe, Se, and Mn) is investigated as the result of sulfide addition. For both objects, mercury re-emission from absorber occurs (the concentration of mercury in the chimney is higher than that before the WFGD absorber) and the sulfide addition to WFGD slurry stops this phenomenon. The addition of sulfide works effectively (mercury removal efficiency from flue gas reaches up to 88% for Polish tests and up to 87% for Czech Republic tests). For the tests in the Poland power plant, all of measured metals are precipitated from the slurry (precipitation of metals efficiency varied from 2% for zinc to 88% for mercury), but in the case of the test in the power plant in the Czech Republic, there is no effect on manganese, iron, and lead (precipitation of metals efficiency varied from 6.5% for copper to 86% for mercury). The addition of sulfide works effectively for lignite mined in Polish and Czech power plants under the conditions of similar WFGD installations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Variations in the Mineral Composition of Houpoea Officinalis Flowers at Different Stages of Development
by Yao Yang, Mao-Yuan Zhu, Shi-Mei Zhao, Yi-Tong Fan, Jing-Wen Huang, Ting Yu, Guo-Qing Zhuang and Shun Gao
Horticulturae 2025, 11(4), 387; https://doi.org/10.3390/horticulturae11040387 - 5 Apr 2025
Viewed by 519
Abstract
Houpoea officinalis (H. officinalis) flowers are rich in a spectrum of bioactive compounds and mineral nutrients. The availability and balance of mineral elements directly impact the morphogenesis of flower organs, which play pivotal roles in various physiological and biochemical processes that [...] Read more.
Houpoea officinalis (H. officinalis) flowers are rich in a spectrum of bioactive compounds and mineral nutrients. The availability and balance of mineral elements directly impact the morphogenesis of flower organs, which play pivotal roles in various physiological and biochemical processes that drive flower development. However, relatively little is known about the changes in mineral elements composition that occur during flower development in H. officinalis. The objective of this study is to analyze the variations of 22 mineral elements contents in pistil, stamens, and petals of H. officinalis flower at four development stages. The amount of mineral elements (Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Al, Ti, Ga, Cd, Ba, Tl, Pb, and Bi) in these samples was determined using atomic absorption spectroscopy and inductively coupled plasma mass spectrometry. Results showed that H. officinalis flowers are rich in macroelements such as potassium (K, 25.80–48.06 mg/g) and calcium (Ca, 17.27–31.00 mg/g), as well as microelements like zinc (Zn, 445.17–1553.16 μg/g) and iron (Fe, 324.27–622.31 μg/g). Notably, the pistil part is found to harbor a more significant concentration of mineral elements during the early developmental stages of flowers. Correlation analysis and PCA have effectively exposed a pronounced association between the accumulation patterns of mineral elements in H. officinalis flowers and their corresponding developmental stages and organs. These findings will provide more detailed information about the accumulation and distribution of mineral elements in H. officinalis flowers at different development stages and organs, which help to encourage researchers to enhance the flower quality for human consumption. Full article
(This article belongs to the Special Issue Breeding, Cultivation, and Metabolic Regulation of Medicinal Plants)
Show Figures

Figure 1

27 pages, 14359 KiB  
Article
Paleoenvironments and Paleoclimate Reconstructions of the Middle–Upper Eocene Rocks in the North–West Fayum Area (Western Desert, Egypt): Insights from Geochemical Data
by Mostafa M. Sayed, Petra Heinz, Ibrahim M. Abd El-Gaied, Susanne Gier, Ramadan M. El-Kahawy, Dina M. Sayed, Yasser F. Salama, Bassam A. Abuamarah and Michael Wagreich
Minerals 2025, 15(3), 227; https://doi.org/10.3390/min15030227 - 25 Feb 2025
Cited by 1 | Viewed by 1098
Abstract
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples [...] Read more.
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples from the Gehannam Formation (Bartonian–Priabonian), the Birket Qarun and the Qasr El Sagha formations (Priabonian). The sedimentological features coupled with paleo-redox trace elemental ratios (Ni/Co, V/Cr, U/Th, V/(V + Ni), and Cu/Zn), paleosalinity (Sr/Ba, Mg/Al ×100, Ca/Al), and paleowater depth (Fe/Mn) proxies, indicate that deposition took place in a shallow marine agitated environment with high oxygen levels. Paleoclimate indicators (Sr/Cu, Rb/Sr, K2O3/Al2O3, Ga/Rb, C-value, CIA, and CIW) suggest warm and prevailing arid climatic conditions, with minor humid periods at some intervals. The observed low values of the total organic carbon (TOC) are attributed to significant high sediment influx, predominant oxygenated conditions, and poor primary productivity, which is further confirmed by low values of paleoprimary productivity proxies (P, Ni/Al, Cu/Al, P/Al and P/Ti, and Babio ratios). These findings enhance our understanding of the Eocene environments and provide insights into sedimentation processes during this period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 10847 KiB  
Article
Promoting Effect of Copper Doping on LaMO3 (M = Mn, Fe, Co, Ni) Perovskite-Supported Gold Catalysts for Selective Gas-Phase Ethanol Oxidation
by Lijun Yue, Jie Wang and Peng Liu
Catalysts 2025, 15(2), 176; https://doi.org/10.3390/catal15020176 - 13 Feb 2025
Cited by 1 | Viewed by 964
Abstract
Developing more effective gold–support synergy is essential for enhancing the catalytic performance of supported gold nanoparticles (AuNPs) in the gas-phase oxidation of ethanol to acetaldehyde (AC) at lower temperatures. This study demonstrates a significantly improved Au–support synergy achieved by copper doping in LaMO [...] Read more.
Developing more effective gold–support synergy is essential for enhancing the catalytic performance of supported gold nanoparticles (AuNPs) in the gas-phase oxidation of ethanol to acetaldehyde (AC) at lower temperatures. This study demonstrates a significantly improved Au–support synergy achieved by copper doping in LaMO3 (M = Mn, Fe, Co, Ni) perovskites. Among the various Au/LaMCuO3 catalysts, Au/LaMnCuO3 exhibited exceptional catalytic activity, achieving an AC yield of up to 91% and the highest space-time yield of 764 gAC gAu−1 h−1 at 225 °C. Notably, this catalyst showed excellent hydrothermal stability, maintaining performance for at least 100 h without significant deactivation when fed with 50% aqueous ethanol. Comprehensive characterization reveals that Cu doping facilitates the formation of surface oxygen vacancies on the Au/LaMCuO3 catalysts and enhances Au–support interactions. The LaMnCuO3 perovskite stabilizes the crucial Cu+ species, resulting in a stable Au-Mn-Cu synergy within the Au/LaMnCuO3 catalyst, which facilitates the activation of O2 and ethanol at lower temperatures. The optimization of the reaction conditions further improves AC productivity. Kinetic studies indicate that the cleavages of both the O-H bond and the α-C-H bond of ethanol are the rate-controlling steps. Full article
(This article belongs to the Special Issue New Insights into Synergistic Dual Catalysis)
Show Figures

Figure 1

15 pages, 32026 KiB  
Article
Gas-Phase Reactions in Nano-Strand Formation from Al-Fe-Ni Powder Reacted with CaF2-SiO2-Al2O3-MgO-MnO-TiO2 Flux at 1350 °C: SEM Study and Diffusion Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(1), 1; https://doi.org/10.3390/reactions6010001 - 2 Jan 2025
Viewed by 1025
Abstract
Fast high-temperature gas-phase reactions occurring in the limited space of the arc cavity in the submerged arc welding (SAW) process limit the study of specific gas-phase behaviours. A low-temperature experimental method is applied to investigate gas-phase reactions in the reaction of oxy-fluoride slag [...] Read more.
Fast high-temperature gas-phase reactions occurring in the limited space of the arc cavity in the submerged arc welding (SAW) process limit the study of specific gas-phase behaviours. A low-temperature experimental method is applied to investigate gas-phase reactions in the reaction of oxy-fluoride slag with Al-Fe-Ni metal powders. The presence of nano-strands in the slag cavities confirms the vaporisation and re-condensation of gasses. Ti is the main element in nano-strands, although some nano-strands also contain Al-Mg-Si-Na oxy-fluoride. Nano-strand end-caps contain Mn-Fe-Si fluoride, and some contain Ni. The Ni in nano-strand end-caps is sourced from the added Ni powder and indicates gas-phase transfer. The Ti in the nano-strands is sourced from the flux. Themochemistry calculations identify KAlF4, TiF3, NaAlF4, SiF4, AlF3, SiF3, and Na in the gas phase. Increased Al reaction results in decreased TiF3 in the gas phase, likely due to the displacement of Ti from TiF3, resulting in the gas-phase transfer of Ti from the flux. Comparative diffusion flux calculations support Ti nano-strand formation via the vaporisation of TiF3 and the re-condensation of Ti. The low-temperature simulation experiment applied here can be used to study the gas reaction behaviour in the reaction of oxy-fluoride flux with metal powders. Full article
Show Figures

Figure 1

Back to TopTop