Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (185)

Search Parameters:
Keywords = NaCl action

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4647 KiB  
Article
Adaptability and Sensitivity of Trichoderma spp. Isolates to Environmental Factors and Fungicides
by Allinny Luzia Alves Cavalcante, Andréia Mitsa Paiva Negreiros, Naama Jéssica de Assis Melo, Fernanda Jéssica Queiroz Santos, Carla Sonale Azevêdo Soares Silva, Pedro Sidarque Lima Pinto, Sabir Khan, Inês Maria Mendes Sales and Rui Sales Júnior
Microorganisms 2025, 13(7), 1689; https://doi.org/10.3390/microorganisms13071689 - 18 Jul 2025
Viewed by 336
Abstract
Biological control employs beneficial microorganisms to suppress phytopathogens and mitigate the incidence of associated plant diseases. This study investigated the in vitro development and survival of Trichoderma spp. isolates derived from commercial formulations under different temperatures, pH levels, and sodium chloride (NaCl) concentrations [...] Read more.
Biological control employs beneficial microorganisms to suppress phytopathogens and mitigate the incidence of associated plant diseases. This study investigated the in vitro development and survival of Trichoderma spp. isolates derived from commercial formulations under different temperatures, pH levels, and sodium chloride (NaCl) concentrations and with synthetic fungicides with distinct modes of action. Three isolates were analyzed: URM-5911 and TRA-0048 (T. asperellum) and TRL-0102 (T. longibrachiatum). The results revealed substantial variability among the isolates, with the optimal mycelial growth temperatures ranging from 24.56 to 29.42 °C. All the isolates exhibited broad tolerance to the tested pH (5–9) and salinity levels (250–1000 mM), with TRL-0102 demonstrating the highest salt resistance. The fungicide treatments negatively affected mycelial growth across all the isolates, with Azoxystrobin + Difenoconazole and Boscalid causing growth reductions of up to 50%. Notably, Boscalid enhanced conidial production more compared to the control (126.0% for URM-5911, 13.7% for TRA-0048, and 148.5% for TRL-0102) and decreased the percentage of inactive conidia to less than 10% in all the isolates. These results provide strategic information for the application of Trichoderma spp. in agricultural systems, supporting the selection of more adapted and suitable isolates for integrated disease management programs. Full article
(This article belongs to the Special Issue Interaction Between Microorganisms and Environment)
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 371
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 342
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

9 pages, 693 KiB  
Article
Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol
by Wojciech Nowak and Tomasz A. Ratajczak
Minerals 2025, 15(7), 689; https://doi.org/10.3390/min15070689 - 27 Jun 2025
Viewed by 225
Abstract
This study investigates the influence of salt (NaCl) and, separately, frother (α-terpineol) on flotation of copper-bearing shale. It was shown, as expected, that increasing concentration of either NaCl or α-terpineol improves both ultimate shale recovery and the kinetics of flotation, except for very [...] Read more.
This study investigates the influence of salt (NaCl) and, separately, frother (α-terpineol) on flotation of copper-bearing shale. It was shown, as expected, that increasing concentration of either NaCl or α-terpineol improves both ultimate shale recovery and the kinetics of flotation, except for very high frother concentrations, which lead to a drop in flotation. It appears that the relationship between the first-order flotation rate constant and ultimate recovery for both applied reagents follows the same pattern regardless of the different mechanisms of NaCl and frother action. Full article
(This article belongs to the Special Issue Kinetic Characterization and Its Applications in Mineral Processing)
Show Figures

Figure 1

19 pages, 3271 KiB  
Article
Investigation of In Vitro and In Silico Anti-Inflammatory Potential of Carthamus caeruleus L. Root Juice
by Idir Moualek, Hamdi Bendif, Ali Dekir, Karima Benarab, Yousra Belounis, Walid Elfalleh, Karim Houali and Gregorio Peron
Int. J. Mol. Sci. 2025, 26(13), 5965; https://doi.org/10.3390/ijms26135965 - 21 Jun 2025
Viewed by 414
Abstract
This study aimed to evaluate the anti-inflammatory properties of Carthamus caeruleus L. root juice (CRJ), which is used in the traditional medicine of Algeria. The product was characterized by colorimetric assays (total polyphenols, flavonoids, and tannins) and by RP-HPLC-DAD analysis. Experiments were conducted [...] Read more.
This study aimed to evaluate the anti-inflammatory properties of Carthamus caeruleus L. root juice (CRJ), which is used in the traditional medicine of Algeria. The product was characterized by colorimetric assays (total polyphenols, flavonoids, and tannins) and by RP-HPLC-DAD analysis. Experiments were conducted in vitro to assess the ability of CRJ to stabilize human erythrocyte membranes under various stress conditions and inhibit albumin denaturation, a process linked to inflammation. An in silico study was also performed to investigate the inhibitory effects on cyclooxygenase-2 (COX-2) and assess the phenolic constituents with the highest activity. Moderate levels of polyphenols, flavonoids, and tannins were assessed; among these, 22 compounds were identified via chromatographic analysis. While present at low concentrations, some of these compounds, including myricetin, luteolin, and quercetin, are known to exhibit bioactivity at micromolar levels. CRJ provided erythrocyte membranes with notable protection against disruption caused by hypotonic NaCl solutions (protection levels of 90.51%, 87.46%, and 76.87% at NaCl concentrations of 0.7%, 0.5%, and 0.3%, respectively), heat stress (81.54%), and oxidative damage from HClO (75.43%). Additionally, a protection of 61.5% was observed against albumin denaturation. Docking analysis indicated favorable COX-2 binding for myricetin, luteolin, and quercetin. In conclusion, the root juice derived from C. caeruleus demonstrated potential anti-inflammatory activity in vitro and in silico. However, further studies, including in vivo investigations, are necessary to confirm efficacy and fully elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Applications of Phytochemicals in Drug Synthesis)
Show Figures

Figure 1

19 pages, 6599 KiB  
Article
Hydrogeological Assessment of Urban Springs in Warsaw and Their Role in Green Space Management
by Ewa Krogulec, Dorota Porowska, Katarzyna Sawicka and Sebastian Zabłocki
Sustainability 2025, 17(12), 5432; https://doi.org/10.3390/su17125432 - 12 Jun 2025
Viewed by 514
Abstract
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation [...] Read more.
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation protection, focusing on their hydrogeological characteristics, hydrogeochemical analysis, and pressures associated with urban development. Field and laboratory analyses, as well as hydrodynamic modeling, made it possible to assess the quantity and quality of water from the springs. Hydrodynamic studies showed that the area of the spring recharge zone of 13.77 ha is characterized by an average time of water exchange of approx. 26 years and a low infiltration recharge, an average of 18 mm/year. Hydrogeochemical analyses showed that spring water has a complex, multi-ion hydrogeochemical type: Cl-SO4-HCO3-Ca-Na, Cl-HCO3-SO4-Ca-Na, Cl-HCO3-Na-Ca, and NO3-Cl-HCO3-Ca-Na, including the occurrence of hazardous substances such as PAH and BTEX, PCBs, non-ionic detergents, and heavy metals. The results indicate that urbanization significantly affects groundwater levels and spring recharge areas, which can limit the availability of water in green and recreational areas. The results of the study indicate the need for action to increase groundwater resources through managed aquifer recharge for rainwater management in densely built-up areas. In terms of water quality measures, due to the unsatisfactory chemical water status, the use of spring water for irrigation of urban vegetation or its incorporation into the active recreational infrastructure of the park currently appears to be fraught with considerable risk, hence the need to take protective action in the spring recharge zone through the regular monitoring of groundwater quality, the legal designation of protection zones, and the implementation of policies that support urban water retention. It is necessary to implement pre-treatment solutions (aeration, desalination) or introduce appropriately resistant vegetation. Any type of activity that allows the use of water after treatment will certainly contribute to making the park more attractive as a place of recreation and leisure for residents. Findings from the research can support decisions on protecting green spaces and adapting cities to climate change. Full article
Show Figures

Figure 1

21 pages, 3424 KiB  
Article
Molecular Regulation of Antioxidant Defense and Metabolic Reprogramming in Xiaozhan Rice Genotypes: Differential Roles of Salicylic Acid and Melatonin Under Salt Stress
by Yang Wu, Yongbo Duan, Xifan Luo, Mingjun Li, Hengjie Gao, Wei Zhu, Fei Zhao, Jian Liu and Wenzhong Zhang
Curr. Issues Mol. Biol. 2025, 47(6), 432; https://doi.org/10.3390/cimb47060432 - 7 Jun 2025
Viewed by 558
Abstract
Against the background of increasing global soil salinity, exogenous salicylic acid (SA) and melatonin (MT) have attracted much attention for their potential in regulating plant stress tolerance and have become an important research direction for the development of green and sustainable agriculture. In [...] Read more.
Against the background of increasing global soil salinity, exogenous salicylic acid (SA) and melatonin (MT) have attracted much attention for their potential in regulating plant stress tolerance and have become an important research direction for the development of green and sustainable agriculture. In this study, the alleviating effects of different concentrations of SA (100–900 μM) and MT (100–900 μM) on salt stress (50 mM NaCl) and their physiological mechanisms were systematically investigated using the Tianjin specialty rice, Xiaozhan rice, as the research object. The results showed that salt stress significantly inhibited the germination and seedling growth of the two varieties, in which the salt-sensitive variety Jinchuan No. 1 showed significantly higher decreases in root length, plant height, and biomass (54.7–69.1%) than the salt-tolerant variety Jindao 919 (4.0–28.9%). Exogenous SA and MT were effective in mitigating salt stress injury, but there were genotypic differences in their pathways of action. For the first time in japonica rice, the genotype specificity of the SA/MT response was clearly revealed: SA dominated the response of salt-tolerant varieties by enhancing antioxidant defences, whereas MT optimized the overall performance of the salt-sensitive varieties through scavenging of reactive oxygen species, and in addition, it was further determined that SA and MT exhibited optimal mitigating effects on both varieties in the 300–700 μM concentration range, showing the best mitigation effect for both varieties. This finding provides an important theoretical basis and technological paradigm for precision stress tolerance cultivation of saline rice, and the application of appropriate concentrations of SA/MT according to genotype specificity to reduce the dependence on agrochemicals is of practical value in promoting green and sustainable production in saline agriculture. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

26 pages, 2710 KiB  
Article
From Contamination to Conservation: A Hydrochemical and Isotopic Evaluation of Groundwater Quality in the Semi-Arid Guire Basin (Morocco)
by Hanane Marzouki, Nouayti Nordine, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and El Khalil Cherif
Water 2025, 17(11), 1688; https://doi.org/10.3390/w17111688 - 3 Jun 2025
Cited by 1 | Viewed by 673
Abstract
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ [...] Read more.
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ2H, δ13C), multivariate statistical, and Geographic Information System (GIS) analyses alongside the Water Quality Index (WQI). Sixteen wells were monitored for physicochemical parameters (pH: 7–7.9; EC: 480–3004 μS/cm; BOD5: 1.03–30.5 mg/L; COD: 10.2–45.75 mg/L) and major ions, revealing widespread exceedances of Moroccan standards for Cl, HCO3, Mg2+, Ca2+, and NH4+. WQI classified 81% of samples as “Poor” to “Unsuitable for drinking” (WQI: 51–537), driven by elevated Cl, Na+, and SO42− from Triassic evaporite dissolution and NO3 (up to 45 mg/L) from agricultural runoff. Stable isotopes (δ18O: −7.73‰ to −5.08‰; δ2H: −66.14‰ to −44.20‰) indicate Atlantic-influenced recharge at 900–2200 m altitudes, with a δ18O-δ2H slope of 5.93 reflecting evaporation during infiltration. Strontium (Sr2+/Ca2+: 0.0024–0.0236) and bromide (Br/Cl: 8.47 × 10−5–9.88 × 10−4) ratios further confirm evaporitic dominance over anthropogenic contamination. This work provides actionable insights for policymakers, advocating for targeted restrictions on fertilizers, enhanced monitoring near evaporite zones, and artificial recharge initiatives. By linking geogenic/anthropogenic contamination to governance strategies, this study advances sustainable groundwater management in semi-arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 573
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

16 pages, 2744 KiB  
Article
Prolonged Diuretic, Natriuretic, and Potassium- and Calcium-Sparing Effect of Hesperidin in Hypertensive Rats
by Sabrina Lucietti Dick Orengo, Rita de Cássia Vilhena da Silva, Anelise Felício Macarini, Valdir Cechinel Filho and Priscila de Souza
Plants 2025, 14(9), 1324; https://doi.org/10.3390/plants14091324 - 27 Apr 2025
Viewed by 558
Abstract
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new [...] Read more.
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new compounds with diuretic properties, renal protective effects, and unique mechanisms of action remains a critical area of research for improving clinical outcomes. In this context, the present study investigated the diuretic and renal protective potential of the citrus flavonoid hesperidin in rats. Male spontaneously hypertensive and normotensive rats were treated with hesperidin at a dose of 3.0 mg/kg daily for seven days. Urine samples were analyzed for electrolytes (Na+, K+, Cl, and Ca2+), biochemical parameters, and crystal precipitation, while renal tissues were examined histologically. Hesperidin treatment resulted in significant diuretic and natriuretic effects, along with potassium- and calcium-sparing properties. Furthermore, a marked reduction in calcium oxalate crystal formation was observed in the hesperidin-treated group. Histological analysis indicated a protective effect on renal tissue, with structural preservation observed in hypertensive rats. Docking studies revealed that hesperetin, the active metabolite of hesperidin formed upon oral administration, exhibited a high binding affinity for the calcium-sensing receptor (CaSR). This hypothesis may explain its role in preventing urinary crystalluria and contributing to calcium-sparing effects. Full article
Show Figures

Figure 1

13 pages, 2359 KiB  
Article
Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response
by Gretchen E. Dykes, Yiping He, Tony Jin, Xuetong Fan, Joe Lee, Sue Reed and Joseph Capobianco
Int. J. Mol. Sci. 2025, 26(7), 3254; https://doi.org/10.3390/ijms26073254 - 1 Apr 2025
Cited by 1 | Viewed by 572
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. [...] Read more.
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium’s extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death. Full article
(This article belongs to the Special Issue Molecular Insights into Antimicrobial Activity)
Show Figures

Figure 1

17 pages, 5334 KiB  
Article
Biostimulant Effect and Antioxidant Responses of Carrot Extract and the Viability of Rice Seeds Under Salt Stress
by Sheila Bigolin Teixeira, Stefânia Nunes Pires, Caroline Hernke Thiel, Cristiane Deuner, Diogo da Silva Moura, Natalia da Silva Garcia, Filipe Selau Carlos, Fernanda Reolon de Souza, Te Ming Tseng and Sidnei Deuner
Seeds 2025, 4(2), 17; https://doi.org/10.3390/seeds4020017 - 27 Mar 2025
Viewed by 510
Abstract
Bioactive compounds in plants, such as carrots, have been widely used for their benefits. In agriculture, their potential as biostimulants still needs to be investigated, especially for their possible antioxidant action in plants subjected to abiotic stresses, such as salinity. This work aimed [...] Read more.
Bioactive compounds in plants, such as carrots, have been widely used for their benefits. In agriculture, their potential as biostimulants still needs to be investigated, especially for their possible antioxidant action in plants subjected to abiotic stresses, such as salinity. This work aimed to evaluate the elicitor potential of carrot extract in alleviating salt stress in rice plants. This study aimed to evaluate the elicitor potential of carrot extract in alleviating saline stress in the rice cultivars BRS Querência and BRS 358. Aqueous extracts of carrot roots at concentrations of 0% (water), 25%, 50%, and 100% were used to soak rice seeds for 48 h, which were then subjected to different concentrations of NaCl (0, 25, 75, and 150 mM). To determine the effect of carrot extract as an elicitor under saline stress conditions, the following tests were conducted: germination, seedling length, dry mass, and oxidative stress through the activity of antioxidant enzymes, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxide content, and lipid peroxidation (hydrogen peroxide H2O2 and malonaldehyde MDA). Carrot extract increased the germination rate and maintained germination even under increased salinity rates in both cultivars. The application of 25 mM NaCl also boosted germination rates, followed by a significant decrease due to increased salinity rates. Shoot and root lengths and dry mass parameters showed a linear decrease in response to increasing NaCl concentrations. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APx), and catalase (CAT) enzymes tended to decrease as the concentration of carrot extract increased, whereas the opposite was observed with NaCl application. Based on the combined analysis of the evaluated parameters, carrot extract application under the tested conditions was efficient in mitigating oxidative stress caused by high salinity conditions. Full article
Show Figures

Figure 1

22 pages, 3211 KiB  
Article
The Composition of the Dispersion Medium Determines the Antibacterial Properties of Copper (II) Oxide Nanoparticles Against Escherichia coli Bacteria
by Olga V. Zakharova, Alexander A. Gusev, Peter A. Baranchikov, Svetlana P. Chebotaryova, Svetlana S. Razlivalova, Elina Y. Koiava, Anna A. Kataranova, Gregory V. Grigoriev, Nataliya S. Strekalova and Konstantin V. Krutovsky
Nanomaterials 2025, 15(6), 469; https://doi.org/10.3390/nano15060469 - 20 Mar 2025
Cited by 1 | Viewed by 745
Abstract
Copper (II) oxide nanoparticles (CuO NPs) attract much attention as a promising antimicrobial agent. We studied the antibacterial properties of three types of CuO NPs against Escherichia coli bacteria: flake-shaped particles with a diameter of 50–200 nm and a thickness of 10–20 nm [...] Read more.
Copper (II) oxide nanoparticles (CuO NPs) attract much attention as a promising antimicrobial agent. We studied the antibacterial properties of three types of CuO NPs against Escherichia coli bacteria: flake-shaped particles with a diameter of 50–200 nm and a thickness of 10–20 nm (CuO-CD synthesized by chemical deposition), spherical particles with a size of 20–90 nm (CuO-EE obtained by electrical explosion), and rod-shaped particles with a length of 100–200 nm and a diameter of 30 × 70 nm (CuO-CS commercial sample). We tested how the shape, size, and concentration of the NPs, and composition of the dispersion medium affected the properties of the CuO NPs. We prepared dispersions based on distilled water, a 0.9% NaCl solution, and the LB broth by Lennox and used Triton X-100 and sodium dodecyl sulfate (SDS) as stabilizers. The concentration of NPs was 1–100 mg L−1. We showed that the dispersion medium composition and stabilizer type had the greatest influence on the antibacterial effects of CuO NPs. We observed the maximum antibacterial effect for all CuO NP types dispersed in water without a stabilizer, as well as in LB broth with the SDS stabilizer. The maximum inhibition of culture growth was observed under the influence of CuO-EE (by 30%) and in the LB broth with the SDS stabilizer (by 1.3–1.8 times depending on the type of particles). In the saline solution, the antibacterial effects were minimal; in some cases, the CuO NPs even promoted bacterial culture growth. SDS increased the antibacterial effects of NPs in broth and saline but decreased them in water. Finally, among the particle types, CuO-CS turned out to be the most bactericidal, which is probably due to their rod-shaped morphology and small diameter. At the same time, the concentration and aggregation effects of CuO NPs in the colloidal systems we studied did not have a linear action on their antibacterial properties. These results can be used in the development of antibacterial coatings and preparations based on CuO NPs to achieve their maximum efficiency, taking into account the expected conditions of their use. Full article
(This article belongs to the Special Issue New Challenges in Antimicrobial Nanomaterials)
Show Figures

Graphical abstract

19 pages, 12533 KiB  
Article
Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials
by Longni Wang, Hongyuan Fu, Qianfeng Gao, Jintao Luo, Jing Tang, Jianping Song, Youjun Li and Guangtao Yu
Appl. Sci. 2025, 15(6), 3345; https://doi.org/10.3390/app15063345 - 19 Mar 2025
Cited by 2 | Viewed by 512
Abstract
Geopolymer-based grouting materials often have a higher early strength, better durability, and lower environmental impact than those of traditional cement-based grouts. However, existing geopolymer grouts face common challenges such as rapid setting and low compatibility with treated substrates. This study develops a new [...] Read more.
Geopolymer-based grouting materials often have a higher early strength, better durability, and lower environmental impact than those of traditional cement-based grouts. However, existing geopolymer grouts face common challenges such as rapid setting and low compatibility with treated substrates. This study develops a new grouting material using industrial byproducts to overcome these limitations while optimizing performance for reinforcing silty mudstone slopes. The base materials used were ground granulated blast furnace slag (GGBFS) and zeolite powder, with calcium lignosulphonate (CL) serving as the retarding agent and NaOH as the alkali activator. The investigation focused on the effects of the mix ratio and water–binder ratio on the setting time, flowability, bleeding rate, concretion rate, and compressive strength of the new grouting material. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to examine the action mechanism of the material components in the slurry. The one-factor standard deviation method and Grey Relational Analysis (GRA) were used to assess the influence of each material component on the slurry performance indices and the correlation between each performance index and its optimal mix ratio. Subsequently, the optimal mix ratio of the new grouting material was ascertained. The results indicate that the setting time is positively correlated with the zeolite powder and CL dosages and the water–binder ratio, while it is inversely related to the NaOH dosage. The flowability is significantly enhanced with increasing zeolite powder and NaOH dosages, but decreases at a higher CL dosage and water–binder ratio. This insight is crucial for optimizing the workability of the grouting material under various conditions. The optimal ratio of the grout is zeolite powder:GGBFS:CL:NaOH = 30:70:5:7, with a water–binder ratio of 0.6. Compared to existing commercial grouting materials, the compressive strength of this new grout is comparable to that of silty mudstone. This significantly reduces the problem of stress concentration at the grout–rock interface due to strength differences, thus effectively reducing the risk of secondary cracking at the interface. These findings provide a new material solution for grouting and repairing fractured silty mudstone slopes. Full article
Show Figures

Figure 1

15 pages, 9065 KiB  
Article
An Analysis of Multi-Coal Seam Mining Impacting Aquifer Water Based on Self-Organizational Maps
by Zhonglin Wei, Yuan Ji, Yuan Li, Huiming Fang, Donglin Dong and Lujia Yu
Water 2025, 17(4), 598; https://doi.org/10.3390/w17040598 - 19 Feb 2025
Cited by 2 | Viewed by 524
Abstract
The degradation of groundwater quality due to mining activities is a major public concern globally. This study employed a combination of methods (multivariate statistics, Self-organizing mapping, and PHREEQC hydrogeochemical simulation) to uncover the hydrochemical characteristics and processes of mine water in the Kailuan [...] Read more.
The degradation of groundwater quality due to mining activities is a major public concern globally. This study employed a combination of methods (multivariate statistics, Self-organizing mapping, and PHREEQC hydrogeochemical simulation) to uncover the hydrochemical characteristics and processes of mine water in the Kailuan mining area. Self-organizing mapping (SOM) clustering divided the mine water into three groups, TDS values gradually increased from the first to the third group, and the hydrogeochemical type of mine water gradually changed from Na-HCO3 and CaMg-HCO3 to CaMg-SO4, Na-Cl, and mixed types. Principal component analysis (PCA) revealed that water–rock action and evaporation concentration were major ion concentration factors. According to the molar ion concentration ratio method, the main ions in mine water in Kailuan mining area originate from silicate and sulfate, and a small amount from carbonate rock weathering, and they are influenced by cation exchange. As a result of the PHReactor EQuilibrium Code (PHREEQC) simulation results, it can be concluded that better hydrodynamic conditions in mines are primarily controlled by carbonate dissolution. Mine water with poorer hydrodynamic conditions is mainly controlled by sulfate and carbonate dissolution, with sulfate dissolution having a greater effect. The results of this study provide an important scientific basis for the safe mining of mines and the protection of groundwater resources. Full article
Show Figures

Figure 1

Back to TopTop