Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol
Abstract
1. Introduction
- Copper minerals: Chalcopyrite, bornite, covellite, chalcocite, digenite—total copper content ranges from 2% to over 7% [21];
- Accompanying metals: Silver, lead, zinc, cobalt, molybdenum, gold, etc. [18];
- Clay minerals: Mainly illite [15];
- Carbonate minerals: Dolomite, calcite, etc. [15];
- Organic substances: Bitumen and structureless material [15].
- Low beneficiation capacity due to very fine mineralization: Copper minerals in shale are fine-crystalline, often smaller than 20 µm, making liberation during grinding and subsequent recovery by flotation difficult. The shale contains relatively high concentrations of copper and accompanying metals such as silver or molybdenum, but their recovery is challenging. As a result, the copper content in the concentrate is lower than theoretically possible.
- Presence of organic substances in shales: They are naturally hydrophobic, causing easy transfer to the concentrate and, thus, reducing its quality. Additionally, organic substances absorb flotation reagents, increasing their consumption and reducing process efficiency.
- Clay minerals present in the shale form hydrophilic coatings on copper mineral grains, hindering their attachment to air bubbles. This results in copper losses and lower flotation efficiency. Moreover, clay minerals are mechanically carried into the froth product or float as aggregates with organic matter, negatively affecting concentrate quality.
- The variable composition of shale within the deposit causes difficulties in maintaining a stable enrichment process. This variability applies to both the content of copper minerals and physicochemical properties.
- The number of bubble–particle collisions per unit of time and volume;
- The probability of particle adhesion to the bubble surface;
- The probability of bubble–particle aggregate stability.
- -
- The order of the equation—n;
- -
- The flotation rate constant—k;
- -
- Recovery after a given flotation time—R(t);
- -
- Ultimate recovery (achieved after theoretically infinite flotation time;
- -
- A thermodynamic property—R∞.
2. Materials and Methods
3. Results and Discussion
3.1. Copper-Bearing Shale Flotation
3.2. Fitting of Copper-Bearing Shale Flotation with First-Order Kinetics
3.3. The Relationship Between Ultimate Recovery and the Flotation Rate Constant for Copper-Bearing Shale
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arbiter, N.; Harris, C.C. Flotation kinetics. In Froth Flotation: 50th Anniversary Volume; Fuerstenau, D., Ed.; American Institute of Mining, Metallurgical and Petroleum Engineers: New York, NY, USA, 1962. [Google Scholar]
- Laskowski, J. Coal flotation in solution with a raised concentration of inorganic salts. J. Colliery Guard. 1965, 211, 361–366. [Google Scholar]
- Laskowski, J.; Iskra, J. Role of capillary effect in bubble particie collision in flotation. Trans. Inst. Min. Metall. 1970, 79, C6–C10. [Google Scholar]
- Laskowski, J. The relationship between flotability and hydrophobicity. In Advances in Mineral Proccesing; Somasundaran, P., Ed.; Society of Mining Engineers, Inc.: Littleton, CO, USA, 1986; pp. 189–208. [Google Scholar]
- Li, C.; Somasundaran, P. Role of electrical double layerforces and hydrophobicity in coal flotation in NaCl solutions. Energy Fuels 1993, 7, 244–248. [Google Scholar] [CrossRef]
- Laskowski, J. Coal flotation and fine coal utilization. In Developments in Mineral Processing, 14th ed.; Fuerstenau, D.W., Ed.; Elsevier: London, UK, 2001. [Google Scholar]
- Ratajczak, T.; Drzymała, J. Flotacja Solna; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2003. (In Polish) [Google Scholar]
- Wills, B.; Napier Munn, T. Wills’ Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th ed.; Butterworth-Heinemann: London, UK, 2006. [Google Scholar]
- Drzymala, J. Mineral Processing. Foundations of Theory and Practice of Minerallurgy; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2007; pp. 381–382. [Google Scholar]
- Laskowski, J.; Castro, S. Flotation in concentrated electrolyte solutions. Int. J. Miner. Process. 2015, 144, 50–55. [Google Scholar] [CrossRef]
- Merta, P.; Drzymała, J. Wpływ chlorku sody i octanu sodu na flotację solną węgla antracytowego jako modelu substancji bogatych w kerogen. In Łupek Miedzionośny II; Kowalczuk, P.B., Drzymała, J., Eds.; WGGG PWr: Wrocław, Poland, 2016; pp. 195–200. (In Polish) [Google Scholar]
- Kuklińska, M.; Ratajczak, T. Flotacja łupka miedzionośnego w wodnych roztworach soli. In Łupek Miedzionośny II; Kowalczuk, P.B., Drzymała, J., Eds.; WGGG PWr: Wrocław, Poland, 2016; pp. 184–187. (In Polish) [Google Scholar]
- Feng, Q.; Zhang, Y.; Zhang, G.; Han, G.; Zhao, W. A novel sulfidization system for enhancing hemimorphite flotation through Cu/Pb binary metal ions. Int. J. Min. Sci. Technol. 2024, 34, 1741–1752. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Wen, S.-M.; Hao, J.-M.; Feng, Q.-C. Flotation separation of chalcopyrite from pyrite using mineral fulvic acid as selective depressant under weakly alkaline conditions. Trans. Nonferrous Met. Soc. China 2025, 35, 313–325. [Google Scholar] [CrossRef]
- Konopacka, Ż.; Zagożdżon, K.D. Łupek miedzionośny legnicko-głogowskiego okręgu miedziowego. In w: Łupek Miedzionośny; Drzymała, J., Kowalczuk, P.B., Eds.; WGGG PWr: Wrocław, Poland, 2014; pp. 7–12. (In Polish) [Google Scholar]
- Pawlos, W.; Poznar, E.; Krzemińska, M. Wpływ litologicznego zróżnicowania nadawy na wskaźniki technologiczne w zakładach wzbogacania rud KGHM Polska Miedź SA. Biul. Państwowego Inst. Geol. 2017, 469, 67–74. (In Polish) [Google Scholar] [CrossRef]
- Konstantynowicz-Zielińska, J. Petrografia i geneza łupków miedzionośnych monokliny przedsudeckiej. Rudy Met. Nieżelazne 1990, 35, 128–133. (In Polish) [Google Scholar]
- Wyżykowski, J. Cechsztyńska formacja miedzionośna w Polsce. Przegląd Geol. 1971, 19, 117. (In Polish) [Google Scholar]
- Cox, D.P.; Lindsey, D.A.; Singer, D.A.; Moring, B.C.; Diggles, M.F. Sediment-Hosted Copper Deposits of the World: Deposit Models and Database. Open-File Report 03-107, Version 1.3. 2003, Revised 2007. Available online: http://pubs.usgs.gov/of/2003/of03-107 (accessed on 24 June 2025).
- Fuerstenau, M.C.; Jameson, G.J.; Yoon, R.H. (Eds.) Froth Flotation: A Century of Innovation; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2007; pp. 2007–2891. [Google Scholar]
- Bakalarz, A. Charakterystyka chemiczna i mineralogiczna wybranych łupków pochodzących z Legnicko-Głogowskiego okręgu miedziowego. In w: Łupek miedzionośny; Drzymała, J., Kowalczuk, P.B., Eds.; WGGG PWr: Wrocław, Poland, 2014; pp. 13–18. (In Polish) [Google Scholar]
- Bu, X.; Xie, G.; Chen, Y.; Ni, C. The order of kinetic models in coal fines flotation. Int. J. Coal Prep. Util. 2017, 37, 113–123. [Google Scholar] [CrossRef]
- Bu, X.; Xie, G.; Peng, Y.; Ge, L.; Ni, C. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochem. Probl. Miner. Process. 2017, 53, 342–365. [Google Scholar]
- Brożek, M.; Młynarczykowska, A. Analysis of kinetics models of batch flotation. Physicochem. Probl. Miner. Process. 2007, 41, 51–65. [Google Scholar]
- Brożek, M.; Młynarczykowska, A. Kinetyka Flotacji; Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN: Kraków, Poland, 2009. (In Polish) [Google Scholar]
- Zuniga, H.G. Flotation recovery is an exponential function of its rate. Boletín Soc. Nac. Min. Santiago Chile 1935, 47, 83–86. [Google Scholar]
- Drzymała, J.; Ratajczak, T.; Kowalczuk, P.B. Kinetic separation curves based on process rate considerations. Physicochem. Probl. Miner. Process. 2017, 3, 983–995. [Google Scholar] [CrossRef]
- Gharai, M.; Venugopal, R. Modeling of flotation process—An overview of different approaches. Miner. Process. Extr. Metall. Rev. 2016, 37, 120–133. [Google Scholar] [CrossRef]
- Laskowski, J. Coal surface chemistry and its role in fine coal beneficiation and utilization. Coal Prep. 1994, 14, 115–132. [Google Scholar] [CrossRef]
- Laskowski, J. Coal surface chemistry and its effect on fine coal processing. In High Efficiency Coal Preparation: An International Symposium; Kawatra, S.K., Ed.; SME: Littleton, CO, USA, 1995; Volume 14, pp. 163–175. [Google Scholar]
- Kosior, D.; Zawala, J.; Malysa, K. When and how α-terpineol and n-octanol can inhibit the bubble attachment to hydrophobic surfaces. Physicochem. Probl. Miner. Process. 2011, 47, 169–182. [Google Scholar]
- Kruszelnicki, M.; Kowalczuk, P.B.; Polowczyk, I. Three-phase contact formation between an air bubble and solid surfaces with different hydrophobicity degrees in liquid. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132067. [Google Scholar] [CrossRef]
- Zisman, W.A. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. In Contact Angle, Wettability, and Adhesion; Advances in Chemistry Series; ACS Publications: Washington, DC, USA, 1964; Volume 43, pp. 1–55. [Google Scholar]
- Lyklema, J. Fundamentals of Interface and Colloid Science. Vol. III, Liquid-Liquid Interfaces; Academic Press: London, UK, 2000. [Google Scholar]
- Nowak, W. Określenie i Analiza Stałej Prędkości Flotacji Łupka Miedzionośnego w Funkcji Zmiennego Stężenia Spieniacza. Engineering Thesis, Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wrocław, Poland, 2025. (In Polish). [Google Scholar]
- Kowalczewska, K.; Ratajczak, T. Flotacja łupka miedzionośnego w szerokim zakresie stężenia spieniacza. In Łupek Miedzionośny; Ratajczak, T.V., Ed.; WGGG PWr: Wrocław, Poland, 2021; pp. 103–107. (In Polish) [Google Scholar]
- Kowalczuk, P.B.; Mroczko, D.; Drzymala, J. Influence of frother type and dose on collectorless flotation of copper-bearing shale in a flotation column. Physicochem. Probl. Miner. Process. 2015, 51, 547–558. [Google Scholar]
- Kowalczuk, P.B.; Zawala, J.; Kosior, D.; Drzymala, J.; Malysa, K. Three-phase contact formation and flotation of highly hydrophobic polytetrafluoroethylene in the presence of increased dose of frothers. Ind. Eng. Chem. Res. 2016, 55, 839–843. [Google Scholar] [CrossRef]
- Drzymala, J.; Kowalczuk, P.B. Classification of Flotation Frothers. Minerals 2018, 8, 53. [Google Scholar] [CrossRef]
Test Symbol | NaCl [mol/dm3] | α-Terpineol [g/Mg] |
---|---|---|
F1 | 0 | 0 |
F2 | 0 | 150 |
F3 | 0 | 225 |
F4 | 0 | 300 |
F5 | 0.25 | 0 |
F6 | 0.5 | 0 |
F7 | 1 | 0 |
F8 | 0 | 333 |
Flotation | R∞, % | n, - | k, 1/min | Determination Coefficient |
---|---|---|---|---|
F1 | 30 | 1 | 0.0562 | 0.9757 |
F2 | 93 | 0.1562 | 0.9967 | |
F3 | 96 | 0.1650 | 0.9962 | |
F4 | 95 | 0.1591 | 0.9989 | |
F5 | 65 | 0.0750 | 0.9975 | |
F6 | 82 | 0.1371 | 0.9866 | |
F7 | 92 | 0.1606 | 0.9717 | |
F8 | 58 | 0.0822 | 0.9712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, W.; Ratajczak, T.A. Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol. Minerals 2025, 15, 689. https://doi.org/10.3390/min15070689
Nowak W, Ratajczak TA. Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol. Minerals. 2025; 15(7):689. https://doi.org/10.3390/min15070689
Chicago/Turabian StyleNowak, Wojciech, and Tomasz A. Ratajczak. 2025. "Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol" Minerals 15, no. 7: 689. https://doi.org/10.3390/min15070689
APA StyleNowak, W., & Ratajczak, T. A. (2025). Flotation Kinetics of Copper-Bearing Shale in the Presence of NaCl and α-Terpineol. Minerals, 15(7), 689. https://doi.org/10.3390/min15070689