Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials
Abstract
:1. Introduction
2. Material Properties
2.1. Base Materials
2.2. Additives
3. Test Schemes
4. Results and Discussion
4.1. Setting Time
4.2. Flowability
4.3. Bleeding and Concretion Rate
4.4. Compressive Strength of Stone Bodies
4.5. XRD and SEM Analysis
5. Evaluation of Material Factors and Performance Indicators by One-Way Standard Deviation and GRA
5.1. One-Way Standard Deviation Analysis
5.2. GRA-Based Evaluation of Impact Factors
6. Conclusions
- (1)
- The setting time of alkali-activated GGBFS–zeolite powder slurry exhibits a positive correlation with the proportions of zeolite powder and CL and the water–binder ratio, while it is inversely related to the amount of NaOH. Notably, when the NaOH dosage is 1%, the slurry fails to set. With an increase in the dosage of zeolite powder and NaOH, the fluidity of the slurry is significantly enhanced. Conversely, a higher CL dosage and water–binder ratio lead to a decline in flowability and an increase in the slurry’s viscosity. This insight is crucial for maximizing the workability of the grouting material under varying conditions.
- (2)
- The compressive strength of the slurry stone bodies gradually decreases with an increasing zeolite powder dosage and water–binder ratio. Conversely, an increase in the CL dosage enhances the compressive strength of the stone bodies. At the same time, the impact of NaOH doping on the compressive strength of the stone bodies initially increases, followed by a subsequent decrease. At a 5% doping level, the compressive strength of the stone bodies reaches a maximum of 17.59 MPa after 28 days. The compressive strength of this grout is compatible with silty mudstone, making it suitable for reinforcing silty mudstone slopes without the risk of secondary cracking along the material interface.
- (3)
- In the case of alkali-activated GGBFS–zeolite powder slurry, the water–binder ratio is identified as a key factor influencing performance indices. The correlation between each performance index of the grouting material and the optimal mix ratio is, in descending order, as follows: compressive strength, flowability, final setting time, initial setting time and bleeding rate. The optimal mix ratio is zeolite powder:GGBFS:calcium lignosulphonate (CL):NaOH = 30:70:5:7, with a water–binder ratio of 0.6. This mix ratio not only meets the specification requirements but also provides a cost-effective and environmentally sustainable solution, utilizing widely available industrial byproducts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GGBFS | Ground granulated blast furnace slag |
CL | Calcium lignosulphonate |
GP | Glass powder |
FA | Fly ash |
SEM | Scanning electron microscope |
XRD | X-ray diffraction |
GRA | Grey Relational Analysis |
C-S-H | Cement Silicate Hydrogel |
C-(A)-S-H | Calcium Sulfoaluminate Hydrates |
References
- Fu, H.Y.; Jiang, H.B.; Qiu, X.; Ji, Y.P.; Chen, W.; Zeng, L. Seepage characteristics of a fractured silty mudstone underdifferent confining pressures and temperatures. J. Cent. South Univ. 2020, 27, 1907–1916. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Kuri, J.C.; Sarker, P.K. Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars. J. Build. Eng. 2021, 34, 101934. [Google Scholar] [CrossRef]
- Abed, M.H.; Abbas, I.S.; Hamed, M.; Canakci, H. Rheological, fresh, and mechanical properties of mechanochemically activated geopolymer grout: A comparative study with conventionally activated geopolymer grout. Constr. Build. Mater. 2022, 322, 126338. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Y.; Li, H. Cementitious properties of coal-based metakaolin prepared from coal gangue via Fe3O4-Assisted microwave activation. J. Clean. Prod. 2024, 448, 141277. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Katman, H.Y.B.; Humada, A.M.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Effect of silica fume on the properties of sustainable cement concrete. J. Mater. Res. Technol. 2023, 24, 8887–8908. [Google Scholar] [CrossRef]
- Pan, S.; Li, J.; Gong, H.; Zhu, Z.; Xu, S.; Jiang, C.; Cai, W. Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals. Sustainability 2024, 16, 302. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camoes, A.; Branco, F.G.; Aguiar, J.B.; Fangueiro, R. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Manag. 2019, 94, 39–48. [Google Scholar] [CrossRef]
- Loke, C.K.; Lehane, B.; Aslani, F.; Majhi, S.; Mukherjee, A. Non-Destructive Evaluation of Mortar with Ground Granulated Blast Furnace Slag Blended Cement Using Ultrasonic Pulse Velocity. Materials 2022, 15, 6957. [Google Scholar] [CrossRef]
- Sitarz, M.; Hager, I.; Choińska, M. Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition. Energies 2020, 13, 1135. [Google Scholar] [CrossRef]
- Xiang, J.C.; He, Y.; Liu, L.P.; Zheng, H.; Cui, X.M. Exothermic behavior and drying shrinkage of alkali-activated slag concrete by low temperature-preparation method. Constr. Build. Mater. 2020, 262, 120056. [Google Scholar] [CrossRef]
- Kouchachvili, L.; Bardy, D.A.; Djebbar, R.; Hogg, L.E. Natural zeolites as host matrices for the development of low-cost and stable thermochemical energy storage materials. J. Porous Mater. 2023, 30, 163–173. [Google Scholar] [CrossRef]
- Hu, H.B.; He, Z.H.; Fan, K.J.; Shibro, T.G.; Liu, B.J.; Shi, J.Y. Properties enhancement of recycled coarse aggregates by pre-coating/pre-soaking with zeolite powder/calcium hydroxide. Constr. Build. Mater. 2021, 286, 122888. [Google Scholar] [CrossRef]
- Mijailović, N.R.; Nedić Vasiljević, B.; Ranković, M.; Milanović, V.; Uskoković-Marković, S. Environmental and Pharmacokinetic Aspects of Zeolite/Pharmaceuticals Systems—Two Facets of Adsorption Ability. Catalysts 2022, 12, 837. [Google Scholar] [CrossRef]
- Rahman, S.K.; Al-Ameri, R. Marine Geopolymer Concrete-A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications. Appl. Sci. 2022, 12, 3116. [Google Scholar] [CrossRef]
- Ni, Z.L.; Wang, S.Y.; Zheng, X.C.; Qi, C.H. Application of geopolymer in synchronous grouting for reusing of the shield muck in silty clay layer. Constr. Build. Mater. 2024, 419, 135345. [Google Scholar] [CrossRef]
- Le, H.; Sun, S.; Kulatilake, P.H.; Wei, J. Effect of grout on mechanical properties and cracking behavior of rock-like specimens containing a single flaw under unconfined compressive. Int. J. Geomech. 2018, 18, 04018129. [Google Scholar] [CrossRef]
- Li, Q.T.; Li, Z.G.; Yuan, G.L. Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material. Constr. Build. Mater. 2012, 35, 687–692. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Y.; Li, W.; Che, G.; Liu, C.; Jv, A.; Lu, J.; Sun, W.; Guan, R. Efficient photocatalytic removal of ciprofloxacin through in-situ growth of g-C3N4 on the surface of clinoptilolite. J. Phys. Chem. Solids 2024, 192, 112077. [Google Scholar] [CrossRef]
- Qu, J.S.; Li, H.Q.; Li, S.P.; Hou, X.J.; Chang, R.Q.; Zhang, Y.F. Coal gasification slag-derived highly reactive silica for high modulus sodium silicate synthesis: Process and mechanism. Chem. Eng. J. 2024, 479, 1385–8947. [Google Scholar] [CrossRef]
- GB 175-2023; Common Portland Cement; State Administration for Market Regulation; National Standardization Administration. Standards Press of China: Beijing, China, 2023.
- Yu, H.; Yi, Y.L.; Unluer, C. Heat of hydration, bleeding, viscosity, setting of Ca(OH)2-GGBS and MgO-GGBS grouts. Constr. Build. Mater. 2021, 270, 121839. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Awed, A.M.; Xie, J.; Gu, F. Performance evaluation of high early strength micro-expansion geopolymer grout potentially used for sustainable road infrastructure. Transp. Geotech. 2024, 49, 101400. [Google Scholar] [CrossRef]
- GB/T 1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement; General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Standards Press of China: Beijing, China, 2011.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar; General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Standards Press of China: Beijing, China, 2005.
- JTG 3420-2020; Testing Methods of Cement and Concrete for Highway Engineering; Ministry of Transport of the People’s Republic of China. China Communication Press: Beijing, China, 2020.
- GB/T 17671-2021; Test Method of Cement Mortar Strength; State Administration for Market Regulation; Standardization Administration of the People’s Republic of China. Standards Press of China: Beijing, China, 2021.
- Jiang, J.; Wang, F.; Wang, L.; Zhang, J.; Wang, L. Experimental investigation on effects of polyaniline-modified-lignin on cement-based materials: Strength, hydration and dispersion. Constr. Build. Mater. 2023, 394, 131853. [Google Scholar] [CrossRef]
- Magina, S.; Barros-Timmons, A.; Evtuguin, D.V. Synthesis of Lignosulfonate-Based Dispersants for Application in Concrete Formulations. Materials 2021, 14, 7388. [Google Scholar] [CrossRef]
- de Gasperi, J.; Dörr, G.; Melchiors, E.F.; Longhi, M.A.; de Matos, P.R.; Rodríguez, E.D. Effect of activator type and concentration, water-to-solid ratio, and time on the flowability of metakaolin-based geopolymer pastes. J. Mater. Civ. Eng. 2022, 34, 04022205. [Google Scholar] [CrossRef]
- GB/T 50448-2015; Technical Code for Application of Cementitious Grout; Ministry of Housing and Urban-Rural Development of the People’s Republic of China; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. China Architecture & Building Press: Beijing, China, 2015.
- Topçu, I.B.; Atesin, Ö. Effect of high dosage lignosulphonate and naphthalene sulphonate based plasticizer usage on micro concrete properties. Constr. Build. Mater. 2016, 120, 189–197. [Google Scholar] [CrossRef]
- Liu, C.H.; Li, Z.Y.; Bezuijen, A.; Chen, L.H.; Cachim, P. Optimizing the shield tunnel backfilling grouts with supplementary cementitious materials by response surface methodology. Constr. Build. Mater. 2024, 421, 135575. [Google Scholar] [CrossRef]
- DL/T 5148-2021; Technical Specification for Cement Grouting of Hydraulic Structures; Ministry of Water Resources of the People’s Republic of China. China Water & Power Press: Beijing, China, 2021.
- Kantarci, F.; Maras, M.M. Fabrication of Novel Geopolymer Grout as Repairing Material for Application in Damaged RC Beams. Int. J. Civ. Eng. 2022, 20, 461–474. [Google Scholar] [CrossRef]
- Touloumet, Q.; Postole, G.; Massin, L.; Lorentz, C.; Auroux, A. Investigation of the impact of zeolite shaping and salt deposition on the characteristics and performance of composite thermochemical heat storage systems. J. Mater. Chem. A 2023, 11, 2737–2753. [Google Scholar] [CrossRef]
- Liang, G.W.; Yao, W.; She, A.M. Rheology and microstructure of lithium slag/metakaolin geopolymer pastes: Insights from particle packing and water dynamic evolution. J. Build. Eng. 2024, 95, 110261. [Google Scholar] [CrossRef]
- Mahfoud, E.; Ndiaye, K.; Maherzi, W.; Aggoun, S.; Abriak, N.E.; Benzerzour, M. Thermodynamic modeling of one-part-geopolymer binders based on fly ash and micronized dredged sediments. Constr. Build. Mater. 2024, 452, 138906. [Google Scholar] [CrossRef]
- Huang, D.; Chen, H.; Zou, Y.; Yuan, Q.; Peng, H. Influence of raw material properties on microscopic and mechanical characteristics of alkali-activated materials. Case Stud. Constr. Mater. 2024, 20, e03319. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.A.E.M.; Salem, H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016, 121, 694–703. [Google Scholar] [CrossRef]
- Wan, Q.; Zhang, Y.M.; Zhang, R.B. The effect of pore behavior and gel structure on the mechanical property at different initial water content. Constr. Build. Mater. 2021, 309, 125146. [Google Scholar] [CrossRef]
- Bauchy, M.; Qomi, M.J.A.; Ulm, F.J.; Pellenq, R.J.M. Order and disorder in calcium-silicate-hydrate. J. Chem. Phys. 2014, 140, 214503. [Google Scholar] [CrossRef] [PubMed]
- Ruengsillapanun, K.; Udtaranakron, T.; Pulngern, T.; Tangchirapat, W.; Jaturapitakkul, C. Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete. Constr. Build. Mater. 2021, 299, 123954. [Google Scholar] [CrossRef]
- Zhou, C.S.; Tang, Q.; Lu, L. Al Content Effect on Microstructure and Strength in Calcium Aluminosilicate Hydrate Chain Integration. Strength Mater. 2022, 54, 929–941. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhang, W.X.; Garbev, K.; Monteiro, P.J.M. Coordination environment of Si in calcium silicate hydrates, silicate minerals, and blast furnace slags: A XANES database. Cem. Concr. Res. 2021, 143, 106376. [Google Scholar] [CrossRef]
- Liu, M.F.; Zhu, J.L.; Zhang, C.Y.; He, P.; Chen, D.X.; Zhong, G.J.; Liu, Q.; Hu, W.Y.; Chen, Y.Z.; Zhu, J.Y. Effect of calcium lignosulfonate on surface modification and bioleaching of chalcopyrite. Biochem. Eng. J. 2024, 207, 109329. [Google Scholar] [CrossRef]
- Rambo, D.A.S.; Ukrainczyk, N.; Silva, F.D.; Koenders, E.; Toledo, R.D.; Gomes, O.D.M. Calcium-aluminate mortars at high temperatures: Overcoming adverse conversion effects using clinker aggregates. Cem. Concr. Compos. 2019, 96, 212–224. [Google Scholar] [CrossRef]
- Abdrakhmanov, V.I.; Dobrotin, S.A.; Kosyreva, O.N.; Logutov, V.I. Statistical Evaluation of the Standard Deviation of Chromatographic Retention Time in the Capillary Column Temperature Programming Mode. J. Anal. Chem. 2021, 76, 641–652. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Q.; Wang, G.; Yang, F.; Xue, F. Dynamic feature selection combining standard deviation and interaction information. Int. J. Mach. Learn. Cybern. 2023, 14, 1407–1426. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, W.; Wu, Y.; Fan, Z.; Zhang, L. Multi-Response Optimization of Ultrafine Cement-Based Slurry Using the Taguchi-Grey Relational Analysis Method. Materials 2021, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Abid, N.; Ikram, M.; Wu, J.Z.; Ferasso, M. Towards environmental sustainability: Exploring the nexus among ISO 14001, governance indicators and green economy in Pakistan. Sustain. Prod. Consum. 2021, 27, 653–666. [Google Scholar] [CrossRef]
- Yu, G.; Fu, H.; Gao, Q.; Zeng, L.; Chen, J.; Ma, C. Development and Application of Flue Gas Desulfurized Gypsum and Blast-Furnace-Slag-Based Grouting Material for Cracked Silty Mudstone. Materials 2024, 17, 5975. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.W.; Fu, H.Y.; Zeng, L.; Liu, J.; Qiu, X.Y. Damage constitutive model for soft rocks and its experimental verification on silty mudstone considering cyclic rock–water interactions. Bull. Eng. Geol. Environ. 2024, 83, 254. [Google Scholar] [CrossRef]
- Liao, Y.; Zheng, W.; Long, J.; Xie, X.; Hu, J. Optimization of Backrest Skeleton of Carbon Fiber Reinforced Plastic Car Seat Based on Grey Euclidean Relational Analysis Method. Int. J. Automot. Technol. 2023, 24, 1189–1203. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Chang, J.; Hou, H.; Chen, C.; Cheng, F.; He, N.; Wu, X. Using Taguchi grey relational analysis to optimize the dimensional parameters of a Coercivity detection probe. Sādhanā 2023, 48, 249. [Google Scholar] [CrossRef]
Materials | SO2/% | CaO/% | Al2O3/% | MgO/% | SO3/% | Other/% |
---|---|---|---|---|---|---|
GGBFS powder | 32.96 | 39.39 | 14.04 | 10.96 | 1.9 | 0.75 |
Zeolite powder | 73.35 | 4.23 | 12.45 | 0.84 | - | 9.13 |
Groups | Zeolite Powder Dosage/% | GGBFS Powder Dosage/% | CL Dosage/% | NaOH Dosage/% | Water–Binder Ratio |
---|---|---|---|---|---|
1 | 0 | 100 | 2 | 7 | 0.6 |
2 | 10 | 90 | |||
3 | 20 | 80 | |||
4 | 30 | 70 | |||
5 | 40 | 60 | |||
6 | 50 | 50 | |||
7 | Optimal zeolite powder-to-GGBFS ratio | 1 | 7 | 0.6 | |
8 | 3 | ||||
9 | 4 | ||||
10 | 5 | ||||
11 | 3 | 1 | 0.6 | ||
12 | 3 | ||||
13 | 5 | ||||
14 | 9 | ||||
15 | 3 | 7 | 0.4 | ||
16 | 0.5 | ||||
17 | 0.7 | ||||
18 | 0.8 |
Groups | Initial Setting Time | Final Setting Time | Flowability | Bleeding Rate | Compressive Strength | Weighted Total Score | Normalized Weighted Score |
---|---|---|---|---|---|---|---|
8 | 0.045 | 0.000 | 0.788 | 0.882 | 0.925 | 0.533 | 0.107 |
9 | 1.116 | 0.645 | 1.112 | 1.078 | 0.960 | 0.982 | 0.196 |
10 | 2.455 | 1.383 | 1.240 | 1.471 | 1.017 | 1.507 | 0.301 |
12 | 1.071 | 1.916 | 0.939 | 0.833 | 1.001 | 1.150 | 0.230 |
13 | 0.313 | 1.056 | 0.921 | 0.735 | 1.097 | 0.828 | 0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Fu, H.; Gao, Q.; Luo, J.; Tang, J.; Song, J.; Li, Y.; Yu, G. Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials. Appl. Sci. 2025, 15, 3345. https://doi.org/10.3390/app15063345
Wang L, Fu H, Gao Q, Luo J, Tang J, Song J, Li Y, Yu G. Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials. Applied Sciences. 2025; 15(6):3345. https://doi.org/10.3390/app15063345
Chicago/Turabian StyleWang, Longni, Hongyuan Fu, Qianfeng Gao, Jintao Luo, Jing Tang, Jianping Song, Youjun Li, and Guangtao Yu. 2025. "Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials" Applied Sciences 15, no. 6: 3345. https://doi.org/10.3390/app15063345
APA StyleWang, L., Fu, H., Gao, Q., Luo, J., Tang, J., Song, J., Li, Y., & Yu, G. (2025). Engineering Performance and Mechanism of Alkali-Activated Ground Granulated Blast Furnace Slag–Zeolite Powder Grouting Materials. Applied Sciences, 15(6), 3345. https://doi.org/10.3390/app15063345