Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = NRF2-inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2100 KB  
Review
Next-Generation Antioxidants in Cardiovascular Disease: Mechanistic Insights and Emerging Therapeutic Strategies
by Desh Deepak Singh, Dharmendra Kumar Yadav and Dongyun Shin
Antioxidants 2026, 15(2), 164; https://doi.org/10.3390/antiox15020164 - 25 Jan 2026
Viewed by 545
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide. CVDs are associated with multiple factors, including oxidative stress, mediated endothelial dysfunction, vascular inflammation, and atherothrombosis. Although traditional antioxidant supplementation (such as vitamins C, E, and β-carotene) has shown promising results in rigorous [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide. CVDs are associated with multiple factors, including oxidative stress, mediated endothelial dysfunction, vascular inflammation, and atherothrombosis. Although traditional antioxidant supplementation (such as vitamins C, E, and β-carotene) has shown promising results in rigorous animal model studies, it has consistently failed to demonstrate clinical benefit in most human trials. Consequently, there is a substantial unmet need for novel paradigms involving mechanistically and biologically relevant pharmaceutical-grade antioxidant therapies (“next-generation antioxidants”). Rapid advancements in redox biology, nanotechnology, genetic modulation of redox processes, and metabolic regulation have enabled the development of new antioxidant therapeutics, including mitochondrial-targeted agents, NADPH oxidase (NOX) inhibitors, selenoprotein and Nrf2 activators, engineered nanoparticles, catalytic antioxidants, and RNA-based and gene-editing strategies. These interventions have the potential to modulate specific oxidative pathways that contribute to CVD pathogenesis. This review provides a comprehensive assessment of current oxidative stress–modulating modalities and their potential to inform personalized cardiovascular prevention and treatment strategies. Full article
Show Figures

Figure 1

17 pages, 7276 KB  
Article
Febuxostat Improves MASLD in Male Rats: Roles of XOR Inhibition and Associated JNK/NRF2/HO-1 Pathway Changes
by Zhiyu Pu, Yangyang Cen, Bowen Yang, Kaijun Xing, Linxi Lian, Xi Chi, Jianjun Yang and Yannan Zhang
Int. J. Mol. Sci. 2026, 27(2), 1069; https://doi.org/10.3390/ijms27021069 - 21 Jan 2026
Viewed by 155
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD. [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD. However, the efficacy and underlying mechanisms of febuxostat in this context remain to be elucidated. Against this background, the present study aimed to observe the effect of febuxostat on the physiological changes of male MASLD rats and explore the related mechanisms. All rats were assigned to three groups: control, high-fat diet (HF), and high-fat diet with febuxostat (HF + F). After euthanasia, biosamples were immediately harvested to conduct an extensive suite of experiments, encompassing histological examination, assessment of biochemical and oxidative stress markers, serum non-targeted metabolomics, and Western blot analysis. Histological examination showed marked reductions in hepatic lipid accumulation and hepatocellular degeneration in the HF + F group relative to the HF group. Consistently, compared to the HF group, the HF + F group showed significant reductions in the elevated levels of plasma/hepatic lipids, and plasma oxidative stress markers (p < 0.05). Serum metabolomics revealed distinct metabolic profiles among groups, with 51 differential metabolites between HF + F and HF groups, with pathways such as taurine and hypotaurine metabolism and starch and sucrose metabolism being significantly altered (p < 0.05). Western blot analysis showed reduced p-JNK and increased NRF2 and HO-1 expression in the HF + F group (p < 0.05). In summary, we found that inhibiting XOR with febuxostat improved hepatic steatosis, serum metabolic dysregulation and systemic oxidative stress status, and it accompanied by JNK/NRF2/HO-1 pathway key molecule protein alterations in male MASLD rats. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

55 pages, 778 KB  
Review
Oxidative Stress and SIRT1-Nrf2 Anti-Ferroptotic Pathways in Granulosa Cells: A Molecular Key to Follicular Atresia and Ovarian Aging
by Charalampos Voros, Fotios Chatzinikolaou, Georgios Papadimas, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Ioannis Papapanagiotou, Charalampos Tsimpoukelis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 950; https://doi.org/10.3390/ijms27020950 - 18 Jan 2026
Viewed by 287
Abstract
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, [...] Read more.
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, reduced metabolic support for oocytes, and the activation of regulated apoptotic pathways that end in follicular atresia. Ferroptosis, an emergent type of iron-dependent lipid peroxidation, has been identified as a crucial mechanism contributing to chemotherapy-induced ovarian insufficiency, polycystic ovary syndrome (PCOS), and granulosa cell death in aging ovaries, in addition to conventional apoptosis. The SIRT1-Nrf2 axis acts as a crucial anti-oxidative and anti-ferroptotic system that protects GC viability, maintains mitochondrial homeostasis, and upholds redox equilibrium. SIRT1 promotes mitochondrial biogenesis and metabolic resilience by deacetylating downstream proteins, including FOXO3 and PGC-1α. Nrf2 simultaneously controls the transcriptional activation of detoxifying and antioxidant enzymes, including HO-1, SOD2, NQO1, and GPX4, which are critical inhibitors of ferroptosis. Disruption of SIRT1-Nrf2 signalling accelerates GC senescence, follicular depletion, and reproductive aging. In contrast, pharmaceutical and nutraceutical therapies, including metformin, melatonin, resveratrol, and agents that increase NAD+ levels, may reverse ovarian deterioration and reactivate SIRT1-Nrf2 activity. This narrative review highlights innovative treatment prospects for ovarian aging, fertility preservation, and assisted reproduction by synthesising current evidence on ferroptotic pathways, SIRT1-Nrf2 interactions, and oxidative stress in granulosa cells. An understanding of these interrelated biological networks enables the development of tailored therapies that postpone ovarian ageing and enhance reproductive outcomes for women receiving fertility therapy. Full article
(This article belongs to the Special Issue Molecular Studies in Endocrinology and Reproductive Biology)
Show Figures

Figure 1

20 pages, 8787 KB  
Article
Crocins Ameliorate Experimental Immune Checkpoint Inhibitor-Related Myocarditis by Targeting the Hpx/Nrf2/HO-1 Pathway
by Jing Yan, Qingqing Cai, Yu Li, Yi Zhang, Ye Zhao, Fangbo Zhang and Huamin Zhang
Int. J. Mol. Sci. 2026, 27(2), 911; https://doi.org/10.3390/ijms27020911 - 16 Jan 2026
Viewed by 254
Abstract
Immune checkpoint inhibitors (ICIs) for cancer therapy may induce immune-related adverse events including myocarditis, which occurs infrequently but carries a high mortality rate. Crocins are the active constituents derived from Crocus sativus L. (saffron), and have demonstrated various bioactivities including anti-tumor, anti-inflammation, antioxidation, [...] Read more.
Immune checkpoint inhibitors (ICIs) for cancer therapy may induce immune-related adverse events including myocarditis, which occurs infrequently but carries a high mortality rate. Crocins are the active constituents derived from Crocus sativus L. (saffron), and have demonstrated various bioactivities including anti-tumor, anti-inflammation, antioxidation, anti-ischemia, anti-aging, and neuroprotective effects. This study established a subcutaneous xenotransplanted tumor model of human liver cancer in nude mice to better mimic ICI-related myocarditis. Animal experimental results revealed that crocins improved cardiac function, relieved myocardial damage and autoimmune response, and suppressed oxidative stress and inflammatory reaction. Quantitative proteomics and Western blotting verification confirmed that crocins ameliorated experimental ICI-related myocarditis by targeting the Hpx/Nrf2/HO-1 pathway. Molecular docking revealed that the best docking activities were demonstrated by crocin I–HO-1, crocin II–Hpx, and crocin III–Nrf2. These findings shed new light on the development of therapeutic strategies for treating ICI-related myocarditis and provided the fundamental basis for expanding the clinical application of crocins. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 2935 KB  
Review
The Double Face of Microglia in the Brain
by Moisés Rubio-Osornio, Carmen Rubio, Maximiliano Ganado and Héctor Romo-Parra
Neuroglia 2026, 7(1), 3; https://doi.org/10.3390/neuroglia7010003 - 2 Jan 2026
Viewed by 835
Abstract
The microglia, first identified by Pío del Río-Hortega, are resident macrophages in the CNS that aid in immune monitoring, synaptic remodeling, and tissue repair. Microglial biology’s dual functions in maintaining homeostasis and contributing to neurodegeneration are examined in this review, with a focus [...] Read more.
The microglia, first identified by Pío del Río-Hortega, are resident macrophages in the CNS that aid in immune monitoring, synaptic remodeling, and tissue repair. Microglial biology’s dual functions in maintaining homeostasis and contributing to neurodegeneration are examined in this review, with a focus on neurodegenerative disease treatment targets. Methods: We reviewed microglial research using single-cell transcriptomics, molecular genetics, and neuroimmunology to analyze heterogeneity and activation states beyond the M1/M2 paradigm. Results: Microglia maintains homeostasis through phagocytosis, trophic factor production, and synaptic pruning. They acquire activated morphologies in pathological conditions, releasing proinflammatory cytokines and reactive oxygen species via NF-κB, MAPK, and NLRP3 signaling. Single-cell investigations show TREM2 and APOE-expressing disease-associated microglia (DAM) in neurodegenerative lesions. Microglial senescence, mitochondrial failure, and chronic inflammation result from Nrf2/Keap1 redox pathway malfunction in ageing. Microglial interactions with astrocytes via IL-1α, TNF-α, and C1q result in neurotoxic or neuroprotective A2 astrocytes, demonstrating linked glial responses. Microglial inflammatory or reparative responses are influenced by epigenetic and metabolic reprogramming, such as regulation of PGC-1α, SIRT1, and glycolytic flux. Microglia are essential to neuroprotection and neurodegeneration. TREM2 agonists, NLRP3 inhibitors, and epigenetic modulators can treat chronic neuroinflammation and restore CNS homeostasis in neurodegenerative illnesses by targeting microglial signaling pathways. Full article
Show Figures

Figure 1

25 pages, 1154 KB  
Review
Phagocyte NADPH Oxidase NOX2-Derived Reactive Oxygen Species in Antimicrobial Defense: Mechanisms, Regulation, and Therapeutic Potential—A Narrative Review
by George Țocu, Bogdan Ioan Ștefănescu, Loredana Stavăr Matei and Lavinia Țocu
Antioxidants 2026, 15(1), 55; https://doi.org/10.3390/antiox15010055 - 31 Dec 2025
Viewed by 695
Abstract
ROS derived from NADPH oxidase, particularly NOX2, are central to antimicrobial defense, coupling direct pathogen killing with redox signaling that shapes inflammation. This narrative review integrates recent advances on NOX2 structure, assembly, and spatiotemporal control in phagocytes, and outlines how ROS interact with [...] Read more.
ROS derived from NADPH oxidase, particularly NOX2, are central to antimicrobial defense, coupling direct pathogen killing with redox signaling that shapes inflammation. This narrative review integrates recent advances on NOX2 structure, assembly, and spatiotemporal control in phagocytes, and outlines how ROS interact with NF-κB, MAPK, and Nrf2 networks to coordinate microbicidal activity and immune modulation. We summarize evidence that both ROS deficiency, as in chronic granulomatous disease, and uncontrolled excess, as in sepsis and severe COVID-19, drive clinically significant pathology, emphasizing the need for precise redox balance. Emerging therapeutic strategies include selective NOX2 inhibitors that limit pathological oxidative bursts, redox-modulating peptides that disrupt upstream activation cues, and Nrf2 activators that enhance endogenous antioxidant capacity, with attention to dosing challenges that preserve host defense while mitigating tissue injury. Key gaps remain in biomarker standardization, real-time in vivo ROS monitoring, and translation from animal models to patients, motivating personalized, combination approaches to redox medicine in infectious diseases. Full article
Show Figures

Figure 1

35 pages, 3144 KB  
Review
Ferroptosis-Mediated Cell-Specific Damage: Molecular Cascades and Therapeutic Breakthroughs in Diabetic Retinopathy
by Yan Chen, Rongyu Wang, Nannan Zhang and Liangzhi Xu
Antioxidants 2026, 15(1), 1; https://doi.org/10.3390/antiox15010001 - 19 Dec 2025
Viewed by 853
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients, involves complex pathological mechanisms including neurodegeneration, microvascular damage, inflammation, and oxidative stress. Recent studies have identified ferroptosis—a ferrodependent cell death mechanism—as playing a pivotal role in DR development. Existing evidence indicates [...] Read more.
Diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients, involves complex pathological mechanisms including neurodegeneration, microvascular damage, inflammation, and oxidative stress. Recent studies have identified ferroptosis—a ferrodependent cell death mechanism—as playing a pivotal role in DR development. Existing evidence indicates that oxidative stress and mitochondrial dysfunction induced by hyperglycemia may contribute to retinal damage through the ferroptosis pathway in DR. Ferroptosis inhibitors such as Ferostatin-1 have demonstrated protective effects against DR in animal models. The core mechanisms of ferroptosis involve iron homeostasis imbalance and lipid peroxidation, with key regulatory pathways including GPX4-dependent and non-dependent mechanisms (such as FSP1-CoQ10). Within the signaling network, Nrf2 inhibits ferroptosis, p53 promotes it, while Hippo/YAP functions are environment-dependent. Non-coding RNAs and epigenetic modifications (e.g., DNA methylation and histone modifications) also participate in regulation. In DR, iron overload, GPX4 dysfunction, and p53 upregulation collectively induce ferroptosis in various types of retinal cells, making these pathways potential therapeutic targets. This review not only elaborates the role of iron metabolism imbalance and ferroptosis pathway in the occurrence and development of DR but also summarizes the new therapeutic approaches of DR targeting ferroptosis pathway. Investigating the relationship between ferroptosis and DR not only helps unravel its core pathophysiological mechanisms but also provides theoretical foundations for developing novel therapeutic approaches. Full article
Show Figures

Figure 1

22 pages, 711 KB  
Review
Effects of the Pharmacological Modulation of NRF2 in Cancer Progression
by Santiago Gelerstein-Claro, Gabriel Méndez-Valdés and Ramón Rodrigo
Medicina 2025, 61(12), 2224; https://doi.org/10.3390/medicina61122224 - 16 Dec 2025
Viewed by 641
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) orchestrates redox balance, metabolism, and cellular stress responses, acting as both a tumor suppressor and promoter depending on the disease stage. In advanced cancers, persistent NRF2 activation—through KEAP1/NFE2L2 mutations or oxidative adaptation—drives epithelial-to-mesenchymal transition, metabolic reprogramming, [...] Read more.
Nuclear factor erythroid 2-related factor 2 (NRF2) orchestrates redox balance, metabolism, and cellular stress responses, acting as both a tumor suppressor and promoter depending on the disease stage. In advanced cancers, persistent NRF2 activation—through KEAP1/NFE2L2 mutations or oxidative adaptation—drives epithelial-to-mesenchymal transition, metabolic reprogramming, and immune evasion, promoting tumor invasion (T) and metastasis (M). Recent pharmacologic efforts seek to exploit this duality. NRF2 inhibitors such as brusatol, halofuginone, and ML385 suppress NRF2 transcriptional activity or disrupt DNA binding, reducing motility, invasion, and metastatic dissemination in preclinical models. In contrast, NRF2 activators, such as bardoxolone methyl (CDDO-Me), sulforaphane, and dimethyl fumarate, exhibit chemopreventive effects by enhancing detoxification and mitigating oxidative DNA damage during early tumorigenesis. Furthermore, metabolic interventions, such as glutaminase or G6PD inhibitors, target NRF2-driven anabolic and antioxidant pathways essential for metastatic fitness. Therefore, understanding the temporal and contextual effects of NRF2 signaling is crucial for therapeutic design. The aim of this review is to examine how pharmacological modulation of NRF2 influences the invasive and metastatic dimensions of tumor progression, in addition to discussing its potential integration into TNM-based prognostic and treatment frameworks. Full article
(This article belongs to the Special Issue Pharmacological Modulation of NRF2)
Show Figures

Figure 1

19 pages, 2958 KB  
Article
Iloprost, a Prostacyclin Analogue, Alleviates Oxidative Stress and Improves Development of Parthenogenetic Porcine Embryos via Nrf2/Keap1 Signaling
by Eun Young Choi, Kyungjun Uh, Seol-Bin Lee, Pil-Soo Jeong, Hyo-Gu Kang, Se-Been Jeon, Ji Hyeon Yun, Hee-Chang Son, Kyung-Seob Lim, You Jeong An, Sun-Uk Kim, Seong-Keun Cho and Bong-Seok Song
Antioxidants 2025, 14(12), 1493; https://doi.org/10.3390/antiox14121493 - 12 Dec 2025
Viewed by 497
Abstract
Background: Prostacyclin (PGI2), an abundantly produced bioactive lipid by oviductal epithelial cells, supports preimplantation embryo development by buffering oxidative stress. However, the mechanism linking PGI2 signaling to embryonic redox control remains unclear. We investigated whether Iloprost (Ilo), a stable PGI [...] Read more.
Background: Prostacyclin (PGI2), an abundantly produced bioactive lipid by oviductal epithelial cells, supports preimplantation embryo development by buffering oxidative stress. However, the mechanism linking PGI2 signaling to embryonic redox control remains unclear. We investigated whether Iloprost (Ilo), a stable PGI2 analogue, enhances preimplantation embryo development by alleviating oxidative stress via activation of the Nrf2/Keap1 pathway, and whether these effects depend on Nrf2 activity using the inhibitor brusatol. Methods: Porcine embryos were treated with Ilo to model oviductal PGI2 signaling during in vitro culture. Developmental competence was evaluated by cleavage and blastocyst formation rates, and blastocyst quality by total cell number and TUNEL assays. Oxidative status was quantified by fluorescence detection of reactive oxygen species (ROS), and Nrf2 activation was assessed by nuclear localization and antioxidant-related gene expression. Results: Embryos treated with Ilo showed significantly increased blastocyst formation, reduced ROS, and upregulated antioxidant genes. Immunofluorescence confirmed increased nuclear translocation of Nrf2, indicating activation of the Nrf2/Keap1 signaling pathway. In contrast, embryos treated with brusatol showed reduced blastocyst formation, increased ROS, and downregulated antioxidant-related gene expression, whereas co-treatment with Ilo reversed these effects. Conclusions: This study demonstrates that PGI2 protects embryos by activating Nrf2/Keap1 signaling, establishing this axis as a key antioxidant defense during embryonic development and highlighting its potential to improve embryo culture systems. Full article
Show Figures

Figure 1

25 pages, 3479 KB  
Review
Antidiabetic Agents as Antioxidant and Anti-Inflammatory Therapies in Neurological and Cardiovascular Diseases
by Snehal Raut and Luca Cucullo
Antioxidants 2025, 14(12), 1490; https://doi.org/10.3390/antiox14121490 - 12 Dec 2025
Viewed by 1832
Abstract
Neurological disorders and cardiovascular disease (CVD) remain leading causes of global morbidity and mortality and often coexist, in part through shared mechanisms of chronic inflammation and oxidative stress. Neuroinflammatory signaling, including microglial activation, cytokine release, and impaired autonomic regulation, contributes to endothelial dysfunction, [...] Read more.
Neurological disorders and cardiovascular disease (CVD) remain leading causes of global morbidity and mortality and often coexist, in part through shared mechanisms of chronic inflammation and oxidative stress. Neuroinflammatory signaling, including microglial activation, cytokine release, and impaired autonomic regulation, contributes to endothelial dysfunction, atherosclerosis, hypertension, and stroke, while cardiac and metabolic disturbances can reciprocally exacerbate brain pathology. Increasing evidence shows that several antidiabetic agents exert pleiotropic anti-inflammatory and antioxidant effects that extend beyond glycemic control. Metformin, SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 receptor agonists modulate key pathways such as AMPK, NF-κB, Nrf2 activation, and NLRP3 inflammasome suppression, with demonstrated vascular and neuroprotective actions in preclinical models. Clinically, GLP-1 receptor agonists and SGLT2 inhibitors reduce major cardiovascular events, improve systemic inflammatory markers, and show emerging signals for cognitive benefit, while metformin and DPP-4 inhibitors exhibit supportive but less robust evidence. This review synthesizes molecular, preclinical, and clinical data across drug classes, with particular emphasis on GLP-1 receptor agonists, and highlights outstanding translational questions including blood–brain barrier penetration, biomarker development, optimal patient selection, and timing of intervention. We propose a unified framework to guide future trials aimed at leveraging antidiabetic therapies such as DDP-4 anti-inflammatory and antioxidant interventions for neurological and cardiovascular diseases. Full article
Show Figures

Figure 1

24 pages, 9129 KB  
Article
Soloxolone N-3-(Dimethylamino)propylamide Suppresses Tumor Growth and Mitigates Doxorubicin-Induced Hepatotoxicity in RLS40 Lymphosarcoma-Bearing Mice
by Arseny D. Moralev, Aleksandra V. Sen’kova, Alina A. Firsova, Daria E. Solomina, Artem D. Rogachev, Oksana V. Salomatina, Nariman F. Salakhutdinov, Marina A. Zenkova and Andrey V. Markov
Int. J. Mol. Sci. 2025, 26(24), 11912; https://doi.org/10.3390/ijms262411912 - 10 Dec 2025
Viewed by 392
Abstract
Multidrug resistance (MDR) remains a significant obstacle to effective cancer chemotherapy, primarily due to overexpression of P-glycoprotein (P-gp), which reduces intracellular accumulation of cytotoxic drugs. This study evaluated the pharmacological potential of the glycyrrhetinic acid derivative soloxolone N-3-(dimethylamino)propylamide (Sol-DMAP) as a biocompatible P-gp [...] Read more.
Multidrug resistance (MDR) remains a significant obstacle to effective cancer chemotherapy, primarily due to overexpression of P-glycoprotein (P-gp), which reduces intracellular accumulation of cytotoxic drugs. This study evaluated the pharmacological potential of the glycyrrhetinic acid derivative soloxolone N-3-(dimethylamino)propylamide (Sol-DMAP) as a biocompatible P-gp inhibitor with hepatoprotective properties. Using a murine model of P-gp-overexpressing RLS40 lymphosarcoma, we demonstrated that Sol-DMAP significantly enhanced the antitumor efficacy of doxorubicin (DOX) by increasing its intratumoral concentration 4.7-fold without enhancing systemic toxicity. Independently, Sol-DMAP exhibited direct antitumor activity, reducing tumor growth in vivo and inducing apoptosis and G1-phase arrest in RLS40 cells in vitro. In addition, Sol-DMAP mitigated DOX-induced hepatic injury by reducing necrotic and dystrophic changes in liver tissue and restoring heme oxygenase 1 (Hmox1) expression. Further studies in HepG2 cells confirmed that Sol-DMAP activated the NRF2-dependent antioxidant response, upregulating HMOX1, GCLC, GCLM, and NQO1 genes. Molecular docking revealed that Sol-DMAP can disrupt the KEAP1-NRF2 interaction, likely leading to NRF2 activation. Collectively, these findings demonstrate that Sol-DMAP effectively reverses P-gp-mediated MDR while protecting the liver from oxidative stress, highlighting its potential as a multifunctional scaffold for the development of safer and more effective chemotherapeutic adjuvants. Full article
Show Figures

Figure 1

28 pages, 1093 KB  
Review
Targeting Ferroptosis in Nasopharyngeal Carcinoma: Mechanisms, Resistance, and Precision Therapeutic Opportunities
by Jaewang Lee and Jong-Lyel Roh
Int. J. Mol. Sci. 2025, 26(23), 11439; https://doi.org/10.3390/ijms262311439 - 26 Nov 2025
Viewed by 1177
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck malignancy strongly associated with Epstein–Barr virus (EBV) infection and characterized by high radiosensitivity but frequent therapy resistance. Despite advances in radiotherapy, chemotherapy, and immunotherapy, relapse and metastasis remain major challenges, underscoring the need for novel [...] Read more.
Nasopharyngeal carcinoma (NPC) is a head and neck malignancy strongly associated with Epstein–Barr virus (EBV) infection and characterized by high radiosensitivity but frequent therapy resistance. Despite advances in radiotherapy, chemotherapy, and immunotherapy, relapse and metastasis remain major challenges, underscoring the need for novel therapeutic approaches. This review aims to provide an integrated overview of the molecular mechanisms governing ferroptosis in NPC and to clarify how these pathways contribute to therapy resistance while revealing potential therapeutic vulnerabilities. Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a promising target in NPC. Core regulators include the system xCT–GSH–GPX4 antioxidant axis, iron metabolism, and lipid remodeling enzymes such as ACSL4, with epigenetic modifiers (METTL3, IGF2BP2, HOXA9) and EBV-driven signaling further shaping ferroptosis responses. EBV-driven oncogenic programs substantially reshape ferroptosis sensitivity in NPC by activating the Nrf2/Keap1 antioxidant axis, stabilizing SLC7A11 and GPX4, and modulating iron and redox metabolism. These viral mechanisms suppress ferroptotic stress and contribute to both radioresistance and chemoresistance. Suppression of ferroptosis underlies both radioresistance and chemoresistance, whereas restoration of ferroptosis re-sensitizes tumors to treatment. Natural compounds including solasodine, berberine, cucurbitacin B, and celastrol-curcumin combinations, as well as pharmacologic modulators such as HO-1 inhibitors and GPX4 antagonists, have shown ferroptosis-inducing effects in preclinical models, although their translational potential remains to be clarified. Nanotechnology-based platforms (e.g., Bi2Se3 nanosheet hydrogels) further enhance efficacy and reduce toxicity by enabling controlled drug delivery. Biomarker discovery, encompassing ferroptosis-related gene signatures, epigenetic regulators, immune infiltration patterns, EBV DNA load, and on-treatment redox metabolites, provides a foundation for patient stratification. Integration of ferroptosis modulation with radiotherapy, chemotherapy, and immunotherapy represents a compelling strategy to overcome therapy resistance. In synthesizing these findings, this review highlights both the mechanistic basis and the translational promise of ferroptosis modulation as a strategy to overcome treatment resistance in NPC. Future directions include biomarker validation, optimization of drug delivery, early-phase clinical trial development, and multidisciplinary collaboration to balance ferroptosis induction in tumors while protecting normal tissues. Collectively, ferroptosis is emerging as both a vulnerability and a therapeutic opportunity for improving outcomes in NPC. Full article
Show Figures

Figure 1

17 pages, 6186 KB  
Article
5-Hydroxymethylfurfural Alleviates Lipopolysaccharide-Induced Depression-like Behaviors by Suppressing Hypothalamic Oxidative Stress and Regulating Neuroinflammation in Mice
by Bailiu Ya, Haiyan Yin, Lili Yuan, Aihong Jing, Yuxuan Li, Fenglian Yan, Hui Zhang, Huabao Xiong and Mingsheng Zhao
Antioxidants 2025, 14(11), 1366; https://doi.org/10.3390/antiox14111366 - 17 Nov 2025
Cited by 1 | Viewed by 871
Abstract
5-hydroxymethylfurfural (5-HMF) has been shown to exert neuroprotective effects in a global cerebral ischemia mouse model in our previous study, where it demonstrated antioxidant and anti-inflammatory properties. However, studies on its antidepressant mechanisms remain scarce. Since oxidative stress and neuroinflammation are closely associated [...] Read more.
5-hydroxymethylfurfural (5-HMF) has been shown to exert neuroprotective effects in a global cerebral ischemia mouse model in our previous study, where it demonstrated antioxidant and anti-inflammatory properties. However, studies on its antidepressant mechanisms remain scarce. Since oxidative stress and neuroinflammation are closely associated with depression, this study investigated the antidepressant effects of 5-HMF, focusing on its potential inhibition of oxidative stress via the Nrf2 pathway and its role in microglial M1 polarization-mediated neuroinflammation. An acute depression mouse model induced by intraperitoneal injection of lipopolysaccharide (LPS) was utilized. Mice received 5-HMF (12 mg/kg) or an equal volume of vehicle via intraperitoneal injection 30 min prior to and 5 min after LPS administration. At 24 h post-modeling, behavioral tests (sucrose preference, forced swim, and open field tests) were conducted to evaluate the antidepressant effect of 5-HMF. Histological damage in the hypothalamus was assessed using Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Immunofluorescence was performed to evaluate M1 polarization of hypothalamic microglia. Oxidative stress damage was assessed by measuring malondialdehyde (MDA), carbonyl groups, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. Nrf2 DNA-binding activity was examined using an ELISA-based assay. The expression of inflammatory cytokines, Nrf2, and downstream antioxidant proteins was analyzed by ELISA kits and Western blotting. 5-HMF significantly alleviated LPS-induced depression-like behaviors, reduced hypothalamic neuronal damage, decreased oxidative stress, and inhibited microglial M1 polarization. It also regulated the expression of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-4, and IL-10) and activated the Nrf2 signaling pathway, enhancing nuclear translocation efficiency. Notably, these effects were significantly attenuated by the Nrf2 inhibitor brusatol. In conclusion, 5-HMF exerts neuroprotective effects by modulating Nrf2-mediated oxidative stress responses and suppressing microglial M1 polarization-driven neuroinflammation. These findings suggest that 5-HMF may provide therapeutic potential for alleviating depression symptoms induced by acute inflammation. Full article
Show Figures

Figure 1

21 pages, 3084 KB  
Article
Targeting SIRT-1/AMPK/Nrf2 Signaling Pathway by Tenofovir Protected Against Cyclophosphamide-Induced Nephrotoxicity and Cardiotoxicity in Rats
by Yousef S. Alresheedi, Omnia A. Nour, Manar A. Nader and Marwa S. Zaghloul
Pharmaceutics 2025, 17(11), 1467; https://doi.org/10.3390/pharmaceutics17111467 - 13 Nov 2025
Cited by 1 | Viewed by 685
Abstract
Background/Objectives: Cyclophosphamide (CYC) is a commonly used alkylating agent for treating various cancers and autoimmune disorders. However, its use is often hampered by serious side effects, affecting multiple organs. This study aimed to explore whether tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, [...] Read more.
Background/Objectives: Cyclophosphamide (CYC) is a commonly used alkylating agent for treating various cancers and autoimmune disorders. However, its use is often hampered by serious side effects, affecting multiple organs. This study aimed to explore whether tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, could offer protective benefits against CYC-induced organ toxicity in rats. Methods: Two different TFV doses (25 and 50 mg/kg) were tested. The researchers evaluated the effects of TFV on kidney and heart function biomarkers, oxidative stress, autophagy, apoptosis, and inflammatory markers. Results: The results showed that pre-treatment with TFV significantly reduced the harmful effects of CYC, as evidenced by decreasing the activity of serum lactate dehydrogenase (LDH) and creatine kinase-myocardial band (CK-MB), and the levels of serum creatinine (Cr.), blood urea nitrogen (BUN), and malondialdehyde (MDA). TFV also boosted antioxidant defenses by increasing the expression of key proteins such as Nrf2/HO-1, AMPK, and SIRT1. Also, TFV regulated inflammatory and apoptotic pathways (revealed by reducing IL-1β level and increasing Bcl-2 level) and improved autophagy (showed by reducing LC3 expression). Conclusions: Overall, these findings suggested that TFV has strong protective effects against CYC-induced organ toxicity, likely through its anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. This points to TFV as a potential therapeutic agent to help mitigate the organ damage caused by CYC. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

26 pages, 3160 KB  
Review
Gut Microbiota and Ferroptosis in Colorectal Cancer: A Comprehensive Review of Mechanisms and Therapeutic Strategies to Overcome Immune Checkpoint Resistance
by Yingchang Cai, Feng Zhao and Xiaofei Cheng
Biomolecules 2025, 15(11), 1546; https://doi.org/10.3390/biom15111546 - 3 Nov 2025
Cited by 1 | Viewed by 1881
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) tumors—derive little benefit from current immunotherapies. Ferroptosis, an iron-dependent form of regulated cell death driven by lethal accumulation of lipid peroxides, has emerged as a promising antitumor mechanism that can interact with and modulate antitumor immunity. Concurrently, the gut microbiota exerts powerful control over host metabolism and immune tone through microbial community structure and metabolite production; accumulating evidence indicates that microbiota-derived factors can either sensitize tumors to ferroptosis (for example, via short-chain fatty acids) or confer resistance (for example, indole-3-acrylic acid produced by Peptostreptococcus anaerobius acting through the AHR→ALDH1A3→FSP1/CoQ axis). In this review we synthesize mechanistic data linking microbial ecology, iron and lipid metabolism, and immune regulation to ferroptotic vulnerability in CRC. We discuss translational strategies to exploit this “microbiota–ferroptosis” axis—including precision microbiome modulation, dietary interventions, pharmacologic ferroptosis inducers, and tumor-targeted delivery systems—and we outline biomarker frameworks and trial designs to evaluate combinations with ICIs. We also highlight major challenges, such as interindividual microbiome variability, potential collateral harm to ferroptosis-sensitive immune cells, adaptive antioxidant compensation (e.g., NRF2/FSP1 activation), and safety/regulatory issues for live biotherapeutics. In summary, this review highlights that targeting the microbiota-ferroptosis axis may represent a rational and potentially transformative approach to reprogramming the tumor microenvironment and overcoming immune checkpoint resistance in pMMR/MSS colorectal cancer; however, further research is essential to validate this concept and address existing challenges. Full article
Show Figures

Figure 1

Back to TopTop