Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = NOx and SOx removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6872 KiB  
Article
Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
by Saad S. M. Hassan, Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour and Mahmoud Abdelwahab Fathy
Polymers 2025, 17(11), 1447; https://doi.org/10.3390/polym17111447 - 23 May 2025
Viewed by 509
Abstract
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m [...] Read more.
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m-phenylene isophthalamide) (Nomex) fabric loaded with a thin layer of activated carbon. The optimized filter, with an activated carbon mass of 2.89 mg/cm2, a thickness of 4.8 mm, and an air permeability of 0.5 cm3/cm2/s, was tested. A simple homemade sampling device equipped with solid-state electrochemical sensors to monitor the concentration levels of CO2 before and after filtration of the emissions was utilized. The data were transmitted via a General Packet Radio Service (GPRS) link to an Internet of Things (IoT)-based gas monitoring system for remote management, and real-time data visualization. The proposed device achieved a 70 ± 3.4% CO2-removal efficiency within 7 min of operation. Characterization of the filter was conducted using a high-resolution scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET) analysis. The effects of loaded activated carbon mass, fabric type, filter porosity, gaseous removal time, and adsorption kinetics were also examined. The proposed filter displayed several advantages, including simplicity, compactness, dry design, ease of regeneration, scalability, durability, low cost, and good efficiency. Heat resistance, fire retardancy, mechanical stability, and the ability to remove other gasoline combustion products such as CO, SOx, NOx, VOCs, and particulates were also offered. The filtration system enabled both in situ and on-line CO2 real-time continuous emission monitoring. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

43 pages, 1332 KiB  
Review
Bioremediation of Smog: Current Trends and Future Perspectives
by Isha, Shakir Ali, Ammara Khalid, Ifrah Amjad Naseer, Hassan Raza and Young-Cheol Chang
Processes 2024, 12(10), 2266; https://doi.org/10.3390/pr12102266 - 17 Oct 2024
Cited by 1 | Viewed by 6901
Abstract
Air pollution has become one of the biggest problems throughout the world. Smog has a severe effect on the pulmonary and circulatory systems, which causes a significant number of deaths globally. Therefore, the remediation of air pollutants to maintain ecosystem processes and functions [...] Read more.
Air pollution has become one of the biggest problems throughout the world. Smog has a severe effect on the pulmonary and circulatory systems, which causes a significant number of deaths globally. Therefore, the remediation of air pollutants to maintain ecosystem processes and functions and to improve human health is a crucial problem confronting mankind today. This review aims to discuss the health effects of smog on humans. This review will also focus on the bioremediation of air pollution (smog) using bacteria, fungi, phytoremediation, nanotechnology, and phylloremediation (using plants and microbes). Phylloremediation is the most effective technology for removing air pollution naturally. The future perspective presents a great need to produce an ecosystem where microbes, plants, and nanoparticles synergistically control smog. In addition, further advancements would be needed to modify the genetic makeup of microbes and plants. Biotechnological approaches like CRISPR-Cas9 can be applied to the editing and cutting of specific genes responsible for the bioremediation of VOCs, NOx, SOx, and harmful hydrocarbons. The extracted genes can then be expressed in biologically modified microorganisms and plants for the enhanced bioremediation of smog. Full article
(This article belongs to the Special Issue Advanced Biodegradation Technologies for Environmental Pollutants)
Show Figures

Graphical abstract

13 pages, 899 KiB  
Article
Mercury Concentrations in Dust from Dry Gas Cleaning of Sinter Plant and Technical Removal Options
by Claudia Hledik, Yilan Zeng, Tobias Plattner and Maria Fuerhacker
Water 2024, 16(14), 1948; https://doi.org/10.3390/w16141948 - 10 Jul 2024
Viewed by 1083
Abstract
Mercury (Hg) is a naturally occurring element and has been released through human activities over an extended period. The major source is the steel industry, especially sinter plants. During a sintering process, high amounts of dust and gaseous emission are produced. These gases [...] Read more.
Mercury (Hg) is a naturally occurring element and has been released through human activities over an extended period. The major source is the steel industry, especially sinter plants. During a sintering process, high amounts of dust and gaseous emission are produced. These gases contain high loads of SOx and NOX as well as toxic pollutants, such as heavy metals like Hg. These toxic pollutants are removed by adsorbing to solids, collected as by-products and deposited as hazardous waste. The by-products contain a high amount of salt, resulting in a high water solubility. In this study, to ultimately reduce the waste amount in landfills, leachates of the by-products have been produced. The dissolved Hg concentration and its distribution across different charges were determined. Hg concentrations between 3793 and 12,566 µg L−1 were measured in the leachates. The objective was to lower the Hg concentration in leachates by chemical precipitation with sodium sulfide (Na2S) or an organic sulfide followed by filtration. Both reagents precipitate Hg with removal rates of up to 99.6% for the organic sulfide and 99.9% for Na2S, respectively. The dose of the precipitator as well as the initial Hg concentration affected the removal rate. In addition to Hg, other relevant heavy metals have to be included in the calculation of the amount of precipitator as well. Between relevant heavy metals including Hg and sulfide, the ratio should be more than 1.5. The novelty of this study is the measurement and treatment of Hg in wastewater with a high ionic strength. The high salt concentrations did not influence the efficiency of the removal methods. An adjustment of the precipitator dose for each sample is necessary, because an overdose potentially leads to the re-dissolving of Hg. It could be shown that the emission limit of 0.005 mg L−1 could be reached especially by precipitation with Na2S. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment III)
Show Figures

Figure 1

10 pages, 2079 KiB  
Article
Development of a Novel De-NOx Technology for the Aftertreatment of Ship Exhaust Gases
by Petros G. Savva, Yiannis Fessas, Angelos M. Efstathiou and Costas N. Costa
Appl. Sci. 2023, 13(20), 11356; https://doi.org/10.3390/app132011356 - 16 Oct 2023
Cited by 2 | Viewed by 1665
Abstract
The shipping industry is the most fuel-efficient means of transporting goods, carrying more than 90% of the global freight task. Ships generally use low quality fuel to reduce costs and, as a result, the sulfur content in the exhaust gas stream is high. [...] Read more.
The shipping industry is the most fuel-efficient means of transporting goods, carrying more than 90% of the global freight task. Ships generally use low quality fuel to reduce costs and, as a result, the sulfur content in the exhaust gas stream is high. Emissions of sulfur oxides (SOx) and nitrogen oxides (NOx) from ships represent about 13% and 12%, respectively, of the global anthropogenic SOx and NOx emissions. In total, 95% of the total maritime NOx emissions are NO (nitric oxide) and 5% are NO2 (nitrogen dioxide). The present work focuses on the development and pilot operation of an advanced novel Selective Catalytic Reduction of NOx with H2 (H2-SCR) technology for the elimination of Nitrogen Oxides (NOx) emitted from ship exhaust gases. For the proper operation of the novel H2-SCR de-NOx unit, two additional conventional technologies were employed for the removal of SO2 and Particulate Matter (PM). In particular, the proposed novel H2-SCR de-NOx technology was combined with a Sea Water Absorption (SWA) unit and an oxidative catalytic system. A pilot unit has been successfully designed, assembled and implemented on a cruise ship for the abovementioned purposes. This effort is considered to be pioneering and is here attempted for the first time worldwide. It was proven, for the first time ever, that the Selective Catalytic Reduction of NOx with the use of H2 as a reducing agent in combination with a suitable catalyst can be considered a suitable NOx-pollution control technology for ships. In particular, it was found that more than 80% of NOx (to N2), 99.8% of SO2 and 72% of PM can be reduced by using the present combined SWA and H2-SCR technologies. Full article
Show Figures

Figure 1

15 pages, 3963 KiB  
Review
The Removal of CH4 and NOx from Marine LNG Engine Exhaust by NTP Combined with Catalyst: A Review
by Neng Zhu, Yu Hong, Yunkai Cai, Fei Dong and Jie Song
Materials 2023, 16(14), 4969; https://doi.org/10.3390/ma16144969 - 12 Jul 2023
Cited by 9 | Viewed by 1998
Abstract
Compared to diesel, liquefied natural gas (LNG), often used as an alternative fuel for marine engines, comes with significant advantages in reducing emissions of particulate matter (PM), SOx, CO2, and other pollutants. Promoting the use of LNG is of [...] Read more.
Compared to diesel, liquefied natural gas (LNG), often used as an alternative fuel for marine engines, comes with significant advantages in reducing emissions of particulate matter (PM), SOx, CO2, and other pollutants. Promoting the use of LNG is of great significance for achieving carbon peaking and neutrality worldwide, as well as improving the energy structure. However, compared to diesel engines, medium- and high-speed marine LNG engines may produce higher methane (CH4) emissions and also have nitrogen oxide (NOx) emission issues. For the removal of CH4 and NOx from the exhaust of marine LNG engines, the traditional technical route of combining a methane oxidation catalyst (MOC) and an HN3 selective catalytic reduction system (NH3-SCR) will face problems, such as low conversion efficiency and high operation cost. In view of this, the technology of non-thermal plasma (NTP) combined with CH4-SCR is proposed. However, the synergistic mechanism between NTP and catalysts is still unclear, which limits the optimization of an NTP-CH4-SCR system. This article summarizes the synergistic mechanism of NTP and catalysts in the integrated treatment process of CH4 and NOx, including experimental analysis and numerical simulation. And the relevant impact parameters (such as electrode diameter, electrode shape, electrode material, and barrier material, etc.) of NTP reactor energy optimization are discussed. The work of this paper is of great significance for guiding the high-efficiency removal of CH4 and NOx for an NTP-CH4-SCR system. Full article
Show Figures

Figure 1

15 pages, 4878 KiB  
Article
Numerical and Experimental Study on NOx Reduction According to the Load in the SCR System of a Marine Boiler
by Jeong-Uk Lee, Sung-Chul Hwang and Seung-Hun Han
J. Mar. Sci. Eng. 2023, 11(4), 777; https://doi.org/10.3390/jmse11040777 - 3 Apr 2023
Cited by 3 | Viewed by 2610
Abstract
Numerical analysis and experimental studies were conducted to evaluate the performance of a selective catalytic reduction (SCR) system according to the load of a 1.5-ton marine boiler. There are post-treatment methods for reducing the exhaust gas emitted from ships, such as low-sulfur oil, [...] Read more.
Numerical analysis and experimental studies were conducted to evaluate the performance of a selective catalytic reduction (SCR) system according to the load of a 1.5-ton marine boiler. There are post-treatment methods for reducing the exhaust gas emitted from ships, such as low-sulfur oil, scrubber, a desulfurization device to remove sulfur oxides (SOx) and particulate matter, an exhaust gas recirculation system, and SCR agents to reduce nitrogen oxides (NOx). Furthermore, there are methods of using eco-friendly natural gas fuels, such as liquefied natural gas (LNG), methanol, liquefied petroleum gas, and ammonia. In the case of LNG, SOx and particulate matter are hardly emitted, and only a small amount of NOx is emitted compared to an internal combustion engine. Therefore, SCR system technology that can remove NOx needs to be applied. As a result of this study, the boiler load increased, and the flow velocity through the outlet decreased. In addition, the NOx emissions of diesel fuel and LNG fuel were reduced by 100% to 0 ppm when the boiler load ratio was 50%. When the load ratio was 75%, the NOx emissions of diesel fuel were reduced by 77.4% to 40 ppm, and those of LNG fuel were reduced by 64.1% to 24 ppm. When the load ratio was 100%, the NOx emissions of diesel fuel were reduced by 66.1% to 60 ppm, and those of LNG fuel were reduced by 47.8% to 24 ppm. In addition, the results of the numerical analysis according to boiler load were almost identical to the experimental results. Finally, this study could design an optimal SCR system through numerical analysis, according to the important parameters of the SCR system. Full article
(This article belongs to the Special Issue CFD Analysis in Ocean Engineering)
Show Figures

Figure 1

12 pages, 17218 KiB  
Article
Porous Ceramics Adsorbents Based on Glass Fiber-Reinforced Plastics for NOx and SOx Removal
by Hiroyuki Kinoshita, Kentaro Yasui, Taichi Hamasuna, Toshifumi Yuji, Naoaki Misawa, Tomohiro Haraguchi, Koya Sasaki and Narong Mungkung
Polymers 2022, 14(1), 164; https://doi.org/10.3390/polym14010164 - 31 Dec 2021
Cited by 5 | Viewed by 2983
Abstract
To reuse waste glass fiber-reinforced plastics (GFRPs), porous ceramics (i.e., GFRP/clay ceramics) were produced by mixing crushed GFRP with clay followed by firing the resulting mixture under different conditions. The possibility of using ceramics fired under a reducing atmosphere as adsorbent materials to [...] Read more.
To reuse waste glass fiber-reinforced plastics (GFRPs), porous ceramics (i.e., GFRP/clay ceramics) were produced by mixing crushed GFRP with clay followed by firing the resulting mixture under different conditions. The possibility of using ceramics fired under a reducing atmosphere as adsorbent materials to remove NOx and SOx from combustion gases of fossil fuels was investigated because of the high porosity, specific surface area, and contents of glass fibers and plastic carbides of the ceramics. NO2 and SO2 adsorption tests were conducted on several types of GFRP/clay ceramic samples, and the gas concentration reduction rates were compared to those of a clay ceramic and a volcanic pumice with high NO2 adsorption. In addition, to clarify the primary factor affecting gas adsorption, adsorption tests were conducted on the glass fibers in the GFRP and GFRP carbides. The reductively fired GFRP/clay ceramics exhibited high adsorption performance for both NO2 and SO2. The primary factor affecting the NO2 adsorption of the ceramics was the plastic carbide content in the clay structure, while that affecting the SO2 adsorption of the ceramics was the glass fiber content. Full article
(This article belongs to the Special Issue Polymer Composites for Separation and Purification)
Show Figures

Figure 1

18 pages, 2307 KiB  
Article
Techno-Economic Evaluation of Co-Removal of NOx and SOx Species from Flue Gases via Enhanced Oxidation of NO by ClO2—Case Studies of Implementation at a Pulp and Paper Mill, Waste-to-Heat Plant and a Cruise Ship
by Jakob Johansson, Fredrik Normann and Klas Andersson
Energies 2021, 14(24), 8512; https://doi.org/10.3390/en14248512 - 17 Dec 2021
Cited by 8 | Viewed by 3653
Abstract
Co-absorption of NO2 and SO2 from flue gases, in combination with the enhanced oxidation of NO by ClO2(g), is studied for three different flue gas sources: a medium sized waste-to-heat plant; the kraft recovery boiler of a pulp and [...] Read more.
Co-absorption of NO2 and SO2 from flue gases, in combination with the enhanced oxidation of NO by ClO2(g), is studied for three different flue gas sources: a medium sized waste-to-heat plant; the kraft recovery boiler of a pulp and paper mill; and a cruise ship. Process modeling results are used to present the technical potential for each site together with cost estimation and optimization using a bottom-up approach. A process set-up is proposed for each site together with equipment sizing and resulting flows of process fluids. The simulation results, supported by experimental results, show that removal rates equal to or greater than current best available technologies are achievable with more than 90% of NOx and 99% of SO2 removed from the flue gas. The resulting cost of removing both NOx and SO2 from the flue gases is 2100 €/ton for the waste-to-heat plant, 800 €/ton for the cruise ship and 3900 €/ton for the recovery boiler. The cost estimation show that the consumption and cost of chemical additives will play a decisive role in the economic feasibility of the investigated concept, between 50% and 90% of the total cost per ton acid gas removed. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 2869 KiB  
Review
Recent Breakthroughs and Advancements in NOx and SOx Reduction Using Nanomaterials-Based Technologies: A State-of-the-Art Review
by Moazzam Ali, Ijaz Hussain, Irfan Mehmud, Muhammad Umair, Sukai Hu and Hafiz Muhammad Adeel Sharif
Nanomaterials 2021, 11(12), 3301; https://doi.org/10.3390/nano11123301 - 6 Dec 2021
Cited by 13 | Viewed by 6223
Abstract
Nitrogen and sulpher oxides (NOx, SOx) have become a global issue in recent years due to the fastest industrialization and urbanization. Numerous techniques are used to treat the harmful exhaust emissions, including dry, traditional wet and hybrid wet-scrubbing techniques. [...] Read more.
Nitrogen and sulpher oxides (NOx, SOx) have become a global issue in recent years due to the fastest industrialization and urbanization. Numerous techniques are used to treat the harmful exhaust emissions, including dry, traditional wet and hybrid wet-scrubbing techniques. However, several difficulties, including high-energy requirement, limited scrubbing-liquid regeneration, formation of secondary pollutants and low efficiency, limit their industrial utilization. Regardless, the hybrid wet-scrubbing technology is gaining popularity due to low-costs, less-energy consumption and high-efficiency removal of air pollutants. The removal/reduction of NOx and SOx from the atmosphere has been the subject of several reviews in recent years. The goal of this review article is to help scientists grasp the fundamental ideas and requirements before using it commercially. This review paper emphasizes the use of green and electron-rich donors, new breakthroughs, reducing GHG emissions, and improved NOx and SOx removal catalytic systems, including selective/non-catalytic reduction (SCR/SNCR) and other techniques (functionalization by magnetic nanoparticles; NP, etc.,). It also explains that various wet-scrubbing techniques, synthesis of solid iron-oxide such as magnetic (Fe3O4) NP are receiving more interest from researchers due to the wide range of its application in numerous fields. In addition, EDTA coating on Fe3O4 NP is widely used due to its high stability over a wide pH range and solid catalytic systems. As a result, the Fe3O4@EDTA-Fe catalyst is projected to be an optimal catalyst in terms of stability, synergistic efficiency, and reusability. Finally, this review paper discusses the current of a heterogeneous catalytic system for environmental remedies and sustainable approaches. Full article
Show Figures

Graphical abstract

15 pages, 5611 KiB  
Article
Experimental Investigation of the Ash Deposition Characteristics of Biomass Pretreated by Ash Removal during Co-Combustion with Sub-Bituminous Coal
by Dae-Gyun Lee, Min-Jong Ku, Kyeong-Ho Kim, Jae-Sung Kim, Seung-Mo Kim and Chung-Hwan Jeon
Energies 2021, 14(21), 7391; https://doi.org/10.3390/en14217391 - 5 Nov 2021
Cited by 12 | Viewed by 2943
Abstract
Although replacing biomass, (e.g., wood chips and pellets), with thinning wood and herbaceous biomass is eco-friendly and economically advantageous, their direct utilization in plant boilers is associated with ash-related challenges, including slagging and fouling. The aim of this study is to determine the [...] Read more.
Although replacing biomass, (e.g., wood chips and pellets), with thinning wood and herbaceous biomass is eco-friendly and economically advantageous, their direct utilization in plant boilers is associated with ash-related challenges, including slagging and fouling. The aim of this study is to determine the effects of ash removal treatment (ashless biomass (ALB)) in the context of solid fuel power plant boilers. Ash was removed via neutralization of metal ions and carboxylic acids contained in the biomass ash. The ash removal rate of K, Na, Cl was indicated by assessing the total biomass before and after ash removal treatment, via XRF analysis. Co-combustion with sub-bituminous coal and ALB-treated biomass was analyzed using a drop tube furnace and revealed that NOx and SOx values converged converge toward an approximate 10 ppm error, whereas the Unburned Carbon (UBC) data did not exhibit a specific trend. Factors associated with slagging and fouling, (capture efficiency (CE), and energy based growth rate (GRE)) were calculated. All biomass samples without pretreatment exhibited V-shaped variation. Conversely, for ashless biomass (ALB) samples, CE and GRE gradually decreased. Thus, the ALB technique may minimize slagging and fouling in a boiler, thus, reducing internal corrosion associated with ash deposition and enhancing the economic operation of boilers. Full article
Show Figures

Figure 1

11 pages, 2949 KiB  
Article
Ammonium Ion Enhanced V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with Ammonia
by Min Seong Lee, Sun-I Kim, Bora Jeong, Jin-Woo Park, Taehyo Kim, Jung Woo Lee, Gibum Kwon and Duck Hyun Lee
Nanomaterials 2021, 11(10), 2677; https://doi.org/10.3390/nano11102677 - 12 Oct 2021
Cited by 12 | Viewed by 2963
Abstract
Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following [...] Read more.
Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following exposure to SOX because of the generation of ammonium sulfate on the catalyst surface. To overcome these limitations, we coated an NH4+ layer on a vanadium-based catalyst. After silane coating the V2O5-WO3/TiO2 catalyst by vapor evaporation, the silanized catalyst was heat treated under NH3 gas. By decomposing the silane on the surface, an NH4+ layer was formed on the catalyst surface through a substitution reaction. We observed high NOX removal efficiency over a wide temperature range by coating an NH4+ layer on a vanadium-based catalyst. This layer shows high proton conductivity, which leads to the reduction of vanadium oxides and tungsten oxide; additionally, the NOX removal performance was improved over a wide temperature range. These findings provide a new mothed to develop SCR catalyst with high efficiency at a wide temperature range. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Catalytic Applications)
Show Figures

Figure 1

13 pages, 3347 KiB  
Article
The Denitration and Dedusting Behavior of Catalytic Filter and Its Industrial Application in Glass Kilns
by Lin Huangfu, Zhaohui Chen, Changming Li, Xiaolong Yao, Zhiliang Yao, Guangwen Xu, Shiqiu Gao, Xing Huang and Jian Yu
Catalysts 2020, 10(12), 1394; https://doi.org/10.3390/catal10121394 - 30 Nov 2020
Cited by 8 | Viewed by 2863
Abstract
The development of efficient materials and processes is a long-term goal for the integrated flue gas purification in industry. In this study, a large-size V-based catalytic filter (L3000 mm × Φ150 mm) was prepared by loading the catalyst emulsion into a blank filter, [...] Read more.
The development of efficient materials and processes is a long-term goal for the integrated flue gas purification in industry. In this study, a large-size V-based catalytic filter (L3000 mm × Φ150 mm) was prepared by loading the catalyst emulsion into a blank filter, which demonstrated excellent performance for simultaneously removing NOx, SOx and dust. The laboratory investigation found that the small catalytic particles, high catalyst loading and low face velocity could improve the DeNOx efficiency, and above 80% NO conversion could be achieved in the temperature range of 250–400 °C on the condition of <300 nm catalytic particle size, >7.41 wt % catalyst loading and <1.00 Nm/min face velocity. The negative effect of SO2/H2O was only observed below 300 °C, and the dust had little negative effects on DeNOx efficiency except for the increase of pressure drop. Moreover, a 90-day industrial test of 2380 catalytic filters over 100,000 Nm3/h of flue gas (0.50 Nm/min) from a glass kiln demonstrated that the removal efficiency of both NOx and SOx could be maintained above 95% with great stability at 320–350 °C, and 99% dust could be removed with a pressure drop of less than 1.40 KPa. The results reported herein indicate the promising application prospect of large-size V-based catalytic filters for integrated flue gas purification in industry. Full article
Show Figures

Figure 1

16 pages, 8274 KiB  
Article
Removal Rates of NOx, SOx, and Fine Dust Particles in Textile Fabrics Coated with Zeolite and Coconut Shell Activated Carbon
by Keun-Hyeok Yang, Ju-Hyun Mun and Jae-Uk Lee
Appl. Sci. 2020, 10(22), 8010; https://doi.org/10.3390/app10228010 - 12 Nov 2020
Cited by 3 | Viewed by 2699
Abstract
An effective dipping method for coating of textile fabrics with porous materials is proposed on the basis of the use of epoxy solution consisted of resins, crosslinkers, and dilution solutions. The removal rates of nitrogen oxides (NOx), sulfur oxides (SOx [...] Read more.
An effective dipping method for coating of textile fabrics with porous materials is proposed on the basis of the use of epoxy solution consisted of resins, crosslinkers, and dilution solutions. The removal rates of nitrogen oxides (NOx), sulfur oxides (SOx), and fine dust particles in the coated textile fabrics are accessed. The textile fabrics made of polyester are used to effectively reduce fine dust particles through static electricity. Zeolite and coconut shell activated carbon are used as porous material to reduce SOx and NOx, respectively. The effects of the epoxy content and dilution solution types on the SOx removal rate of textile fabrics coated with zeolite are evaluated to determine the optimum coating conditions. In addition, the effects of external environmental conditions, such as washing and freeze thawing, on the SOx and NOx removal rates of the textile fabrics coated with porous materials using the optimum coating conditions are examined. The test results show that the SOx removal rate of textile fabrics coated with zeolite decreases with the increase in the epoxy content. The decrease is 2.9 times larger for textile fabrics coated using deionized water than those coated using isopropyl alcohol. After one wash, the SOx removal rate decreases dramatically. However, the decrease is reduced by 16% when the epoxy content ratio is increased by 0.5%. The effects of washing and freeze thawing on the SOx and NOx removal rates of textile fabrics coated using the deionized water diluted with the epoxy content ratio of 2% are minimal. Consequently, to maintain stable SOx and NOx removal rates under external environmental conditions such as washing and freeze thawing, 98% deionized water dilution and 2% epoxy content ratio are required for the optimum coating of textile fabrics with zeolite and coconut shell activated carbon. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 4699 KiB  
Article
Sulfur Poisoning Effects on Modern Lean NOx Trap Catalysts Components
by Jesus Emmanuel De Abreu Goes, Annika Kristoffersson and Louise Olsson
Catalysts 2019, 9(6), 492; https://doi.org/10.3390/catal9060492 - 28 May 2019
Cited by 11 | Viewed by 5576
Abstract
In the present work, a series of different materials was investigated in order to enhance the understanding of the role of modern lean NOx trap (LNT) components on the sulfur poisoning and regeneration characteristics. Nine different types of model catalysts were prepared, [...] Read more.
In the present work, a series of different materials was investigated in order to enhance the understanding of the role of modern lean NOx trap (LNT) components on the sulfur poisoning and regeneration characteristics. Nine different types of model catalysts were prepared, which mainly consisted of three compounds: (i) Al2O3, (ii) Mg/Al2O3, and (iii) Mg/Ce/Al2O3 mixed with Pt, Pd, and Pt-Pd. A micro flow reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were employed in order to investigate the evolution and stability of the species formed during SO2 poisoning. The results showed that the addition of palladium and magnesium into the LNT formulation can be beneficial for the catalyst desulfation due mainly to the ability to release the sulfur trapped at relatively low temperatures. This was especially evident for Pd/Mg/Al2O3 model catalyst, which demonstrated an efficient LNT desulfation with low H2 consumption. In contrast, the addition of ceria was found to increase the formation of bulk sulfate species during SO2 poisoning, which requires higher temperatures for the sulfur removal. The noble metal nature was also observed to play an important role on the SOx storage and release properties. Monometallic Pd-based catalysts exhibited the formation of surface palladium sulfate species during SO2 exposure, whereas Pt-Pd bimetallic formulations presented higher stability of the sulfur species formed compared to the corresponding Pt- and Pd-monometallic samples. Full article
Show Figures

Graphical abstract

Back to TopTop