Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,271)

Search Parameters:
Keywords = NMR spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2548 KB  
Article
Oxidative Upgrading of Heavy Oil Residues with Polymer-Based Wastes for Sustainable Bitumen Production
by Yerbol Tileuberdi, Yerdos Ongarbayev, Aisulu Kabylbekova, Ernar Kanzharkan, Yerzhan Imanbayev, Ainur Zhambolova, Zhazira Mukatayeva and Nurgul Shadin
Polymers 2025, 17(20), 2747; https://doi.org/10.3390/polym17202747 (registering DOI) - 14 Oct 2025
Abstract
In this study, the oxidative upgrading of heavy oil residues using polymer-containing waste for the sustainable production of bitumen was investigated. Oxidation was performed at temperatures of 250–270 °C for 3–4 h with the addition of 2–3 wt.% polyethylene-based waste, under an air [...] Read more.
In this study, the oxidative upgrading of heavy oil residues using polymer-containing waste for the sustainable production of bitumen was investigated. Oxidation was performed at temperatures of 250–270 °C for 3–4 h with the addition of 2–3 wt.% polyethylene-based waste, under an air flow of 7 L/min. The physical and mechanical characterization of the resulting bitumen demonstrated compliance with oxidized modified bitumen grades OMB 100/130 and OMB 70/100. FTIR spectroscopy revealed the formation of carbonyl and sulfoxide functional groups, indicating the effective oxidative transformation of the bitumen matrix and partial incorporation of polyethylene fragments. NMR spectroscopy confirmed increased aromaticity and carbonyl content, while also detecting polyethylene-derived signals, suggesting compatibility and integration of the polymer waste into the oxidized structure. The thermal and rheological results showed that the optimal conditions for producing high-quality oxidized bitumen involved the use of 2% polymer waste at 270 °C for 4 h, yielding enhanced physical properties and chemical stability. These findings support the feasibility of using polymer-containing waste for bitumen upgrading, offering both environmental and technical advantages. The method not only improves the quality of bitumen but also contributes to waste valorization and circular economy practices in the road construction industry. Full article
(This article belongs to the Special Issue Development in Polymer Recycling)
13 pages, 977 KB  
Communication
Gel-Phase Microextraction Using Microfluidic-Directed Ultrashort Peptide Assemblies for the Determination of Drugs in Oral Fluids
by M. Laura Soriano, Ana M. Garcia, Juan A. Garcia-Romero, Pilar Prieto, Aldrik H. Velders and M. Victoria Gomez
Int. J. Mol. Sci. 2025, 26(20), 9982; https://doi.org/10.3390/ijms26209982 (registering DOI) - 14 Oct 2025
Abstract
This study introduces an innovative microfluidic-based approach for extracting drugs from oral fluids using self-assembled tripeptide hydrogels as sorbents. Peptide microfiber derived from the heterochiral tripeptide DLeu-LPhe-LPhe was formed in situ within the 14 mm-long microchannel of a [...] Read more.
This study introduces an innovative microfluidic-based approach for extracting drugs from oral fluids using self-assembled tripeptide hydrogels as sorbents. Peptide microfiber derived from the heterochiral tripeptide DLeu-LPhe-LPhe was formed in situ within the 14 mm-long microchannel of a two-inlet microfluidic device. The methodology enables the laminar flow-driven mixing of buffer solutions, inducing hydrogel formation at their interface. The resulting fiber exhibited a well-defined morphology and β-sheet structure, confirmed by Raman spectroscopy and Thioflavin T fluorescence. The peptide fibers co-assembled successfully with 5-fluorouracil (5-FU) and naproxen (39.8 ± 1.4 nmol of 5-FU and 27.4 ± 6.6 nmol of naproxen per 112 nmol of peptide used to prepare the fiber), resulting in a molar ratio drug/peptide ratio of approximately 1:3 and 1:4, respectively, demonstrating versatility in drug entrapment. The use of the gel fiber as a sorbent phase was first assessed in buffer, and subsequently, the optimized method was applied to saliva. Adsorption studies under stopped-flow conditions showed a significant drug adsorption capability from buffered solutions by the pre-formed hydrogel (32.8 ± 0.9% of 5-FU and 36.4 ± 3.3% of naproxen per fiber preformed with 112 nmol of peptide), demonstrating their suitability as sorbent material. The extension of the methodology to simulated saliva samples allowed extraction of 36% of 5-FU by the fiber, as determined by 19F NMR spectroscopy on microcoils, which enabled us to work with the small volume of fluid extracted from the microfluidic device and provided clean spectra and quantitative results. These findings highlight the potential of this tripeptide hydrogel as a sorbent material for therapeutic drug monitoring and toxicological analysis via a simple, non-invasive and rapid approach for drug detection in oral fluids. Full article
Show Figures

Figure 1

16 pages, 788 KB  
Article
Fresh Pork Quality Assessment by NIRS and NMR: Predicting Eating Quality and Elucidating Relationships with Key Chemical Components
by Xiying Li, Melindee Hastie, Minh Ha, Robyn D. Warner, Cameron C. Steel, Peter McGilchrist, Evan McCarney, Darryl N. D’Souza, Robert J. E. Hewitt, David W. Pethick, Maddison T. Corlett, Sarah M. Stewart and Frank R. Dunshea
Animals 2025, 15(20), 2973; https://doi.org/10.3390/ani15202973 - 14 Oct 2025
Abstract
The Australian pork industry has been seeking a rapid and non-destructive way to predict pork chemical components and eating quality. In this study, near-infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR) were applied to fresh pork Longissimus thoracis et lumborum (LTL) and Semimembranosus [...] Read more.
The Australian pork industry has been seeking a rapid and non-destructive way to predict pork chemical components and eating quality. In this study, near-infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR) were applied to fresh pork Longissimus thoracis et lumborum (LTL) and Semimembranosus (SM) with the aim to build prediction models for intramuscular fat (IMF) content, collagen content and solubility, pH, and sensory attributes, namely tenderness, juiciness, liking of flavor and overall liking as well as investigate the effects of chemical components on pork eating quality. Results showed that the NIRS output, which was a predicted IMF content calibrated for the IMF of lamb, correlated with the chemically analyzed IMF content across both muscles. In LTL, NMR parameter p2f was weakly correlated with IMF and pH. For the LTL, NMR parameters p21 and p22 were related to sensory tenderness, while T22 was correlated with the liking of flavor. In both muscles, the collagen content and pH were related to all sensory attributes, and IMF was related to the liking of flavor. The chemical properties of SM were weakly correlated with those of LTL. The NIRS and NMR weakly predicted the pork chemical components and sensory properties, but more studies are required to improve the accuracy. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

10 pages, 945 KB  
Communication
Development of New Amide Derivatives of Betulinic Acid: Synthetic Approaches and Structural Characterization
by Qinwei Xu, Yuhan Xie, Jin Qi, Zimo Ren, Carmine Coluccini and Paolo Coghi
Molbank 2025, 2025(4), M2072; https://doi.org/10.3390/M2072 (registering DOI) - 13 Oct 2025
Abstract
In this study, we report the synthesis of three new derivatives of betulinic acid, a pentacyclic triterpenoid known for its antitumor activity. These derivatives were synthesized via amide bond formation at the C-28 position using 3-[(Ethylimino)methylidene]amino-N,N-dimethylpropan-1-amine (EDC)/Hydroxybenzotriazole (HOBt) activation [...] Read more.
In this study, we report the synthesis of three new derivatives of betulinic acid, a pentacyclic triterpenoid known for its antitumor activity. These derivatives were synthesized via amide bond formation at the C-28 position using 3-[(Ethylimino)methylidene]amino-N,N-dimethylpropan-1-amine (EDC)/Hydroxybenzotriazole (HOBt) activation and various amines as nucleophiles. The synthesized compounds were characterized by nuclear magnetic resonance (NMR) techniques, including proton (1H), carbon-13 (13C), COSY, HSQC, and DEPT, as well as ultraviolet–visible (UV-VIS) spectroscopy, Fourier-transform infrared (IR) and elemental analysis. This work highlights the potential of semi-synthetic modification of betulinic acid to enhance anticancer properties while addressing challenges in solubility and bioavailability. Further structural optimization and formulation studies are warranted to improve drug-like properties and therapeutic applicability. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

11 pages, 1390 KB  
Article
Eremophilane-Type Sesquiterpenoids from Fungus Aspergillus aurantiobrunneus
by Xueying Deng, Mengsha Wei, Yuyi Zheng, Yong Shen, Alan Bao, Mengru Yu, Chunmei Chen, Qin Li and Hucheng Zhu
Molecules 2025, 30(20), 4068; https://doi.org/10.3390/molecules30204068 (registering DOI) - 13 Oct 2025
Abstract
Six previously undescribed sesquiterpenoids, aurantiophilanes A–F (16), along with six identified analogues (712), were isolated from the fungus Aspergillus aurantiobrunneus. Among these, compounds 1 and 3 were identified as highly oxygenated eremophilane sesquiterpenoids, with [...] Read more.
Six previously undescribed sesquiterpenoids, aurantiophilanes A–F (16), along with six identified analogues (712), were isolated from the fungus Aspergillus aurantiobrunneus. Among these, compounds 1 and 3 were identified as highly oxygenated eremophilane sesquiterpenoids, with compound 1 featuring a rare ketone functional group at C-1. The structures of all compounds were unambiguously elucidated using comprehensive spectroscopic analyses, including HRESIMS, NMR, and UV spectroscopy, supplemented by electronic circular dichroism (ECD) analyses and single-crystal X-ray diffraction. All identified compounds were evaluated for immunosuppressive activity; none showed significant effects at concentrations up to 40 µM. Full article
Show Figures

Figure 1

17 pages, 656 KB  
Article
Synthesis, Structural Characterization, Cytotoxicity, and Antibacterial Properties of Gold(III) Complexes with Hydrazones Derived from Vitamin B6
by Daria V. Petrova, Aleksandra K. Isagulieva, Olga N. Sineva, Vera S. Sadykova, Maksim N. Zavalishin and George A. Gamov
Inorganics 2025, 13(10), 335; https://doi.org/10.3390/inorganics13100335 - 11 Oct 2025
Viewed by 174
Abstract
The rise in the number of cancer cases and the dissemination of strains with multiple drug resistance in the world pose a serious threat to public health care and human well-being. The design and study of new chemotherapeutic agents for cancer and infectious [...] Read more.
The rise in the number of cancer cases and the dissemination of strains with multiple drug resistance in the world pose a serious threat to public health care and human well-being. The design and study of new chemotherapeutic agents for cancer and infectious diseases are hot topics in science. Hydrazones, a versatile and diverse class of chemical compounds, gained a lot of attention as a promising base for future drugs. In this paper, we report on the synthesis of eight new gold(III) complexes with hydrazones derived from pyridoxal-5′-phosphate and pyridoxal. The complexes are thoroughly characterized using IR, 1H, 31P NMR, and mass spectroscopy. The cytotoxic effect of twelve various hydrazones derived from pyridoxal 5′-phosphate on both immortalized (HEK293T) and tumor (HCT116) human cell lines was estimated using the MTT assay. In addition, this contribution describes the antibacterial action of complexes of gold(III) and pyridoxal and pyridoxal 5′-phosphate-derived hydrazones, as well as the mixtures of the solutions containing tetrachloroaurate(III) and hydrazones, using the zone of inhibition test. Gold(III) complexes exhibit moderate antibacterial activity against both Gram-positive and Gram-negative bacteria, while free hydrazones show low cytotoxicity and thus could be considered relatively safe for humans. Full article
(This article belongs to the Special Issue Noble Metals in Medicinal Inorganic Chemistry)
Show Figures

Figure 1

19 pages, 2143 KB  
Article
Design, Characterization, and Hematopoietic Efficacy of a Fluorinated Pyrazolopiperidine Inclusion Complex
by Zhanargul Koshetova, Guldana Daulet, Assel Ten, Raushan Koizhaiganova, Lyailya Baktybayeva, Tolganay Zharkynbek, Alexey Zazybin, Tulegen Seilkhanov, Nurgul Zhumanova, Valery Dembitsky and Valentina Yu
Molecules 2025, 30(20), 4047; https://doi.org/10.3390/molecules30204047 (registering DOI) - 11 Oct 2025
Viewed by 176
Abstract
A novel inclusion complex of a fluorinated pyrazolopiperidine derivative (5-benzyl-7-(2-fluorobenzylidene)-2,3-bis(2-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo [4,3-c]pyridine hydrochloride, PP·HCl) with β-cyclodextrin (PPβCD) was designed, synthesized, and characterized as a potential therapeutic agent for chemotherapy-induced myelosuppression and lymphopenia. Encapsulation of PP within β-cyclodextrin increased aqueous solubility by approximately [...] Read more.
A novel inclusion complex of a fluorinated pyrazolopiperidine derivative (5-benzyl-7-(2-fluorobenzylidene)-2,3-bis(2-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo [4,3-c]pyridine hydrochloride, PP·HCl) with β-cyclodextrin (PPβCD) was designed, synthesized, and characterized as a potential therapeutic agent for chemotherapy-induced myelosuppression and lymphopenia. Encapsulation of PP within β-cyclodextrin increased aqueous solubility by approximately 3.4-fold and improved dissolution rate by 2.8-fold compared with the free compound. Structural analysis using IR, ^1H/^13C NMR, and TLC confirmed the formation of a stable 1:1 host–guest complex, and the disappearance of free PP signals further supported complete encapsulation. In vivo evaluation in a cyclophosphamide-induced myelosuppression model demonstrated that PPβCD accelerated hematopoietic recovery, restoring leukocyte and erythrocyte counts 35–40% faster than methyluracil, without any signs of systemic toxicity. These findings indicate that β-cyclodextrin complexation significantly enhances solubility, dissolution, and biological efficacy of the pyrazolopiperidine scaffold, supporting further preclinical development of PPβCD as a supportive therapy for chemotherapy-related hematological complications. Full article
Show Figures

Graphical abstract

18 pages, 5417 KB  
Article
1H Time Domain Nuclear Magnetic Resonance and Oscillatory Rheology as a Tool for Uncovering the Impact of UV-C Radiation on Polypropylene
by Jessica Caroline Ferreira Gimenez, Sophia Helena Felisbino Bonatti, Marcos Vinícius Basaglia, Rodrigo Henrique dos Santos Garcia, Alef dos Santos, Lucas Henrique Staffa, Mazen Samara, Silvia Helena Prado Bettini, Eduardo Ribeiro de Azevedo, Emna Helal, Nicole Raymonde Demarquette, Manoel Gustavo Petrucelli Homem and Sandra Andrea Cruz
Polymers 2025, 17(20), 2727; https://doi.org/10.3390/polym17202727 - 11 Oct 2025
Viewed by 208
Abstract
UV-C radiation has emerged as a germicidal agent against pathogens, particularly following the COVID-19 pandemic. While UV-C effectively reduces cross-contamination in hospitals, it induces photodegradation in polymer devices, potentially damaging and posing risks to patient safety. Therefore, it is crucial to detect the [...] Read more.
UV-C radiation has emerged as a germicidal agent against pathogens, particularly following the COVID-19 pandemic. While UV-C effectively reduces cross-contamination in hospitals, it induces photodegradation in polymer devices, potentially damaging and posing risks to patient safety. Therefore, it is crucial to detect the effects of UV-C photodegradation on early stages, as well as the effects of prolonged UV-C exposure. In this study, we investigated the UV-C photodegradation (254 nm, 471 kJ/mol) of isotactic polypropylene homopolymer (PP), commonly used in medication packaging. The impact of UV-C on PP was evaluated through rheology and infrared spectroscopy. Surface energy was measured by the contact angles formed by drops of water and diiodomethane. The effects of photodegradation on the polymer’s morphology were examined using scanning electron microscopy, and the melting temperature and crystallinity by differential scanning calorimetry. Lastly, the effect of UV-C on molecular mobility was studied using 1H Time Domain Nuclear Magnetic Resonance (1H TD-NMR). These techniques proved to be valuable tools for identifying the early stages of UV-C photodegradation, and 1H TD-NMR was a sensitive method to identify the chain branching as a photodegradation product. This study highlights the impact of UV-C on PP photodegradation and hence the importance of understanding UV-C-induced degradation. Full article
(This article belongs to the Special Issue Degradation and Stabilization of Polymer Materials 2nd Edition)
Show Figures

Graphical abstract

22 pages, 2017 KB  
Review
A New Era in the Discovery of Biological Control Bacteria: Omics-Driven Bioprospecting
by Valeria Valenzuela Ruiz, Errikka Patricia Cervantes Enriquez, María Fernanda Vázquez Ramírez, María de los Ángeles Bivian Hernández, Marcela Cárdenas-Manríquez, Fannie Isela Parra Cota and Sergio de los Santos Villalobos
Soil Syst. 2025, 9(4), 108; https://doi.org/10.3390/soilsystems9040108 - 10 Oct 2025
Viewed by 280
Abstract
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain [...] Read more.
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain characterization. Recent advances in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have strengthened the bioprospecting pipeline by uncovering key microbial traits involved in biocontrol. Genomics enables the identification of biosynthetic gene clusters, antimicrobial pathways, and accurate taxonomy, while comparative genomics reveals genes relevant to plant–microbe interactions. Metagenomics uncovers unculturable microbes and their functional roles, especially in the rhizosphere and extreme environments. Transcriptomics (e.g., RNA-Seq) sheds light on gene regulation during plant-pathogen-bacteria interactions, revealing stress-related and biocontrol pathways. Metabolomics, using tools like Liquid Chromatography–Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR), identifies bioactive compounds such as lipopeptides, Volatile Organic Compounds (VOCs), and polyketides. Co-culture experiments and synthetic microbial communities (SynComs) have shown enhanced biocontrol through metabolic synergy. This review highlights how integrating omics tools accelerates the discovery and functional validation of new BCAs. Such strategies support the development of effective microbial products, promoting sustainable agriculture by improving crop resilience, reducing chemical inputs, and enhancing soil health. Looking ahead, the successful application of omics-driven bioprospection of BCAs will require addressing challenges of large-scale production, regulatory harmonization, and their integration into real-world agricultural systems to ensure reliable, sustainable solutions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

17 pages, 2819 KB  
Article
Effect of Hydroxyvalerate Molar Percentage on Physicochemical and Degradation Properties of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fibrous Membranes and Potential Application for Air Filtration
by Yaohui Liu, Cheng-Hao Lee, Yanming Wang, Chi-Wai Kan and Xiao-Ying Lu
Polymers 2025, 17(20), 2719; https://doi.org/10.3390/polym17202719 - 10 Oct 2025
Viewed by 257
Abstract
This study investigates the air filtration capabilities of fibrous membranes fabricated via electrospinning, with a focus on optimizing processing parameters. Specifically, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a well-characterized biodegradable polyester, was electrospun to produce membranes exhibiting precisely controlled surface microstructures. The optimal fiber morphology was attained [...] Read more.
This study investigates the air filtration capabilities of fibrous membranes fabricated via electrospinning, with a focus on optimizing processing parameters. Specifically, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a well-characterized biodegradable polyester, was electrospun to produce membranes exhibiting precisely controlled surface microstructures. The optimal fiber morphology was attained under conditions of a 20 kV applied electric field, a solution flow rate of 0.5 mL·h−1, a polymer concentration of 13 wt.%, and a needle inner diameter of 0.21 mm. The microstructural features of the electrospun PHBV membranes were characterized using scanning electron microscopy (SEM). Complementary analysis via 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that the membranes comprised pure 3-hydroxyvalerate (3HV) copolymerized with 3-hydroxybutyrate (3HB) terminal units, with 3HV mole fractions ranging from 17% to 50%. The incorporation of different molar percentages of 3HV in PHBV membrane significantly enhances its durability, as evidenced by Ball Burst Strength (BBS) measurements, with an elongation at burst that is 65–86% greater than that of ASTM F2100 level 3 mask. The nanofibrous membranes exhibited a controlled pore size distribution, indicating their potential suitability for air filtration applications. Particle filtration efficiency (PFE) assessments under standard atmospheric pressure conditions showed that the optimized electrospun PHBV membranes achieved filtration efficiencies exceeding 98%. Additionally, the influence of 3HV content on biodegradation behavior was evaluated through soil burial tests conducted over 90 days. Results indicated that membranes with lower 3HV content (17 mol.%) experienced the greatest weight loss, suggesting accelerated degradation in natural soil environments. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

25 pages, 4126 KB  
Article
Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota
by Wei Jia, Huimin Wang, Ting Feng, Xiaoxiao Liu, Zhendong Liu, Zhengpeng Li, Wenhan Wang and Jingsong Zhang
Foods 2025, 14(19), 3452; https://doi.org/10.3390/foods14193452 - 9 Oct 2025
Viewed by 164
Abstract
FVPB1, a novel heteropolysaccharide, was extracted from the Flammulina velutipes fruiting body, and its structure was determined by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy. FVPB1 demonstrated efficacy in inhibiting lipid accumulation in Raw264.7 cells and zebrafish, as well as in reducing weight [...] Read more.
FVPB1, a novel heteropolysaccharide, was extracted from the Flammulina velutipes fruiting body, and its structure was determined by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy. FVPB1 demonstrated efficacy in inhibiting lipid accumulation in Raw264.7 cells and zebrafish, as well as in reducing weight gain and ameliorating liver injury in high-fat diet-induced mice. High concentration of FVPB1 significantly increased serum ApoA1 levels, while all tested doses (low, medium, and high) reduced serum ApoB levels in mice. Intervention with FVPB1 significantly increased the mRNA expression of Lcat and Cyp7a1 enzymes while markedly reducing the transcriptional level of Hmgcr reductase. Additionally, low concentration of FVPB1 enhanced CYP7A1 protein expression, whereas medium and high concentrations of FVPB1 promoted LCAT protein expression. Medium and high concentrations of FVPB1 significantly enhanced bile acid excretion in mice, with the high dose additionally promoting fecal sterol output. Alpha and beta diversity analyses demonstrated that a high-fat diet induced substantial dysbiosis in the gut microbiota of mice, characterized by reduced microbial diversity and richness. Intervention with FVPB1 significantly modulated the structural composition of the intestinal microbiota in high-fat diet-fed mice. Therefore, FVPB1 exerts lipid-lowering effect in high-fat diet-fed mice by modulating cholesterol metabolism and ameliorating gut microbiota dysbiosis. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

33 pages, 2592 KB  
Article
Synthesis of New Phenothiazine/3-cyanoquinoline and Phenothiazine/3-aminothieno[2,3-b]pyridine(-quinoline) Heterodimers
by Victor V. Dotsenko, Vladislav K. Kindop, Vyacheslav K. Kindop, Eva S. Daus, Igor V. Yudaev, Yuliia V. Daus, Alexander V. Bespalov, Dmitrii S. Buryi, Darya Yu. Lukina, Nicolai A. Aksenov and Inna V. Aksenova
Int. J. Mol. Sci. 2025, 26(19), 9798; https://doi.org/10.3390/ijms26199798 - 8 Oct 2025
Viewed by 497
Abstract
The aim of this work was to prepare new heterodimeric molecules containing pharmacophoric fragments of 3-cyanoquinoline/3-aminothieno[2,3-b]pyridine/3-aminothieno[2,3-b]quinoline on one side and phenothiazine on the other. The products were synthesized via selective S-alkylation of readily available 2-thioxo-3-cyanopyridines or -quinolines with N-(chloroacetyl)phenothiazines, followed by base-promoted Thorpe–Ziegler [...] Read more.
The aim of this work was to prepare new heterodimeric molecules containing pharmacophoric fragments of 3-cyanoquinoline/3-aminothieno[2,3-b]pyridine/3-aminothieno[2,3-b]quinoline on one side and phenothiazine on the other. The products were synthesized via selective S-alkylation of readily available 2-thioxo-3-cyanopyridines or -quinolines with N-(chloroacetyl)phenothiazines, followed by base-promoted Thorpe–Ziegler isomerization of the resulting N-[(3-cyanopyridin-2-ylthio)acetyl]phenothiazines. We found that both the S-alkylation and the Thorpe–Ziegler cyclization reactions, when conducted with KOH under heating, were accompanied to a significant extent by a side reaction involving the elimination of phenothiazine. Optimization of the conditions (0–5 °C, anhydrous N,N-dimethylacetamide and NaH or t-BuONa as non-nucleophilic bases) minimized the side reaction and increased the yields of the target heterodimers. The structures of the products were confirmed by IR spectroscopy, 1H, and 13C DEPTQ NMR studies. It was demonstrated that the synthesized 3-aminothieno[2,3-b]pyridines can be acylated with chloroacetyl chloride in hot chloroform. The resulting chloroacetamide derivative reacts with potassium thiocyanate in DMF to form the corresponding 2-iminothiazolidin-4-one; in this process, phenothiazine elimination does not occur, and the Gruner–Gewald rearrangement product was not observed. The structural features and spectral characteristics of the synthesized 2-iminothiazolidin-4-one derivative were investigated by quantum chemical methods at the B3LYP-D4/def2-TZVP level. A range of drug-relevant properties was also evaluated using in silico methods, and ADMET parameters were calculated. A molecular docking study identified a number of potential protein targets for the new heterodimers, indicating the promise of these compounds for the development of novel antitumor agents. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 3922 KB  
Article
Silicon Oxycarbide Coatings Produced by Remote Hydrogen Plasma CVD Process from Cyclic Tetramethylcyclotetrasiloxane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznański
Coatings 2025, 15(10), 1179; https://doi.org/10.3390/coatings15101179 - 8 Oct 2025
Viewed by 593
Abstract
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings [...] Read more.
The development of high-speed computers and electronic memories, high-frequency communication networks, electroluminescent and photovoltaic devices, flexible displays, and more requires new materials with unique properties, such as a low dielectric constant, an adjustable refractive index, high hardness, thermal resistance, and processability. SiOC coatings possess a number of desirable properties required by modern technologies, including good heat and UV resistance, transparency, high electrical insulation, flexibility, and solubility in commonly used organic solvents. Chemical vapor deposition (CVD) is a very useful and convenient method to produce this type of layer. In this article we present the results of studies on SiOC coatings obtained from tetramethylcyclotetrasiloxane in a remote hydrogen plasma CVD process. The elemental composition (XPS, EDS) and chemical structure (FTIR and NMR spectroscopy-13C, 29Si) of the obtained coatings were investigated. Photoluminescence analyses and ellipsometric and thermogravimetric measurements were also performed. The surface morphology was characterized using AFM and SEM. The obtained results allowed us to propose a mechanism for the initiation and growth of the SiOC layer. Full article
Show Figures

Figure 1

22 pages, 3540 KB  
Article
Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1
by Rizki A. Putri, Ahmad Habibie, Prajnaparamita Dhar, Krzysztof Kuczera, Respati Tri Swasono, Muhammad Saifur Rohman, Tri Joko Raharjo and Teruna J. Siahaan
Life 2025, 15(10), 1568; https://doi.org/10.3390/life15101568 - 8 Oct 2025
Viewed by 532
Abstract
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three [...] Read more.
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three derivatives (i.e., Analog-1, -2, and -3) of the native peptide, Wuchuanin-A1, for improving their antibacterial activity against Staphylococcus aureus and Escherichia coli. The hypothesis is that the antibacterial activity of these peptides can be improved by increasing their amphipathicity (evaluated using hydrophobic moment analysis), α-helical stability, and membrane binding properties. In this case, the residues of native peptide were mutated to form an amphipathic peptide, referred to here as Analog-1. Then, the N- and C-termini of Analog-1 were capped with acetyl and amide groups, respectively, to produce Analog-2. Finally, the Asp and Arg residues in Analog-2 were mutated to Glu and Lys residues, respectively, in Analog-3. Circular dichroism (CD) spectra in trifluoroethanol (TFE) or methanol (MeOH) showed that Analog-3 has the highest α-helical stability, followed by Analog-2 and Analog-1. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations studies indicated that Analog-2 and -3 have a stable continuous α-helical structure. Both Analog-2 and -3 can form dimer or oligomer at higher concentrations. All three analogs can bind to model membranes of Gram-positive and Gram-negative bacteria, with Analog-3 as the best membrane binding affinity through Langmuir monolayer analysis. Both Analog-2 and -3 have better antibacterial activities against S. aureus and E. coli compared to Analog-1 and the native peptide, with minimum inhibitory concentration (MIC) values 3.91 µg/mL against S. aureus and 62.5 µg/mL against E. coli, which are 2–32-fold lower than those of Analog-1. In addition, Analog-2 and -3 have better activity against S. aureus than E. coli bacteria. We proposed that the increase in antibacterial activity of Analog-2 and -3 was due to the α-helical stability, amphipathic structure, and membrane binding properties. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

15 pages, 2576 KB  
Article
The Hidden Players of the Fecal Metabolome: Metabolic Dysregulation Beyond SCFAs Under a High-Fat Diet
by María Martín-Grau, Pilar Casanova, José Manuel Morales, Vannina González Marrachelli and Daniel Monleón
Metabolites 2025, 15(10), 660; https://doi.org/10.3390/metabo15100660 - 7 Oct 2025
Viewed by 217
Abstract
Background/Objectives: The interplay between host metabolism and gut microbiota is central to the pathophysiology of metabolic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated the underexplored fecal host–microbiota co-metabolism profile of male and female Wistar rats after 21 [...] Read more.
Background/Objectives: The interplay between host metabolism and gut microbiota is central to the pathophysiology of metabolic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated the underexplored fecal host–microbiota co-metabolism profile of male and female Wistar rats after 21 weeks of high-fat diet (HFD), a model previously validated for early MASLD. Methods: Using 1H-NMR spectroscopy, we detected and quantified metabolites in fecal samples associated with hepatic metabolism beyond short-chain fatty acids (SCFAs), such as energy-related metabolites, amino acid turnover, branched-chain amino acid (BCAA) catabolism, and microbial fermentation. Results: Distinct metabolic signatures were identified according to diet and sex, and statistical analysis was performed. Notably, alterations were observed in bile acids (BAs) such as cholate and glycocholate, suggesting disruptions in enterohepatic circulation. The presence of fucose, a sugar linked to liver pathology, was also elevated. Energy-related metabolites indicated a shift from lactate production to increased acetoacetate and malonate levels, implying redirection of pyruvate metabolism and inhibition of the TCA cycle. BCAA derivatives such as 3-methyl-2-oxovalerate and 3-aminoisobutyrate were altered, supporting earlier findings on disrupted amino acid metabolism under HFD conditions. Furthermore, microbial metabolites including methanol and ethanol showed group-specific differences, suggesting shifts in microbial activity. Conclusions: These findings complement previous longitudinal data and provide a functional interpretation of newly identified metabolites. These metabolites, previously unreported, are now functionally contextualized and linked to hepatic and microbial dysregulation, offering novel biological insights into early MASLD mechanisms. Full article
(This article belongs to the Special Issue Metabolic Programming of Hepatic Organ Function—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop