Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1
Abstract
1. Introduction
2. Materials and Methods
2.1. Peptide Preparation
2.2. Peptide Analysis by CD Spectroscopy
2.3. Effect of Concentrations on Peptide Oligomerization by CD Spectroscopy
2.4. Nuclear Magnetic Resonance (NMR) Analysis
2.5. Molecular Dynamics (MD) Simulations
2.6. Membrane–Peptide Interaction Analysis
2.7. Antibacterial Activity of Peptides
3. Results
3.1. CD Spectroscopy to Determine Secondary Structures of Peptides
3.1.1. The Effect of TFE on α-Helical Conformation
3.1.2. The Effect of MeOH on α-Helical Conformation
3.1.3. The Effect of Temperature on α-Helical Conformation
3.1.4. The Effect of pH on α-Helical Conformation
3.2. Oligomerization Properties of Analogs
3.3. Conformational Study of Analog-2 by NMR and MD Simulations
3.3.1. COSY, TOCSY, and NOESY Spectra
3.3.2. Phi Dihedral Angles from 3JNH-Hα Coupling Constants
3.3.3. Conformation of Analog-2 from MD Simulations
3.4. Conformational Study of Analog-3 by NMR and MD Simulations
3.4.1. COSY, TOCSY, and NOESY Spectra
3.4.2. Phi Dihedral Angle from 3JNH-HCα Coupling Constant
3.4.3. Conformation of Analog-3 from MD Simulations
3.5. Binding of Peptides to Model Membranes
3.6. Antibacterial Activity of Peptides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 1D-NMR | One-dimensional 1H NMR |
| 2D-NMR | Two-dimensional nuclear magnetic resonance |
| AMP | Antimicrobial peptide |
| ARIA | Ambiguous Restraints for Iterative Assignment |
| CD | Circular dichroism |
| CLSI | Clinical lab standards institute |
| COSY | Correlation Spectroscopy |
| E. coli | Escherichia coli |
| fH | Mean helicity value |
| TFE | Trifluoroethanol |
| MeOD | Deuterated methanol |
| MeOH | Methanol |
| MD | Molecular dynamics |
| MRE | Mean residue molar ellipticity |
| NOESY | Nuclear Overhauser Effect Spectroscopy |
| PME | Particle Mesh Ewald |
| RMSD | Root-mean square deviation |
| S. aureus | Staphylococcus aureus |
| TOCSY | Total Correlation Spectroscopy |
References
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014; pp. 1–16. [Google Scholar]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updates 2023, 68, 100954. [Google Scholar] [CrossRef]
- Preusske, N.; Sonnichsen, F.D.; Leippe, M. A guided tour through alpha-helical peptide antibiotics and their targets. Biosci. Rep. 2023, 43, BSR20230474. [Google Scholar] [CrossRef]
- Bergkessel, M.; Forte, B.; Gilbert, I.H. Small-Molecule Antibiotic Drug Development: Need and Challenges. ACS Infect. Dis. 2023, 9, 2062–2071. [Google Scholar] [CrossRef]
- Cruciani, R.A.; Barker, J.L.; Durell, S.R.; Raghunathan, G.; Guy, H.R.; Zasloff, M.; Stanley, E.F. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur. J. Pharmacol. 1992, 226, 287–296. [Google Scholar] [CrossRef]
- Gesell, J.; Zasloff, M.; Opella, S.J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 1997, 9, 127–135. [Google Scholar] [CrossRef]
- Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan—A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Thennarasu, S.; Lee, D.K.; Tan, A.; Maloy, L. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys. J. 2006, 91, 206–216. [Google Scholar] [CrossRef]
- Kabelka, I.; Vacha, R. Advances in Molecular Understanding of alpha-Helical Membrane-Active Peptides. Acc. Chem. Res. 2021, 54, 2196–2204. [Google Scholar] [CrossRef]
- Huang, Y.; He, L.; Li, G.; Zhai, N.; Jiang, H.; Chen, Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 2014, 5, 631–642. [Google Scholar] [CrossRef]
- Imura, Y.; Choda, N.; Matsuzaki, K. Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys. J. 2008, 95, 5757–5765. [Google Scholar] [CrossRef]
- Tai, K.P.; Le, V.V.; Selsted, M.E.; Ouellette, A.J. Hydrophobic determinants of alpha-defensin bactericidal activity. Infect. Immun. 2014, 82, 2195–2202. [Google Scholar] [CrossRef]
- Yang, X.; Lee, W.H.; Zhang, Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J. Proteome Res. 2012, 11, 306–319. [Google Scholar] [CrossRef]
- Islam, M.M.; Asif, F.; Zaman, S.U.; Arnab, M.K.H.; Rahman, M.M.; Hasan, M. Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. Curr. Res. Microb. Sci. 2023, 4, 100182. [Google Scholar] [CrossRef]
- Zavrtanik, U.; Lah, J.; Hadži, S. Estimation of Peptide Helicity from Circular Dichroism Using the Ensemble Model. J. Phys. Chem. B 2024, 128, 2652–2663. [Google Scholar] [CrossRef]
- Honda, S.; Kobayashi, N.; Munekata, E.; Uedaira, H. Fragment reconstitution of a small protein: Folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G. Biochemistry 1999, 38, 1203–1213. [Google Scholar] [CrossRef]
- Stephanie, F.; Tambunan, U.S.F.; Kuczera, K.; Siahaan, T.J. Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals 2024, 17, 1545. [Google Scholar] [CrossRef]
- Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley-Interscience: Hoboken, NJ, USA, 1991. [Google Scholar]
- Armen, R.; Alonso, D.O.; Daggett, V. The role of α-, 310-, and π-helix in helix→coil transitions. Protein Sci. 2003, 12, 1145–1157. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Allain, F.; Mareuil, F.; Ménager, H.; Nilges, M.; Bardiaux, B. ARIAweb: A server for automated NMR structure calculation. Nucleic Acids Res. 2020, 48, W41–W47. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comp. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmuller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Darden, T.; Perera, L.; Li, L.; Pedersen, L. New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 1999, 7, R55–R60. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- PyMOL 3.1, The PyMOL Molecular Graphics System; Schrödinger, LLC: New York, NY, USA, 2024.
- Pinto, O.A.; Disalvo, E.A. A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes. PLoS ONE 2019, 14, e0212269. [Google Scholar] [CrossRef]
- VET03; Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated from Aquatic Animals. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Di Somma, A.; Moretta, A.; Cane, C.; Scieuzo, C.; Salvia, R.; Falabella, P.; Duilio, A. Structural and Functional Characterization of a Novel Recombinant Antimicrobial Peptide from Hermetia illucens. Curr. Issues Mol. Biol. 2021, 44, 1–13. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
- Micsonai, A.; Bulyaki, E.; Kardos, J. BeStSel: From Secondary Structure Analysis to Protein Fold Prediction by Circular Dichroism Spectroscopy. Methods Mol. Biol. 2021, 2199, 175–189. [Google Scholar] [CrossRef]
- Rivera-Najera, L.Y.; Saab-Rincon, G.; Battaglia, M.; Amero, C.; Pulido, N.O.; Garcia-Hernandez, E.; Solorzano, R.M.; Reyes, J.L.; Covarrubias, A.A. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties. J. Biol. Chem. 2014, 289, 31995–32009. [Google Scholar] [CrossRef]
- Karmakar, S.; Das, S.; Banerjee, K.K. Interaction of antimicrobial peptides with model membranes: A perspective towards new antibiotics. Eur. Phys. J. Spec. Top. 2024, 233, 2981–2996. [Google Scholar] [CrossRef]
- Narayana, J.L.; Mishra, B.; Lushnikova, T.; Wu, Q.; Chhonker, Y.S.; Zhang, Y.; Zarena, D.; Salnikov, E.S.; Dang, X.; Wang, F.; et al. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc. Natl. Acad. Sci. USA 2020, 117, 19446–19454. [Google Scholar] [CrossRef]
- Leveritt, J.M., III; Pino-Angeles, A.; Lazaridis, T. The structure of a melittin-stabilized pore. Biophys. J. 2015, 108, 2424–2426. [Google Scholar] [CrossRef]
- Lin, L.; Chi, J.; Yan, Y.; Luo, R.; Feng, X.; Zheng, Y.; Xian, D.; Li, X.; Quan, G.; Liu, D.; et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm. Sin. B 2021, 11, 2609–2644. [Google Scholar] [CrossRef]
- Tan, J.; Huang, J.; Huang, Y.; Chen, Y. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic alpha-helical antibacterial peptide against Gram-negative bacteria. Molecules 2014, 19, 10803–10817. [Google Scholar] [CrossRef]
- Weber, M.; Schneider, D. Six amino acids define a minimal dimerization sequence and stabilize a transmembrane helix dimer by close packing and hydrogen bonding. FEBS Lett. 2013, 587, 1592–1596. [Google Scholar] [CrossRef]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [Google Scholar] [CrossRef]
- Yang, J.; Spek, E.J.; Gong, Y.; Zhou, H.; Kallenbach, N.R. The role of context on alpha-helix stabilization: Host-guest analysis in a mixed background peptide model. Protein Sci. 1997, 6, 1264–1272. [Google Scholar] [CrossRef]
- Marqusee, S.; Baldwin, R.L. Helix stabilization by Glu-…Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. USA 1987, 84, 8898–8902. [Google Scholar] [CrossRef]
- Roesgaard, M.A.; Lundsgaard, J.E.; Newcombe, E.A.; Jacobsen, N.L.; Pesce, F.; Tranchant, E.E.; Lindemose, S.; Prestel, A.; Hartmann-Petersen, R.; Lindorff-Larsen, K.; et al. Deciphering the Alphabet of Disorder-Glu and Asp Act Differently on Local but Not Global Properties. Biomolecules 2022, 12, 1426. [Google Scholar] [CrossRef]
- Yoshida, K.; Kawaguchi, J.; Lee, S.; Yamaguchi, T. On the solvent role in alcohol-induced α-helix formation of chymotrypsin inhibitor 2. Pure Appl. Chem. 2008, 80, 1337–1347. [Google Scholar] [CrossRef]
- Roccatano, D.; Colombo, G.; Fioroni, M.; Mark, A.E. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: A molecular dynamics study. Proc. Natl. Acad. Sci. USA 2002, 99, 12179–12184. [Google Scholar] [CrossRef]
- Lorenzon, E.N.; Riske, K.A.; Troiano, G.F.; Da Hora, G.C.; Soares, T.A.; Cilli, E.M. Effect of dimerization on the mechanism of action of aurein 1.2. Biochim. Biophys. Acta 2016, 1858, 1129–1138. [Google Scholar] [CrossRef]
- D’Accolti, M.; Bellotti, D.; Dzien, E.; Leonetti, C.; Leveraro, S.; Albanese, V.; Marzola, E.; Guerrini, R.; Caselli, E.; Rowinska-Zyrek, M.; et al. Impact of C- and N-terminal protection on the stability, metal chelation and antimicrobial properties of calcitermin. Sci. Rep. 2023, 13, 18228. [Google Scholar] [CrossRef]
- Mura, M.; Wang, J.P.; Zhou, Y.H.; Pinna, M.; Zvelindovsky, A.V.; Dennison, S.R.; Phoenix, D.A. The effect of amidation on the behaviour of antimicrobial peptides. Eur. Biophys. J. Biophy. 2016, 45, 195–207. [Google Scholar] [CrossRef]
- Reinke, P.Y.A.; Heiringhoff, R.S.; Reindl, T.; Baker, K.; Taft, M.H.; Meents, A.; Mulvihill, D.P.; Davies, O.R.; Fedorov, R.; Zahn, M.; et al. Crystal structures of cables formed by the acetylated and unacetylated forms of the Schizosaccharomyces pombe tropomyosin ortholog TpmCdc8. J. Biol. Chem. 2024, 300, 107925. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific alpha-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Takechi-Haraya, Y.; Ohgita, T.; Kotani, M.; Kono, H.; Saito, C.; Tamagaki-Asahina, H.; Nishitsuji, K.; Uchimura, K.; Sato, T.; Kawano, R.; et al. Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic alpha-helical peptides. Sci. Rep. 2022, 12, 4959. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Rajagopal, M.; Walker, S. Envelope Structures of Gram-Positive Bacteria. In Current Topics in Microbiology and Immunology; Bagnoli, F., Ed.; Springer: Cham, Switzerland, 2017; Volume 404, pp. 1–44. [Google Scholar] [CrossRef]
- Barreto-Santamaría, A.; Arévalo-Pinzón, G.; Patarroyo, M.A.A.; Patarroyo, M.E.E. How to Combat Gram-Negative Bacteria Using Antimicrobial Peptides: A Challenge or an Unattainable Goal? Antibiotics 2021, 10, 1499. [Google Scholar] [CrossRef]
- Personne, H.; Paschoud, T.; Fulgencio, S.; Baeriswyl, S.; Kohler, T.; van Delden, C.; Stocker, A.; Javor, S.; Reymond, J.L. To Fold or Not to Fold: Diastereomeric Optimization of an α-Helical Antimicrobial Peptide. J. Med. Chem. 2023, 66, 7570–7583. [Google Scholar] [CrossRef] [PubMed]
- Liscano, Y.; Salamanca, C.H.; Vargas, L.; Cantor, S.; Laverde-Rojas, V.; Oñate-Garzón, J. Increases in Hydrophilicity and Charge on the Polar Face of Alyteserin 1c Helix Change its Selectivity towards Gram-Positive Bacteria. Antibiotics 2019, 8, 238. [Google Scholar] [CrossRef] [PubMed]








| Peptide | Sequence | MW (Da) | Net Charge (pH = 7) | pI | Hydrophobicity (H%) | Hydrophobic Moment (µH) |
|---|---|---|---|---|---|---|
| Native | APDRPRKFCGILG | 1429.68 | 2 | 10.17 | 38.46 | 0.498 |
| Analog-1 | ALDRLRKFLKKLL | 1614.01 | 4 | 11.5 | 53.85 | 0.798 |
| Analog-2 | Ac-ALDRLRKFLKKLL-NH2 | 1655.05 | 4 | 12.18 | 53.85 | 0.798 |
| Analog-3 | Ac-ALEKLKKFLKKLL-NH2 | 1613.06 | 4 | 11.27 | 53.85 | 0.789 |
| Peptide | Kd (M) | [θ] Monomer (deg cm2 dmol−1) | [θ] Complex (deg cm2 dmol−1) |
|---|---|---|---|
| Analog-1 | 2 × 10−4 | −92,000 | −106,600 |
| Analog-2 | 1 × 10−4 | −360,000 | −130,000 |
| Analog-3 | 2.5 × 10−5 | −450,000 | −140,000 |
| Analog-2 | Analog-3 | ||||||
|---|---|---|---|---|---|---|---|
| Residue | 3JNH-HCα (Hz) | NMR Calculated Phi | MD Observed Phi | Residue | 3JNH-HCα (Hz) | NMR Calculated Phi | MD Observed Phi |
| Ala1 | 4.8 | −64.93 | 360 | Ala1 | 4.2 | −60 | 360 |
| Leu2 | 6.0 | −74.30 | −60.16 | Leu2 | 6.6 | −78.98 | −78.45 |
| Asp3 | 6.0 | −74.30 | −33.70 | Glu3 | 5.4 | −69.66 | −60.77 |
| Arg4 | 5.4 | −69.66 | −62.09 | Lys4 | 6.0 | −74.30 | −57.39 |
| Leu5 | 6.6 | −78.98 | −68.14 | Leu5 | 6.6 | −78.98 | −73.82 |
| Arg6 | 6.0 | −74.30 | −68.05 | Lys6 | 6.0 | −74.30 | −70.66 |
| Lys7 | 6.0 | −74.30 | −60.57 | Lys7 | 6.0 | −74.30 | −67.05 |
| Phe8 | 6.6 | −78.98 | −64.47 | Phe8 | 6.0 | −74.30 | −56.36 |
| Leu9 | 6.0 | −74.30 | −64.41 | Leu9 | 6.6 | −78.98 | −67.29 |
| Lys10 | 6.0 | −74.30 | −53.87 | Lys10 | 6.0 | −74.30 | −53.17 |
| Lys11 | 7.2 | −83.82 | −61.54 | Lys11 | 6.0 | −74.30 | −72.42 |
| Leu12 | 6.6 | −78.98 | −63.53 | Leu12 | 6.6 | −78.98 | −95.22 |
| Leu13 | 6.6 | −78.98 | −86.19 | Leu13 | 6.6 | −78.98 | −88.05 |
| Compound | MIC (µg/mL) | |
|---|---|---|
| S. aureus (ATCC 25923) | E. coli (ATCC 25922) | |
| Native | NA | NA |
| Analog-1 | 125 | 125 |
| Analog-2 | 3.91 | 62.50 |
| Analog-3 | 3.91 | 62.50 |
| Chloramphenicol | 7.81 | 3.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putri, R.A.; Habibie, A.; Dhar, P.; Kuczera, K.; Swasono, R.T.; Rohman, M.S.; Raharjo, T.J.; Siahaan, T.J. Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1. Life 2025, 15, 1568. https://doi.org/10.3390/life15101568
Putri RA, Habibie A, Dhar P, Kuczera K, Swasono RT, Rohman MS, Raharjo TJ, Siahaan TJ. Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1. Life. 2025; 15(10):1568. https://doi.org/10.3390/life15101568
Chicago/Turabian StylePutri, Rizki A., Ahmad Habibie, Prajnaparamita Dhar, Krzysztof Kuczera, Respati Tri Swasono, Muhammad Saifur Rohman, Tri Joko Raharjo, and Teruna J. Siahaan. 2025. "Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1" Life 15, no. 10: 1568. https://doi.org/10.3390/life15101568
APA StylePutri, R. A., Habibie, A., Dhar, P., Kuczera, K., Swasono, R. T., Rohman, M. S., Raharjo, T. J., & Siahaan, T. J. (2025). Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1. Life, 15(10), 1568. https://doi.org/10.3390/life15101568

