Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = NAD analogues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3921 KB  
Article
Anticandidal Activity and Low Cytotoxicity of Modified Analogues of the Tobacco Defensin NaD1
by Olga V. Shevchenko, Ivan V. Bogdanov, Serafima I. Fateeva, Daria N. Melnikova, Anastasia A. Ignatova, Ilia Y. Toropygin, Tatiana V. Ovchinnikova and Ekaterina I. Finkina
Antibiotics 2025, 14(11), 1129; https://doi.org/10.3390/antibiotics14111129 - 7 Nov 2025
Viewed by 610
Abstract
Background/Objectives: The growing resistance development among fungi, including those of Candida species, poses significant challenges to public health, emphasizing the need for the implementation of innovative therapeutic approaches. The tobacco defensin NaD1 exhibits a pronounced activity against C. albicans, but its relatively [...] Read more.
Background/Objectives: The growing resistance development among fungi, including those of Candida species, poses significant challenges to public health, emphasizing the need for the implementation of innovative therapeutic approaches. The tobacco defensin NaD1 exhibits a pronounced activity against C. albicans, but its relatively high cytotoxicity toward mammalian cells limits its potential application. Here, we investigated anticandidal activity and cytotoxicity of four modified analogues of NaD1 (NaD1-1 T44R/K45R, NaD1-2 L38R, NaD1-3 K36R/L38R, NaD1-4 L38R/T44R/K45R). Methods: These peptides contained substitutions with arginine of some amino acid residues in the C-terminal region of NaD1 and in its L5 loop (S35KILRR40), responsible for the “cationic grip” and binding to phosphatidylinositol 4,5-bisphosphate (PIP4,5), one of the primary targets of tobacco defensin action. Results: We showed that the modified NaD1 analogues effectively inhibited the growth of C. albicans cells but had a less fungicidal action than NaD1. As compared to NaD1, its modified analogues differed in their sensitivity to the presence of various salts; antifungal activities of NaD1-3 and NaD1-4 were more tolerant to the presence of NaCl and CaCl2, respectively. All modified analogues except NaD1-1 did not exhibit hemolytic activity and showed significantly less cytotoxicity towards human immune and epithelial cells compared to NaD1. All modified analogues enhanced the permeability of PIP4,5-containing liposomes, although less effectively than NaD1. Differences in their properties were also demonstrated through experiments on oligomerization and zymosan binding. Conclusions: Thus, we proposed that the modified NaD1 analogues NaD1-2, NaD1-3, and NaD1-4 appear to be promising candidate antifungals. However, further in vitro and in vivo studies are required to evaluate their therapeutic potential against critical fungal pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Plant Peptides as Prototypes of New Antifungal Drugs)
Show Figures

Figure 1

16 pages, 1485 KB  
Article
Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics
by Roktima Tamuli, George D. Mellick, Horst Joachim Schirra and Yunjiang Feng
Molecules 2025, 30(16), 3352; https://doi.org/10.3390/molecules30163352 - 12 Aug 2025
Cited by 1 | Viewed by 1661
Abstract
This study used NMR-based metabolomics to investigate the mode of action (MoA) of 6-hydroxydopamine (6-OHDA) toxicity in the SH-SY5Y neuroblastoma cell model. 6-OHDA, a structural analogue of dopamine, has been used to create a Parkinson’s disease model since 1968. Its selective uptake via [...] Read more.
This study used NMR-based metabolomics to investigate the mode of action (MoA) of 6-hydroxydopamine (6-OHDA) toxicity in the SH-SY5Y neuroblastoma cell model. 6-OHDA, a structural analogue of dopamine, has been used to create a Parkinson’s disease model since 1968. Its selective uptake via catecholaminergic transporters leads to intracellular oxidative stress and mitochondrial dysfunction. SH-SY5Y cells were treated with 6-OHDA at its IC50 concentration of 60 μM, and samples of treated and untreated groups were collected after 24 h. The endo metabolome was extracted using a methanol–water mixture, while the exo metabolome was represented by the culture media. Further, endo- and exo metabolomes of treated and untreated cells were analysed for metabolic changes. Our results demonstrated significantly high levels of glutathione, acetate, propionate, and NAD+, which are oxidative stress markers, enhanced due to ROS production in the system. In addition, alteration of myoinositol, taurine, and o-phosphocholine could be due to oxidative stress-induced membrane potential disturbance. Mitochondrial complex I inhibition causes electron transport chain (ETC) dysfunction. Changes in key metabolites of glycolysis and energy metabolism, such as glucose, pyruvate, lactate, creatine, creatine phosphate, glycine, and methionine, respectively, demonstrated ETC dysfunction. We also identified changes in amino acids such as glutamine, glutamate, and proline, followed by nucleotide metabolism such as uridine and uridine monophosphate levels, which were decreased in the treated group. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

13 pages, 2476 KB  
Article
Enzymatic Synthesis of Biologically Active H-Phosphinic Analogue of α-Ketoglutarate
by Vsevolod L. Filonov, Maxim A. Khomutov, Yaroslav V. Tkachev, Artem V. Udod, Dmitry V. Yanvarev, Fabio Giovannercole, Elena N. Khurs, Sergei N. Kochetkov, Daniela De Biase and Alex R. Khomutov
Biomolecules 2024, 14(12), 1574; https://doi.org/10.3390/biom14121574 - 10 Dec 2024
Cited by 1 | Viewed by 1634
Abstract
Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids [...] Read more.
Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites. Previous studies employing NMR-based metabolomic and proteomic analyses show that in Escherichia coli, α-KG-γ-PH (the distal H-phosphinic analogue of α-ketoglutarate) can be converted into L-Glu-γ-PH. Notably, α-KG-γ-PH and L-Glu-γ-PH are antibacterial compounds, but their intracellular targets only partially overlap. L-Glu-γ-PH is known to be a substrate of aspartate transaminase and glutamate decarboxylase, but its substrate properties with NAD+-dependent glutamate dehydrogenase (GDH) have never been investigated. Compounds containing P-H bonds are strong reducing agents; therefore, enzymatic NAD+-dependent oxidation is not self-evident. Herein, we demonstrate that L-Glu-γ-PH is a substrate of eukaryotic GDH and that the pH optimum of L-Glu-γ-PH NAD+-dependent oxidative deamination is shifted to a slightly alkaline pH range compared to L-glutamate. By 31P NMR, we observe that α-KG-γ-PH exists in a pH-dependent equilibrium of keto and germinal diol forms. Furthermore, the stereospecific enzymatic synthesis of α-KG-γ-PH from L-Glu-γ-PH using GDH is a possible route for its bio-based synthesis. Full article
Show Figures

Figure 1

14 pages, 8129 KB  
Article
The Fluorinated NAD Precursors Enhance FK866 Cytotoxicity by Activating SARM1 in Glioblastoma Cells
by Wei Ming He, Jian Yuan Yang, Zhi Ying Zhao, Weimin Xiao, Wan Hua Li and Yong Juan Zhao
Biology 2024, 13(9), 649; https://doi.org/10.3390/biology13090649 - 23 Aug 2024
Viewed by 3068
Abstract
Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a [...] Read more.
Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a single drug therapy for glioma is limited. In this study, we aim to disrupt NAD metabolism using fluorinated NAD precursors and explore their synergistic effect with FK866 in inducing cytotoxicity in glioblastoma cells. The synthesized analogue of nicotinamide riboside (NR), ara-F nicotinamide riboside (F-NR), inhibits nicotinamide ribose kinase (NRK) activity in vitro, reduces cellular NAD levels, and enhances FK866’s cytotoxicity in U251 glioblastoma cells, indicating a collaborative impact on cell death. Metabolic analyses reveal that F-NR undergoes conversion to fluorinated nicotinamide mononucleotide (F-NMN) and other metabolites, highlighting the intact NAD metabolic pathway in glioma cells. The activation of SARM1 by F-NMN, a potent NAD-consuming enzyme, is supported by the synergistic effect of CZ-48, a cell-permeable SARM1 activator. Temporal analysis underscores the sequential nature of events, establishing NAD depletion as a precursor to ATP depletion and eventual massive cell death. This study not only elucidates the molecular intricacies of glioblastoma cell death but also proposes a promising strategy to enhance FK866 efficacy through fluorinated NAD precursors, offering potential avenues for innovative therapeutic interventions in the challenging landscape of glioblastoma treatment. Full article
Show Figures

Figure 1

15 pages, 2968 KB  
Article
Synthesis, Biological, and Computational Evaluations of Conformationally Restricted NAD-Mimics as Discriminant Inhibitors of Human NMN-Adenylyltransferase Isozymes
by Federica Matteucci, Marta Ferrati, Eleonora Spinozzi, Alessia Piergentili, Fabio Del Bello, Gianfabio Giorgioni, Leonardo Sorci, Riccardo Petrelli and Loredana Cappellacci
Pharmaceuticals 2024, 17(6), 739; https://doi.org/10.3390/ph17060739 - 6 Jun 2024
Cited by 1 | Viewed by 1973
Abstract
Nicotinamide adenine dinucleotide (NAD) cofactor metabolism plays a significant role in cancer development. Tumor cells have an increased demand for NAD and ATP to support rapid growth and proliferation. Limiting the amount of available NAD by targeting critical NAD biosynthesis enzymes has emerged [...] Read more.
Nicotinamide adenine dinucleotide (NAD) cofactor metabolism plays a significant role in cancer development. Tumor cells have an increased demand for NAD and ATP to support rapid growth and proliferation. Limiting the amount of available NAD by targeting critical NAD biosynthesis enzymes has emerged as a promising anticancer therapeutic approach. In mammals, the enzyme nicotinamide/nicotinic acid adenylyltransferase (NMNAT) catalyzes a crucial downstream reaction for all known NAD synthesis routes. Novel nicotinamide/nicotinic acid adenine dinucleotide (NAD/NaAD) analogues 14, containing a methyl group at the ribose 2′-C and 3′-C-position of the adenosine moiety, were synthesized as inhibitors of the three isoforms of human NMN-adenylyltransferase, named hNMNAT-1, hNMNAT-2, and hNMNAT-3. An NMR-based conformational analysis suggests that individual NAD-analogues (14) have distinct conformational preferences. Biological evaluation of dinucleotides 14 as inhibitors of hNMNAT isoforms revealed structural relationships between different conformations (North-anti and South-syn) and enzyme-inhibitory activity. Among the new series of NAD analogues synthesized and tested, the 2′-C-methyl-NAD analogue 1 (Ki = 15 and 21 µM towards NMN and ATP, respectively) emerged as the most potent and selective inhibitor of hNMNAT-2 reported so far. Finally, we rationalized the in vitro bioactivity and selectivity of methylated NAD analogues with in silico studies, helping to lay the groundwork for rational scaffold optimization. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 4836 KB  
Article
Life-Cycle-Dependent Toxicities of Mono- and Bifunctional Alkylating Agents in the 3R-Compliant Model Organism C. elegans
by Joanna Ruszkiewicz, Lisa Endig, Ebru Güver, Alexander Bürkle and Aswin Mangerich
Cells 2023, 12(23), 2728; https://doi.org/10.3390/cells12232728 - 29 Nov 2023
Cited by 3 | Viewed by 2339
Abstract
Caenorhabditis elegans (C. elegans) is gaining recognition and importance as an organismic model for toxicity testing in line with the 3Rs principle (replace, reduce, refine). In this study, we explored the use of C. elegans to examine the toxicities of alkylating sulphur mustard [...] Read more.
Caenorhabditis elegans (C. elegans) is gaining recognition and importance as an organismic model for toxicity testing in line with the 3Rs principle (replace, reduce, refine). In this study, we explored the use of C. elegans to examine the toxicities of alkylating sulphur mustard analogues, specifically the monofunctional agent 2-chloroethyl-ethyl sulphide (CEES) and the bifunctional, crosslinking agent mechlorethamine (HN2). We exposed wild-type worms at different life cycle stages (from larvae L1 to adulthood day 10) to CEES or HN2 and scored their viability 24 h later. The susceptibility of C. elegans to CEES and HN2 paralleled that of human cells, with HN2 exhibiting higher toxicity than CEES, reflected in LC50 values in the high µM to low mM range. Importantly, the effects were dependent on the worms’ developmental stage as well as organismic age: the highest susceptibility was observed in L1, whereas the lowest was observed in L4 worms. In adult worms, susceptibility to alkylating agents increased with advanced age, especially to HN2. To examine reproductive effects, L4 worms were exposed to CEES and HN2, and both the offspring and the percentage of unhatched eggs were assessed. Moreover, germline apoptosis was assessed by using ced-1p::GFP (MD701) worms. In contrast to concentrations that elicited low toxicities to L4 worms, CEES and HN2 were highly toxic to germline cells, manifesting as increased germline apoptosis as well as reduced offspring number and percentage of eggs hatched. Again, HN2 exhibited stronger effects than CEES. Compound specificity was also evident in toxicities to dopaminergic neurons–HN2 exposure affected expression of dopamine transporter DAT-1 (strain BY200) at lower concentrations than CEES, suggesting a higher neurotoxic effect. Mechanistically, nicotinamide adenine dinucleotide (NAD+) has been linked to mustard agent toxicities. Therefore, the NAD+-dependent system was investigated in the response to CEES and HN2 treatment. Overall NAD+ levels in worm extracts were revealed to be largely resistant to mustard exposure except for high concentrations, which lowered the NAD+ levels in L4 worms 24 h post-treatment. Interestingly, however, mutant worms lacking components of NAD+-dependent pathways involved in genome maintenance, namely pme-2, parg-2, and sirt-2.1 showed a higher and compound-specific susceptibility, indicating an active role of NAD+ in genotoxic stress response. In conclusion, the present results demonstrate that C. elegans represents an attractive model to study the toxicology of alkylating agents, which supports its use in mechanistic as well as intervention studies with major strength in the possibility to analyze toxicities at different life cycle stages. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: A Model Organism, Endless Possibilities)
Show Figures

Figure 1

26 pages, 6570 KB  
Review
Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis
by Naemah Haji, Masoma Faizi, Panayiotis A. Koutentis, Michael P. Carty and Fawaz Aldabbagh
Molecules 2023, 28(13), 5202; https://doi.org/10.3390/molecules28135202 - 4 Jul 2023
Cited by 3 | Viewed by 3422
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and [...] Read more.
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry with Applications)
Show Figures

Figure 1

15 pages, 7605 KB  
Article
Iminosugar-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors as Potential Anti-Pancreatic Cancer Agents
by Irene Conforti, Andrea Benzi, Irene Caffa, Santina Bruzzone, Alessio Nencioni and Alberto Marra
Pharmaceutics 2023, 15(5), 1472; https://doi.org/10.3390/pharmaceutics15051472 - 11 May 2023
Cited by 3 | Viewed by 3024
Abstract
The nicotinamide phosphoribosyltransferase (NAMPT) is considered a very promising therapeutic target because it is overexpressed in pancreatic cancer. Although many inhibitors have been prepared and tested, clinical trials have shown that NAMPT inhibition may result in severe haematological toxicity. Therefore, the development of [...] Read more.
The nicotinamide phosphoribosyltransferase (NAMPT) is considered a very promising therapeutic target because it is overexpressed in pancreatic cancer. Although many inhibitors have been prepared and tested, clinical trials have shown that NAMPT inhibition may result in severe haematological toxicity. Therefore, the development of conceptually new inhibitors is an important and challenging task. We synthesized ten β-d-iminoribofuranosides bearing various heterocycle-based chains carbon-linked to the anomeric position starting from non-carbohydrate derivatives. They were then submitted to NAMPT inhibition assays, as well as to pancreatic tumor cells viability and intracellular NAD+ depletion evaluation. The biological activity of the compounds was compared to that of the corresponding analogues lacking the carbohydrate unit to assess, for the first time, the contribution of the iminosugar moiety to the properties of these potential antitumor agents. Full article
(This article belongs to the Special Issue Advances in Anticancer Agent)
Show Figures

Figure 1

25 pages, 4903 KB  
Article
Whole Transcriptome Sequencing Reveals Drought Resistance-Related Genes in Upland Cotton
by Juyun Zheng, Zeliang Zhang, Yajun Liang, Zhaolong Gong, Nala Zhang, Allah Ditta, Zhiwei Sang, Junduo Wang and Xueyuan Li
Genes 2022, 13(7), 1159; https://doi.org/10.3390/genes13071159 - 27 Jun 2022
Cited by 12 | Viewed by 3458
Abstract
China, particularly the cotton-growing province of Xinjiang, is experiencing acute agricultural water shortages, stifling the expansion of the cotton sector. Discovering drought resistance genes in cotton and generating high-quality, drought-resistant cotton varieties through molecular breeding procedures are therefore critical to the cotton industry’s [...] Read more.
China, particularly the cotton-growing province of Xinjiang, is experiencing acute agricultural water shortages, stifling the expansion of the cotton sector. Discovering drought resistance genes in cotton and generating high-quality, drought-resistant cotton varieties through molecular breeding procedures are therefore critical to the cotton industry’s success. The drought-resistant cotton variety Xinluzhong No. 82 and the drought-sensitive cotton variety Kexin No. 1 were utilised in this study to uncover a batch of drought-resistant candidate genes using whole transcriptome sequencing. The following are the key research findings: A competing endogenous RNA network (ceRNA) was built using complete transcriptional sequencing to screen the core genes in the core pathway, and two drought-related candidate genes were discovered. It was found that γ-aminobutyric acid aminotransferase (GhGABA-T, Gohir.A11G156000) was upregulated at 0 h vs. 12 h and downregulated at 12 h vs. 24 h. L-Aspartate oxidase (GhAO, Gohir.A07G220600) was downregulated at 0 h vs. 12 h and upregulated at 12 h vs. 24 h. GABA-T is analogous to a pyridoxal phosphate-dependent transferase superfamily protein (POP2) in Arabidopsis thaliana and influences plant drought resistance by controlling γ-aminobutyric acid (GABA) concentration. The analogue of GhAO in A. thaliana is involved in the early steps of nicotinamide adenine dinucleotide (NAD) production as well as in plant antioxidant responses. This study revealed that gene expression regulatory networks can be used for rapid screening of reliable drought resistance genes and then utilised to validate gene function. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Graphical abstract

20 pages, 5655 KB  
Article
Concurrent Reactive Oxygen Species Generation and Aneuploidy Induction Contribute to Thymoquinone Anticancer Activity
by Mohammed Al-Hayali, Aimie Garces, Michael Stocks, Hilary Collins and Tracey D. Bradshaw
Molecules 2021, 26(17), 5136; https://doi.org/10.3390/molecules26175136 - 25 Aug 2021
Cited by 19 | Viewed by 3453
Abstract
Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa. Many studies have confirmed its anticancer actions. Herein, we investigated the different anticancer activities of, and considered resistance mechanisms to, TQ. MTT and clonogenic data showed TQ’s ability to suppress breast [...] Read more.
Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa. Many studies have confirmed its anticancer actions. Herein, we investigated the different anticancer activities of, and considered resistance mechanisms to, TQ. MTT and clonogenic data showed TQ’s ability to suppress breast MDA-MB-468 and T-47D proliferation at lower concentrations compared to other cancer and non-transformed cell lines tested (GI50 values ≤ 1.5 µM). Flow-cytometric analyses revealed that TQ consistently induced MDA-MB-468 and T-47D cell-cycle perturbation, specifically inducing pre-G1 populations. In comparison, less sensitive breast MCF-7 and colon HCT-116 cells exhibited only transient increases in pre-G1 events. Annexin V/PI staining confirmed apoptosis induction in MDA-MB-468 and HCT-116 cells, which was continuous in the former and transient in the latter. Experiments revealed the role of reactive oxygen species (ROS) generation and aneuploidy induction in MDA-MB-468 cells within the first 24 h of treatment. The ROS-scavenger NAD(P)H dehydrogenase (quinone 1) (NQO1; DT-diaphorase) and glutathione (GSH) were implicated in resistance to TQ. Indeed, western blot analyses showed that NQO1 is expressed in all cell lines in this study, except those most sensitive to TQ-MDA-MB-468 and T-47D. Moreover, TQ treatment increased NQO1 expression in HCT-116 in a concentration-dependent fashion. Measurement of GSH activity in MDA-MB-468 and HCT-116 cells found that GSH is similarly active in both cell lines. Furthermore, GSH depletion rendered these cells more sensitive to TQ’s antiproliferative actions. Therefore, to bypass putative inactivation of the TQ semiquinone metabolite, the benzylamine analogue was designed and synthesised following modification of TQ’s carbon-3 atom. However, the structural modification negatively impacted potency against MDA-MB-468 cells. In conclusion, we disclose the following: (i) The anticancer activity of TQ may be a consequence of ROS generation and aneuploidy; (ii) Early GSH depletion could substantially enhance TQ’s anticancer activity; (iii) Benzylamine substitution at TQ’s carbon-3 failed to enhance anticancer activity. Full article
(This article belongs to the Special Issue Plant Extracts: Immunomodulatory and Anti-cancer Properties)
Show Figures

Figure 1

15 pages, 4113 KB  
Article
Protective Effect of Pomegranate on Oxidative Stress and Inflammatory Response Induced by 5-Fluorouracil in Human Keratinocytes
by Shara Francesca Rapa, Giorgia Magliocca, Giacomo Pepe, Giuseppina Amodio, Giuseppina Autore, Pietro Campiglia and Stefania Marzocco
Antioxidants 2021, 10(2), 203; https://doi.org/10.3390/antiox10020203 - 30 Jan 2021
Cited by 37 | Viewed by 6268
Abstract
5-Fluorouracil (5-FU) is a pyrimidine analogue used as an antineoplastic agent to treat multiple solid tumors. Despite its use and efficacy, it also has important side effects in healthy cells, including skin reactions, related to its pro-oxidant and pro-inflammatory potential. Although there are [...] Read more.
5-Fluorouracil (5-FU) is a pyrimidine analogue used as an antineoplastic agent to treat multiple solid tumors. Despite its use and efficacy, it also has important side effects in healthy cells, including skin reactions, related to its pro-oxidant and pro-inflammatory potential. Although there are numerous remedies for chemotherapy-induced skin reactions, the efficacy of these treatments remains limited. In this study we focused on the effects of pomegranate (Punica granatum L.) juice extract (PPJE) on the oxidative and inflammatory state in 5-FU-treated human skin keratinocytes (HaCaT). The obtained results showed that PPJE significantly inhibited reactive oxygen species release and increased the cellular antioxidant response, as indicated by the increased expression of cytoprotective enzymes, such as heme oxygenase-1 and NAD(P)H dehydrogenase [quinone] 1. In these experimental conditions, PPJE also inhibited nitrotyrosine formation and 5-FU-induced inflammatory response, as indicated by the reduced cytokine level release. Moreover, PPJE inhibited nuclear translocation of p65-NF-κB, a key factor regulating the inflammatory response. In 5-FU-treated HaCaT cells PPJE also inhibited apoptosis and promoted wound repair. These results suggest a potential use of PPJE as an adjuvant in the treatment of the oxidative and inflammatory state that characterizes chemotherapy-induced skin side effects. Full article
Show Figures

Figure 1

15 pages, 3286 KB  
Hypothesis
In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection
by Annamaria Martorana, Carla Gentile and Antonino Lauria
Viruses 2020, 12(8), 805; https://doi.org/10.3390/v12080805 - 26 Jul 2020
Cited by 16 | Viewed by 5197
Abstract
COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used [...] Read more.
COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used for Ebola infection). This work proposes a repurposing process using a database containing approximately 8000 known drugs in synergy structure- and ligand-based studies by means of the molecular docking and descriptor-based protocol. The proposed in silico findings identified new potential SARS CoV-2 main protease (MPRO) inhibitors that fit in the catalytic binding site of SARS CoV-2 MPRO. Several selected structures are NAD-like derivatives, suggesting a relevant role of these molecules in the modulation of SARS CoV-2 infection in conditions of cell chronic oxidative stress. Increased catabolism of NAD(H) during protein ribosylation in the DNA damage repair process may explain the greater susceptibility of the elderly population to the acute respiratory symptoms of COVID-19. The molecular modelling studies proposed herein agree with this hypothesis. Full article
(This article belongs to the Special Issue Drug-Repositioning Opportunities for Antiviral Therapy)
Show Figures

Figure 1

11 pages, 2025 KB  
Communication
Synthetic Biomimetic Coenzymes and Alcohol Dehydrogenases for Asymmetric Catalysis
by Laia Josa-Culleré, Antti S. K. Lahdenperä, Aubert Ribaucourt, Georg T. Höfler, Serena Gargiulo, Yuan-Yang Liu, Jian-He Xu, Jennifer Cassidy, Francesca Paradisi, Diederik J. Opperman, Frank Hollmann and Caroline E. Paul
Catalysts 2019, 9(3), 207; https://doi.org/10.3390/catal9030207 - 26 Feb 2019
Cited by 21 | Viewed by 7672
Abstract
Redox reactions catalyzed by highly selective nicotinamide-dependent oxidoreductases are rising to prominence in industry. The cost of nicotinamide adenine dinucleotide coenzymes has led to the use of well-established elaborate regeneration systems and more recently alternative synthetic biomimetic cofactors. These biomimetics are highly attractive [...] Read more.
Redox reactions catalyzed by highly selective nicotinamide-dependent oxidoreductases are rising to prominence in industry. The cost of nicotinamide adenine dinucleotide coenzymes has led to the use of well-established elaborate regeneration systems and more recently alternative synthetic biomimetic cofactors. These biomimetics are highly attractive to use with ketoreductases for asymmetric catalysis. In this work, we show that the commonly studied cofactor analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) can be used with alcohol dehydrogenases (ADHs) under certain conditions. First, we carried out the rhodium-catalyzed recycling of BNAH with horse liver ADH (HLADH), observing enantioenriched product only with unpurified enzyme. Then, a series of cell-free extracts and purified ketoreductases were screened with BNAH. The use of unpurified enzyme led to product formation, whereas upon dialysis or further purification no product was observed. Several other biomimetics were screened with various ADHs and showed no or very low activity, but also no inhibition. BNAH as a hydride source was shown to directly reduce nicotinamide adenine dinucleotide (NAD) to NADH. A formate dehydrogenase could also mediate the reduction of NAD from BNAH. BNAH was established to show no or very low activity with ADHs and could be used as a hydride donor to recycle NADH. Full article
(This article belongs to the Special Issue Biocatalysis for Industrial Applications)
Show Figures

Graphical abstract

10 pages, 909 KB  
Article
Identification of Bichalcones as Sirtuin Inhibitors by Virtual Screening and In Vitro Testing
by Berin Karaman, Zayan Alhalabi, Sören Swyter, Shetonde O. Mihigo, Kerstin Andrae-Marobela, Manfred Jung, Wolfgang Sippl and Fidele Ntie-Kang
Molecules 2018, 23(2), 416; https://doi.org/10.3390/molecules23020416 - 14 Feb 2018
Cited by 27 | Viewed by 6163
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which have been linked to the pathogenesis of numerous diseases, including HIV, metabolic disorders, neurodegeneration and cancer. Docking of the virtual pan-African natural products library (p-ANAPL), followed by in vitro testing, [...] Read more.
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which have been linked to the pathogenesis of numerous diseases, including HIV, metabolic disorders, neurodegeneration and cancer. Docking of the virtual pan-African natural products library (p-ANAPL), followed by in vitro testing, resulted in the identification of two inhibitors of sirtuin 1, 2 and 3 (sirt1–3). Two bichalcones, known as rhuschalcone IV (8) and an analogue of rhuschalcone I (9), previously isolated from the medicinal plant Rhus pyroides, were shown to be active in the in vitro assay. The rhuschalcone I analogue (9) showed the best activity against sirt1, with an IC50 value of 40.8 µM. Based on the docking experiments, suggestions for improving the biological activities of the newly identified hit compounds have been provided. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products 2018)
Show Figures

Graphical abstract

14 pages, 825 KB  
Article
Design, Synthesis and SAR Studies of NAD Analogues as Potent Inhibitors towards CD38 NADase
by Shengjun Wang, Wenjie Zhu, Xuan Wang, Jianguo Li, Kehui Zhang, Liangren Zhang, Yong-Juan Zhao, Hon Cheung Lee and Lihe Zhang
Molecules 2014, 19(10), 15754-15767; https://doi.org/10.3390/molecules191015754 - 29 Sep 2014
Cited by 32 | Viewed by 11529
Abstract
Nicotinamide adenine dinucleotide (NAD), one of the most important coenzymes in the cells, is a substrate of the signaling enzyme CD38, by which NAD is converted to a second messenger, cyclic ADP-ribose, which releases calcium from intracellular calcium stores. Starting with 2′-deoxy-2′-fluoroarabinosyl-β-nicotinamide adenine [...] Read more.
Nicotinamide adenine dinucleotide (NAD), one of the most important coenzymes in the cells, is a substrate of the signaling enzyme CD38, by which NAD is converted to a second messenger, cyclic ADP-ribose, which releases calcium from intracellular calcium stores. Starting with 2′-deoxy-2′-fluoroarabinosyl-β-nicotinamide adenine dinucleotide (ara-F NAD), a series of NAD analogues were synthesized and their activities to inhibit CD38 NAD glycohydrolase (NADase) were evaluated. The adenosine-modified analogues showed potent inhibitory activities, among which 2′-deoxy-2′-fluoroarabinosyl-β-nicotinamide guanine dinucleotide (ara-F NGD) was the most effective one. The structure-activity relationship of NAD analogues was also discussed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop