Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = N-methyl-d-aspartate (NMDA) receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

22 pages, 688 KiB  
Article
The Effects of Psychotherapy on Single and Repeated Ketamine Infusion(s) Therapy for Treatment-Resistant Depression: The Convergence of Molecular and Psychological Treatment
by Sofia Sakopoulos and McWelling Todman
Int. J. Mol. Sci. 2025, 26(14), 6673; https://doi.org/10.3390/ijms26146673 - 11 Jul 2025
Viewed by 522
Abstract
Ketamine infusion therapy has gained recognition as an innovative treatment for treatment-resistant depression (TRD), demonstrating rapid and robust antidepressant effects. Its therapeutic promise is increasingly understood to involve molecular and neurobiological processes that promote neural plasticity and cognitive flexibility. These changes may create [...] Read more.
Ketamine infusion therapy has gained recognition as an innovative treatment for treatment-resistant depression (TRD), demonstrating rapid and robust antidepressant effects. Its therapeutic promise is increasingly understood to involve molecular and neurobiological processes that promote neural plasticity and cognitive flexibility. These changes may create a unique window for psychotherapeutic interventions to take deeper effect. This retrospective chart review examined the clinical outcomes of individuals with TRD who received either single or repeated ketamine infusion(s), with or without weekly psychotherapy. Depression severity, measured by Beck Depression Inventory scores, was assessed pre-treatment and 30 days post-infusion(s). The results showed significant symptom reduction across all groups, with the most pronounced effects observed in those who received concurrent psychotherapy. While infusion number did not significantly alter outcomes, the integration of ketamine with psychotherapy appeared to enhance treatment response. Full article
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Experimentally Constrained Mechanistic and Data-Driven Models for Simulating NMDA Receptor Dynamics
by Duy-Tan J. Pham and Jean-Marie C. Bouteiller
Biomedicines 2025, 13(7), 1674; https://doi.org/10.3390/biomedicines13071674 - 8 Jul 2025
Viewed by 321
Abstract
Background: The N-methyl-d-aspartate receptor (NMDA-R) is a glutamate ionotropic receptor in the brain that is crucial for synaptic plasticity, which underlies learning and memory formation. Dysfunction of NMDA receptors is implicated in various neurological diseases due to their roles in both normal [...] Read more.
Background: The N-methyl-d-aspartate receptor (NMDA-R) is a glutamate ionotropic receptor in the brain that is crucial for synaptic plasticity, which underlies learning and memory formation. Dysfunction of NMDA receptors is implicated in various neurological diseases due to their roles in both normal cognition and excitotoxicity. However, their dynamics are challenging to capture accurately due to their high complexity and non-linear behavior. Methods: This article presents the elaboration and calibration of experimentally constrained computational models of GluN1/GluN2A NMDA-R dynamics: (1) a nine-state kinetic model optimized to replicate experimental data and (2) a computationally efficient look-up table model capable of replicating the dynamics of the nine-state kinetic model with a highly reduced footprint. Determination of the kinetic model’s parameter values was performed using the particle swarm optimization algorithm. The optimized kinetic model was then used to generate a rich input–output dataset to train the look-up table synapse model and estimate its coefficients. Results: Optimization produced a kinetic model capable of accurately reproducing experimentally found results such as frequency-dependent potentiation and the temporal response due to synaptic release of glutamate. Furthermore, the look-up table synapse model was able to closely mimic the dynamics of the optimized kinetic model. Conclusions: The results obtained with both models indicate that they constitute accurate alternatives for faithfully reproducing the dynamics of NMDA-Rs. High computational efficiency is also achieved with the use of the look-up table synapse model, making this implementation an ideal option for inclusion in large-scale neuronal models. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

43 pages, 1978 KiB  
Review
Positive AMPA and Kainate Receptor Modulators and Their Therapeutic Potential in CNS Diseases: A Comprehensive Review
by Alina Vialko, Paulina Chałupnik and Ewa Szymańska
Int. J. Mol. Sci. 2025, 26(13), 6450; https://doi.org/10.3390/ijms26136450 - 4 Jul 2025
Viewed by 908
Abstract
Ionotropic glutamate receptors—including N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors—play a pivotal role in excitatory signaling in the central nervous system (CNS), which is particularly important for learning and memory processes. Among them, AMPA and kainate receptors (known as [...] Read more.
Ionotropic glutamate receptors—including N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors—play a pivotal role in excitatory signaling in the central nervous system (CNS), which is particularly important for learning and memory processes. Among them, AMPA and kainate receptors (known as ‘non-NMDA’ receptors) have gained increasing attention as therapeutic targets for various CNS disorders. Positive allosteric modulators (PAMs) of these receptors enhance their activity without directly activating them, offering a promising strategy to fine-tune glutamatergic signaling with potentially fewer side effects compared to orthosteric agonists. This review presents a comprehensive overview of recent advances in the development of AMPA and kainate receptor PAMs. We classify the most relevant modulators into main chemotype groups and discuss their binding modes, structure–activity relationships, and efficacy as determined through in vitro and in vivo studies. Additionally, we provide an overview of AMPA receptor PAMs that have entered into clinical trials over the past few decades. The increasing interest in kainate receptor PAMs is also mentioned, underlining their emerging role in future neuropharmacological strategies. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

31 pages, 689 KiB  
Review
Ketamine—From an Anesthetic to a Psychiatric Drug: Mechanisms of Action, Clinical Applications and Potential Risks
by Ewa Gibuła-Tarłowska, Anna Wiszniewska, Magdalena Turyk, Paulina Szymczyk, Jolanta H. Kotlińska and Ewa Kędzierska
Molecules 2025, 30(13), 2824; https://doi.org/10.3390/molecules30132824 - 30 Jun 2025
Viewed by 834
Abstract
Ketamine, originally developed as an anesthetic, is gaining increasing attention due to its multifaceted pharmacological properties. In addition to its use in anesthesia, ketamine exerts potent analgesic effects via N-methyl-D-aspartate (NMDA) receptor antagonism, modulating pain perception and reducing central sensitization, particularly in chronic [...] Read more.
Ketamine, originally developed as an anesthetic, is gaining increasing attention due to its multifaceted pharmacological properties. In addition to its use in anesthesia, ketamine exerts potent analgesic effects via N-methyl-D-aspartate (NMDA) receptor antagonism, modulating pain perception and reducing central sensitization, particularly in chronic and neuropathic pain conditions. Emerging evidence also supports ketamine’s potential in the treatment of substance use disorder, where it may disrupt maladaptive reward-related memories and promote neuroplasticity which facilitates behavioral change. Moreover, in recent years, S-ketamine has shown rapid and potent antidepressant effects, especially in treatment-resistant depression (TRD), probably due to increased glutamatergic signaling, synaptic plasticity and the release of neurotrophic factors. This heterogeneous therapeutic profile positions ketamine as a unique agent at the interface of anesthesia, pain management, addiction medicine and psychiatry, warranting further exploration into its mechanism and long-term effectiveness. Full article
Show Figures

Figure 1

12 pages, 357 KiB  
Review
Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome
by Takahiko Nagamine
Pharmaceuticals 2025, 18(6), 894; https://doi.org/10.3390/ph18060894 - 14 Jun 2025
Viewed by 729
Abstract
Objective:Burning mouth syndrome (BMS) is a chronic, intractable orofacial pain condition characterized by a burning sensation in the oral mucosa without discernible lesions. The syndrome predominantly affects menopausal and postmenopausal women and is considered a form of nociplastic pain, where the processing [...] Read more.
Objective:Burning mouth syndrome (BMS) is a chronic, intractable orofacial pain condition characterized by a burning sensation in the oral mucosa without discernible lesions. The syndrome predominantly affects menopausal and postmenopausal women and is considered a form of nociplastic pain, where the processing of pain stimuli is altered. Given the significant sex disparity, it is crucial to consider underlying neurobiological differences that may inform treatment. This review explores potential pharmacological targets by examining the pathological mechanisms of BMS. Method of Research: A narrative review approach was utilized to systematically explore and synthesize literature regarding the pathophysiology of BMS and to identify receptors implicated in the enhancement of sensory transmission and the altered processing of pain stimuli. Results: The mechanism of enhanced sensory transmission points to receptors such as TRPV1, P2X3, and CB2 as potential targets. However, considering the nociplastic nature of BMS and its prevalence in women, mechanisms involving altered central pain processing are paramount. Research indicates significant sex differences in glutamate transmission and plasticity within reward-related brain regions. This suggests that the N-methyl-D-aspartate (NMDA) receptor, a cornerstone of glutamate signaling and synaptic plasticity, is a primary therapeutic target. Furthermore, the altered processing of pain and reward, which is a key feature of chronic pain, implicates the brain’s dopaminergic system. A decrease in dopamine D2 receptor function within this system is believed to contribute to the pathology of BMS. Estrogen receptors are also considered relevant due to the menopausal onset. Conclusions: Based on the evidence, the most promising targets for pharmacotherapy in BMS are likely the NMDA receptor and the dopamine D2 receptor. The high prevalence of BMS in women, coupled with known sex differences in the glutamate and dopamine pathways of the reward system, provides a strong rationale for this focus. Effective treatment strategies should therefore aim to modulate these specific systems, directly or indirectly controlling NMDE receptor hyperactivity and addressing the decreased D2 receptor function. Further research into therapies that specifically target this sex-linked neurobiology is essential for developing effective pharmacotherapy for BMS. Full article
Show Figures

Graphical abstract

23 pages, 6851 KiB  
Article
Omega-3 Fatty Acids Mitigate Long-Lasting Disruption of the Endocannabinoid System in the Adult Mouse Hippocampus Following Adolescent Binge Drinking
by Maitane Serrano, Miquel Saumell-Esnaola, Garazi Ocerin, Gontzal García del Caño, Edgar Soria-Gómez, Amaia Mimenza, Nagore Puente, Itziar Bonilla-Del Río, Almudena Ramos-Uriarte, Leire Reguero, Brian R. Christie, Fernando Rodríguez de Fonseca, Marta Rodríguez-Arias, Inmaculada Gerrikagoitia and Pedro Grandes
Int. J. Mol. Sci. 2025, 26(12), 5507; https://doi.org/10.3390/ijms26125507 - 9 Jun 2025
Viewed by 854
Abstract
Adolescent binge drinking has lasting behavioral consequences by disrupting the endocannabinoid system (ECS) and depleting brain omega-3. The natural accumulation of omega-3 fatty acids in cell membranes is crucial for maintaining the membrane structure, supporting interactions with the ECS, and restoring synaptic plasticity [...] Read more.
Adolescent binge drinking has lasting behavioral consequences by disrupting the endocannabinoid system (ECS) and depleting brain omega-3. The natural accumulation of omega-3 fatty acids in cell membranes is crucial for maintaining the membrane structure, supporting interactions with the ECS, and restoring synaptic plasticity and cognition impaired by prenatal ethanol (EtOH) exposure. However, it remains unclear whether omega-3 supplementation can mitigate the long-term effects on the ECS, endocannabinoid-dependent synaptic plasticity, and cognition following adolescent binge drinking. Here, we demonstrated that omega-3 supplementation during EtOH withdrawal increases CB1 receptors in hippocampal presynaptic terminals of male mice, along with the recovery of receptor-stimulated [35S]GTPγS binding to Gαi/o proteins. These changes are associated with long-term potentiation (LTP) at excitatory medial perforant path (MPP) synapses in the dentate gyrus (DG), which depends on anandamide (AEA), transient receptor potential vanilloid 1 (TRPV1), and N-methyl-D-aspartate (NMDA) receptors. Finally, omega-3 intake following binge drinking reduced the time and number of errors required to locate the escape box in the Barnes maze test. Collectively, these findings suggest that omega-3 supplementation restores Barnes maze performance to levels comparable to those of control mice after adolescent binge drinking. This recovery is likely mediated by modulation of the hippocampal ECS, enhancing endocannabinoid-dependent excitatory synaptic plasticity. Full article
Show Figures

Figure 1

16 pages, 1806 KiB  
Article
Functional Expression of NMDA Receptors in SH-SY5Y Neuroblastoma Cells Following Long-Term RA/BDNF-Induced Differentiation
by Ya-Jean Wang, Yun-Hsiang Chen, Eric Hwang, Che-Jui Yeh, You-Xuan Liu, Hwei-Hsien Chen and Sheng-Nan Wu
NeuroSci 2025, 6(2), 47; https://doi.org/10.3390/neurosci6020047 - 26 May 2025
Viewed by 1389
Abstract
SH-SY5Y neuroblastoma cells can be effectively differentiated into a neuronal phenotype using retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), making them a valuable in vitro model for studying neuronal differentiation. This study aimed to investigate the electrophysiological properties of SH-SY5Y cells following [...] Read more.
SH-SY5Y neuroblastoma cells can be effectively differentiated into a neuronal phenotype using retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), making them a valuable in vitro model for studying neuronal differentiation. This study aimed to investigate the electrophysiological properties of SH-SY5Y cells following prolonged differentiation, with a focus on membrane characteristics, evoked action potentials, and the functionality of cellular components such as N-methyl-D-aspartate (NMDA) receptor. Whole-cell patch-clamp recordings were employed to evaluate ionic currents and action potentials in embryonic mouse cortical neurons (mCNs) and in both differentiated and undifferentiated SH-SY5Y neuroblastoma cells. Differentiated SH-SY5Y cells exhibited neurite outgrowth, evoked action potential firing, and functional NMDA receptor-mediated currents. Notably, atorvastatin significantly modulated the duration and firing of action potentials as well as NMDA receptor-mediated currents in differentiated SH-SY5Y cells. These findings highlight that neuronally differentiated SH-SY5Y cells expressing functional NMDA receptor-mediated currents serve as a robust and convenient model for investigating the molecular mechanisms of NMDA receptor function and for screening pharmacological agents targeting these receptors. Full article
(This article belongs to the Collection Neurons – Structure & Function)
Show Figures

Figure 1

16 pages, 496 KiB  
Review
Anti-NMDA Receptor Encephalitis: A Narrative Review
by Vlad Pădureanu, Dalia Dop, Rodica Pădureanu, Denisa Floriana Vasilica Pîrșcoveanu, Gabriela Olaru, Ioana Streata and Ana Maria Bugă
Brain Sci. 2025, 15(5), 518; https://doi.org/10.3390/brainsci15050518 - 18 May 2025
Viewed by 1945
Abstract
Antibodies against the NR1 or NR2 subunits of the NMDA receptor are linked to anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, a type of encephalitis that mainly affects women. Clinicians who treat patients of all ages should be aware of this type of encephalitis since it [...] Read more.
Antibodies against the NR1 or NR2 subunits of the NMDA receptor are linked to anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, a type of encephalitis that mainly affects women. Clinicians who treat patients of all ages should be aware of this type of encephalitis since it may be a treatable differential for symptoms and indicators observed in neurology and psychiatric clinics. Auditory and visual hallucinations, delusions, altered behavior (often accompanied by agitation), reduced consciousness, motor disruption (from dyskinesia to catatonia), seizures, and autonomic dysfunction are typical clinical characteristics. In recent years, the incidence of autoimmune encephalitis diagnoses has markedly risen among adults, children, and adolescents. This fact is unequivocally connected to the dynamic evolution of novel diagnostic techniques and the advancement of medical knowledge. A specific variant of this illness is anti-NMDA receptor encephalitis. Psychiatrists frequently serve as the initial specialists to treat patients with this diagnosis, owing to the manifestation of psychiatric symptoms associated with the condition. The differential diagnosis is quite challenging and predominantly relies on the patient’s history and the manifestation of characteristic clinical signs. Given its high prevalence, anti-NMDA receptor encephalitis should be included in the differential diagnosis in routine psychiatric treatment. We provide an overview of the research on the condition, covering its prognosis, management, epidemiology, differential diagnosis, and clinical presentation. Full article
(This article belongs to the Special Issue Novel Insights into Neuroinflammation and Brain Disease)
Show Figures

Figure 1

15 pages, 1909 KiB  
Article
Effects of Clozapine, Haloperidol, and the NMDA Antagonist Ketamine on Novel Object Recognition in Gnathonemus petersii: A New Possible Model for Schizophrenia Research
by Petra Horká, Josefina Mavrogeni, Veronika Langová, Pavel Horký, Jan Hubený, Ivana Chrtková, Karel Valeš, Martin Kuchař and Jiří Horáček
Fishes 2025, 10(5), 229; https://doi.org/10.3390/fishes10050229 - 15 May 2025
Viewed by 447
Abstract
In animal models, ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, induces schizophrenia-like symptoms, such as positive and negative symptoms, as well as cognitive deficits. In the present study, we evaluated the behavioral responses and the number of EODs (electric organ discharges) of the weakly [...] Read more.
In animal models, ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, induces schizophrenia-like symptoms, such as positive and negative symptoms, as well as cognitive deficits. In the present study, we evaluated the behavioral responses and the number of EODs (electric organ discharges) of the weakly electric fish Gnathonemus petersii using the novel object recognition task (NORT). We aimed to investigate whether pharmacological modulation of the glutamatergic system would impair cognitive functions by administering the NMDA receptor antagonist ketamine, and whether these impairments could be suppressed by the administration of typical (first-generation) and atypical (second-generation) antipsychotics—clozapine and haloperidol, respectively. G. petersii preferred the familiar object over the novel object in the NORT paradigm. Although no significant differences were observed when exploring the two identical objects during the training session, the fish spent less time, moved a shorter distance, and emitted fewer EODs in the testing phase with the novel object. No direct relationship was detected between the EODs and behavioral responses to the administration of ketamine and typical antipsychotics. Ketamine administered with atypical antipsychotic clozapine disrupted the perception of the original object, where one of the objects was preferred. In the novel object trial, the time spent on the original and new objects was attenuated to the same level. Full article
Show Figures

Graphical abstract

24 pages, 1088 KiB  
Review
Biological and Analytical Perspectives on D-Amino Acids in Cancer Diagnosis and Therapy
by Alina Uifălean, Maria Iacobescu, Liana Claudia Salanță, Simona Codruța Hegheş, Radu-Cristian Moldovan and Cristina-Adela Iuga
Pharmaceuticals 2025, 18(5), 705; https://doi.org/10.3390/ph18050705 - 9 May 2025
Cited by 1 | Viewed by 972
Abstract
For a long time, D-amino acids remained unexplored in mammalian physiology. The technological advances in enantioseparation over the past 50 years have revealed that D-amino acids not only exist in human tissues and fluids but also play important roles in neurotransmission, immune regulation, [...] Read more.
For a long time, D-amino acids remained unexplored in mammalian physiology. The technological advances in enantioseparation over the past 50 years have revealed that D-amino acids not only exist in human tissues and fluids but also play important roles in neurotransmission, immune regulation, and cellular proliferation. The present review provides a comprehensive assessment of the role of D-amino acids in cancer, including their endogenous and exogenous production pathways, along with the analytical methodologies used for detection and quantification, from liquid chromatography to biosensors. These methods have underlined how altered levels of D-amino acids can be helpful in early detection, progression, or response to treatment in several malignancies, including gastric, hepatic, colorectal, or breast cancer. The present review also explores how manipulation of D-amino acids can regulate cell proliferation, their mechanisms in cancer regulation, including the modulation of N-methyl-D-aspartate (NMDA) receptors and the production of hydrogen sulphide (H2S), and the role of specific D-amino acids in cancer onset, immune defence, and protection against chemotherapy-induced toxicity. Finally, several underexplored research directions are outlined, such as potential correlations with gut microbiota composition, the impact of processed food consumption, and the integration of multiomics strategies. Full article
(This article belongs to the Special Issue Recent Advances in Cancer Diagnosis and Therapy)
Show Figures

Graphical abstract

20 pages, 530 KiB  
Review
Glutamate-Based Therapeutic Strategies for Schizophrenia: Emerging Approaches Beyond Dopamine
by Mihaela Fadgyas-Stanculete and Octavia Oana Capatina
Int. J. Mol. Sci. 2025, 26(9), 4331; https://doi.org/10.3390/ijms26094331 - 2 May 2025
Cited by 1 | Viewed by 1977
Abstract
Schizophrenia is a complex neuropsychiatric disorder composed of primary cluster-positive symptoms, negative symptoms, disorganization, neurocognitive deficits, and social cognitive impairments. While traditional antipsychotics primarily target dopamine pathways, they provide limited efficacy against cognitive deficits and negative symptoms. Growing evidence implicates glutamatergic dysregulation, particularly [...] Read more.
Schizophrenia is a complex neuropsychiatric disorder composed of primary cluster-positive symptoms, negative symptoms, disorganization, neurocognitive deficits, and social cognitive impairments. While traditional antipsychotics primarily target dopamine pathways, they provide limited efficacy against cognitive deficits and negative symptoms. Growing evidence implicates glutamatergic dysregulation, particularly N-methyl-D-aspartate receptor (NMDA-R) hypofunction, in the pathophysiology of schizophrenia, making glutamate modulation a promising therapeutic approach. This review explores emerging glutamate-based treatment strategies, including NMDA receptor modulators, metabotropic glutamate receptor (mGluR) agents, glutamate transporter regulators, and kynurenine pathway inhibitors. We summarize preclinical and clinical findings on NMDA co-agonists (D-serine and glycine), glycine transporter inhibitors, D-amino acid oxidase inhibitors, and mGluR-targeted therapies, highlighting their mechanisms, efficacy, and limitations. In addition, we discuss novel interventions aimed at restoring glutamate homeostasis, including neuroinflammatory modulation and synaptic plasticity enhancers. Despite promising results, many glutamate-targeting therapies have yielded inconsistent clinical outcomes, underscoring the need for biomarker-driven patient selection and optimized treatment protocols. We propose that integrating glutamate modulators with existing antipsychotic regimens may enhance therapeutic response while minimizing side effects. Future research should focus on refining glutamate-based interventions, identifying predictive biomarkers, and addressing the heterogeneity in schizophrenia pathology. With continued advancements, glutamate modulation has the potential to transform schizophrenia treatment, particularly for cognitive and negative symptoms that remain largely unaddressed by current therapies. Full article
(This article belongs to the Special Issue Novel Therapies for Schizophrenia: Beyond Dopamine)
Show Figures

Figure 1

13 pages, 2659 KiB  
Article
Activation of Endoplasmic Reticulum-Localized Metabotropic Glutamate Receptor 5 (mGlu5) Triggers Calcium Release Distinct from Cell Surface Counterparts in Striatal Neurons
by Yuh-Jiin I. Jong, Steven K. Harmon and Karen L. O’Malley
Biomolecules 2025, 15(4), 552; https://doi.org/10.3390/biom15040552 - 9 Apr 2025
Viewed by 1551
Abstract
Metabotropic glutamate receptor 5 (mGlu5) plays a fundamental role in synaptic plasticity, potentially serving as a therapeutic target for various neurodevelopmental and psychiatric disorders. Previously, we have shown that mGlu5 can also signal from intracellular membranes in the cortex, hippocampus, [...] Read more.
Metabotropic glutamate receptor 5 (mGlu5) plays a fundamental role in synaptic plasticity, potentially serving as a therapeutic target for various neurodevelopmental and psychiatric disorders. Previously, we have shown that mGlu5 can also signal from intracellular membranes in the cortex, hippocampus, and striatum. Using cytoplasmic Ca2+ indicators, we showed that activated cell surface mGlu5 induced a transient Ca2+ increase, whereas the activation of intracellular mGlu5 mediated a sustained Ca2+ elevation in striatal neurons. Here, we used the newly designed ER-targeted Ca2+ sensor, ER-GCaMP6-150, as a robust, specific approach to directly monitor mGlu5-mediated changes in ER Ca2+ itself. Using this sensor, we found that the activation of cell surface mGlu5 led to small declines in ER Ca2+, whereas the activation of ER-localized mGlu5 resulted in rapid, more pronounced changes. The latter could be blocked by the Gq inhibitor FR9000359, the PLC inhibitor U73122, as well as IP3 and ryanodine receptor blockers. These data demonstrate that like cell surface and nuclear mGlu5, ER-localized receptors play a pivotal role in generating and shaping intracellular Ca2+ signals. Full article
(This article belongs to the Special Issue New Insights into Metabotropic Glutamate Receptors)
Show Figures

Figure 1

22 pages, 4224 KiB  
Article
The Role of Glutamatergic Neurons in Changes of Synaptic Plasticity Induced by THz Waves
by Lequan Song, Ji Dong, Wenjing Cheng, Zhengjie Fei, Rui Wang, Zhiwei He, Junmiao Pan, Li Zhao, Hui Wang and Ruiyun Peng
Biomolecules 2025, 15(4), 532; https://doi.org/10.3390/biom15040532 - 4 Apr 2025
Viewed by 560
Abstract
Background: Terahertz (THz) waves, lying between millimeter waves and infrared light, may interact with biomolecules due to their unique energy characteristics. However, whether THz waves are neurally regulated remains controversial, and the underlying mechanism is elusive. Methods: Mouse brain slices were [...] Read more.
Background: Terahertz (THz) waves, lying between millimeter waves and infrared light, may interact with biomolecules due to their unique energy characteristics. However, whether THz waves are neurally regulated remains controversial, and the underlying mechanism is elusive. Methods: Mouse brain slices were exposed to 1.94 THz waves for 1 h. Synaptic plasticity was evaluated via transmission electron microscopy (TEM), long-term potentiation (LTP), and neuronal class III β-tubulin (Tuj1) and synaptophysin (SYN) expression. Immunofluorescence (IF) and electrophysiology were used to identify neurons sensitive to THz waves. The calcium activity of excitatory neurons, glutamate receptor currents, and glutamate neuron marker expression was also assessed using calcium imaging, a patch clamp, and Western blotting (WB). Optogenetics and chemogenetics were used to determine the role of excitatory neurons in synaptic plasticity impairment after THz wave exposure. NMDA receptor 2B (GluN2B) was overexpressed in the ventral hippocampal CA1 (vCA1) by a lentivirus to clarify the role of GluN2B in THz wave-induced synaptic plasticity impairment. Results: Exposure to 1.94 THz waves increased postsynaptic density (PSD) thickness and reduced the field excitatory postsynaptic potential (fEPSP) slope and Tuj1 and SYN expression. THz waves diminished vCA1 glutamatergic neuron activity and excitability, neural electrical activity, and glutamate transporter function. THz waves reduced N-methyl-D-aspartate receptor (NMDAR) current amplitudes and NMDAR subunit expression. Activating vCA1 glutamatergic neurons through optogenetics and chemogenetics mitigated THz wave-induced synaptic plasticity impairment. GluN2B subunit overexpression improved synaptic plasticity marker expression, synaptic ultrastructure, and the fEPSP slope. Conclusions: Exposure to 1.94 THz waves decreased synaptic plasticity, glutamatergic neuron excitability, and glutamatergic synaptic transmission in the vCA1. Glutamatergic neuron activation and GluN2B overexpression alleviated THz wave-induced synaptic plasticity impairment; thus, neuromodulation could be a promising therapeutic strategy to mitigate the adverse effects of THz radiation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 6389 KiB  
Systematic Review
Pharmacological Efficacy of Intravenous Magnesium in Attenuating Remifentanil-Induced Postoperative Hyperalgesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by En-Bo Wu, Kuen-Lin Wu, Wei-Ti Hsu, Wei-Chin Yuan and Kuen-Bao Chen
Pharmaceuticals 2025, 18(4), 518; https://doi.org/10.3390/ph18040518 - 1 Apr 2025
Viewed by 1190
Abstract
Background/Objectives: Remifentanil-based anesthesia is linked to opioid-induced hyperalgesia (OIH), increasing postoperative pain and analgesic requirements. Magnesium, an N-methyl-D-aspartate (NMDA) receptor antagonist, might alleviate OIH. We aimed to assess whether intravenous magnesium reduces postoperative pain, analgesic requirements, and hyperalgesia in adults receiving remifentanil-based [...] Read more.
Background/Objectives: Remifentanil-based anesthesia is linked to opioid-induced hyperalgesia (OIH), increasing postoperative pain and analgesic requirements. Magnesium, an N-methyl-D-aspartate (NMDA) receptor antagonist, might alleviate OIH. We aimed to assess whether intravenous magnesium reduces postoperative pain, analgesic requirements, and hyperalgesia in adults receiving remifentanil-based anesthesia. Methods: We searched PubMed, Embase, the Cochrane Library, and Web of Science (1 December 2024) for randomized controlled trials (RCTs) comparing intravenous magnesium vs. placebo. Risk of bias was evaluated with the Cochrane RoB 2 tool, and random-effects meta-analyses were conducted. GRADE was used to assess evidence quality. Primary outcomes were postoperative analgesic requirements and pain scores; secondary outcomes included intraoperative remifentanil consumption, shivering, postoperative nausea/vomiting (PONV), extubation time, hypotension, and bradycardia. PROSPERO registration: CRD42024609911. Results: Twenty-two RCTs (n = 1362) met eligibility. Magnesium significantly decreased 24 h analgesic requirements (standardized mean difference [SMD] −1.51; 95% confidence interval [CI] −2.15 to −0.87; p < 0.0001) and pain scores (SMD −0.61; 95% CI −0.90 to −0.32; p < 0.0001), with benefits persisting up to 48 h. It also reduced intraoperative remifentanil use (SMD −0.52), shivering (odds ratio [OR] 0.25), and PONV (OR 0.66), without prolonging extubation or increasing hypotension/bradycardia risk. High heterogeneity, potential publication bias, and moderate-to-very-low evidence certainty warrant caution. Conclusions: Intravenous magnesium appears beneficial in remifentanil-based anesthesia, but further large-scale, methodologically robust trials are needed to confirm optimal and clarify safety profiles across diverse surgical populations. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop