Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome
Abstract
:1. Introduction
2. Research Method
3. Possible Biological Basis of Burning Mouth Syndrome
4. Receptors Involved in Enhancing the Transmission of Sensory Stimuli
5. Receptors Involved in Altered Processing of Pain Stimuli
6. Sex Differences in Receptor Function
6.1. Regulation of Receptor Expression by Estrogen
6.2. Sex-Linked Disparities in Brain’s Reward System
7. Current Challenges in Receptor-Targeted Pharmacotherapy
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPA | α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid |
ACE-Is | angiotensin-converting enzyme inhibitors |
ACC | anterior cingulate cortex |
AI | anterior insular cortex |
BMS | burning mouth syndrome |
CB1 | Cannabinoid Receptors 1 |
CB2 | Cannabinoid Receptors 2 |
CBT | cognitive behavioral therapy |
fMRI | functional magnetic resonance imaging |
HRT | hormone replacement therapy |
ICOP | International Classification of Orofacial Pain |
mPFC | medial prefrontal cortex |
NGF | nerve growth factor |
NMDA | N-methyl-D-aspartate |
NAc | nucleus accumbens |
PET | positron emission tomography |
rTMS | repetitive transcranial magnetic stimulation |
SSRIs | selective serotonin reuptake inhibitors |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
References
- Abreu, J.M.; Quitério, A.; Cerqueira, É.; Ribeiro, R.; Nunes, T.; Figueiredo, J.P.; Real, A.C. Evaluating the Impact of Different Treatments on the Quality of Life in Patients with Burning Mouth Syndrome: A Scoping Review. Cureus 2024, 16, e70419. [Google Scholar] [CrossRef]
- International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia 2020, 40, 129–221. [CrossRef]
- Kim, Y.; Yoo, T.; Han, P.; Liu, Y.; Inman, J.C. A pragmatic evidence-based clinical management algorithm for burning mouth syndrome. J. Clin. Exp. Dent. 2018, 10, e321–e326. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Kim, Y.; Yoo, T.; Han, P.; Inman, J.C. Burning mouth syndrome: A systematic review of treatments. Oral. Dis. 2018, 24, 325–334. [Google Scholar] [CrossRef]
- Lu, C.; Yang, C.; Li, X.; Du, G.; Zhou, X.; Luo, W.; Du, Q.; Tang, G. Effects of low-level laser therapy on burning pain and quality of life in patients with burning mouth syndrome: A systematic review and meta-analysis. BMC Oral. Health 2023, 23, 734. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Pardo, N.; Rodriguez-Zaninovic, M.P. Redefining burning mouth syndrome: A nociplastic pain disorder? J. Dent. Sci. 2025, 20, 1382–1383. [Google Scholar] [CrossRef]
- Kosek, E. The concept of nociplastic pain-where to from here? Pain 2024, 165, S50–S57. [Google Scholar] [CrossRef]
- Nagamine, T. Chronic orofacial pain. Br. Dent. J. 2024, 237, 153. [Google Scholar] [CrossRef]
- Kim, K.H. Nociplastic pain: Conceptual and terminological considerations. Korean J. Pain 2025, 38, 87–88. [Google Scholar] [CrossRef]
- Kim, H.K.; Chung, K.M.; Xing, J.; Kim, H.Y.; Youn, D.H. The Trigeminal Sensory System and Orofacial Pain. Int. J. Mol. Sci. 2024, 25, 11306. [Google Scholar] [CrossRef]
- Ablin, J.N. Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management. J. Clin. Med. 2024, 13, 5741. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.Y.; Stohler, C.S.; Herr, D.R. Role of the Prefrontal Cortex in Pain Processing. Mol. Neurobiol. 2019, 56, 1137–1166. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kurokawa, R.; Suzuki, F.; Amemiya, S.; Shinozaki, T.; Takanezawa, D.; Kohashi, R.; Abe, O. White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Magn. Reson. Med. Sci. 2024, 23, 204–213. [Google Scholar] [CrossRef]
- Navarro-Nolasco, D.A.; Chi-Castañeda, D.; López-Meraz, M.L.; Beltran-Parrazal, L.; Morgado-Valle, C. The medial prefrontal cortex as a proposed regulatory structure in the relationship between anxiety and perceived social support: A review. BMC Psychol. 2025, 13, 152. [Google Scholar] [CrossRef]
- Kurokawa, R.; Kamiya, K.; Inui, S.; Kato, S.; Suzuki, F.; Amemiya, S.; Shinozaki, T.; Takanezawa, D.; Kohashi, R.; Abe, O. Structural connectivity changes in the cerebral pain matrix in burning mouth syndrome: A multi-shell, multi-tissue-constrained spherical deconvolution model analysis. Neuroradiology 2021, 63, 2005–2012. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Y.; Yu, M.; Zhou, K. The nucleus accumbens in reward and aversion processing: Insights and implications. Front. Behav. Neurosci. 2024, 18, 1420028. [Google Scholar] [CrossRef] [PubMed]
- Kouri, M.; Adamo, D.; Vardas, E.; Georgaki, M.; Canfora, F.; Mignogna, M.D.; Nikitakis, N. Small Fiber Neuropathy in Burning Mouth Syndrome: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 11442. [Google Scholar] [CrossRef]
- Inoue, K.; Tsuda, M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem. Pharmacol. 2021, 187, 114309. [Google Scholar] [CrossRef]
- Borsani, E.; Majorana, A.; Cocchi, M.A.; Conti, G.; Bonadeo, S.; Padovani, A.; Lauria, G.; Bardellini, E.; Rezzani, R.; Rodella, L.F. Epithelial expression of vanilloid and cannabinoid receptors: A potential role in burning mouth syndrome pathogenesis. Histol. Histopathol. 2014, 29, 523–533. [Google Scholar] [CrossRef]
- Herrero, J.F.; Laird, J.M.; López-García, J.A. Wind-up of spinal cord neurones and pain sensation: Much ado about something? Prog. Neurobiol. 2000, 61, 169–203. [Google Scholar] [CrossRef]
- Gremeau-Richard, C.; Pionchon, P.; Mulliez, A.; Dualé, C.; Dallel, R. Enhanced pain facilitation rather than impaired pain inhibition in burning mouth syndrome female patients. J. Headache Pain 2022, 23, 143. [Google Scholar] [CrossRef]
- Seol, S.H.; Chung, G. Estrogen-dependent regulation of transient receptor potential vanilloid 1 (TRPV1) and P2X purinoceptor 3 (P2X3): Implication in burning mouth syndrome. J. Dent. Sci. 2022, 17, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Le, A.A.; Lauterborn, J.C.; Jia, Y.; Cox, C.D.; Lynch, G.; Gall, C.M. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J. Neurosci. 2024, 44, e0438242024. [Google Scholar] [CrossRef] [PubMed]
- Sinding, C.; Gransjøen, A.M.; Schlumberger, G.; Grushka, M.; Frasnelli, J.; Singh, P.B. Grey matter changes of the pain matrix in patients with burning mouth syndrome. Eur. J. Neurosci. 2016, 43, 997–1005. [Google Scholar] [CrossRef]
- Cox, J.; Witten, I.B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 2019, 20, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Mair, R.G.; Francoeur, M.J.; Krell, E.M.; Gibson, B.M. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front. Behav. Neurosci. 2022, 16, 928610. [Google Scholar] [CrossRef]
- Hagelberg, N.; Forssell, H.; Rinne, J.O.; Scheinin, H.; Taiminen, T.; Aalto, S.; Luutonen, S.; Någren, K.; Jääskeläinen, S. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain 2003, 101, 149–154. [Google Scholar] [CrossRef]
- Du, Q.C.; Ge, Y.Y.; Xiao, W.L.; Wang, W.F. Dopamine agonist responsive burning mouth syndrome: Report of eight cases. World J. Clin. Cases 2021, 9, 6916–6921. [Google Scholar] [CrossRef]
- Raghavan, S.A.; Puttaswamiah, R.N.; Birur, P.N.; Ramaswamy, B.; Sunny, S.P. Antidepressant-induced Burning Mouth Syndrome: A Unique Case. Korean J. Pain 2014, 27, 294–296. [Google Scholar] [CrossRef]
- Obara, T.; Naito, H.; Nojima, T.; Koga, H.; Nakao, A. Burning Mouth Syndrome Induced by Angiotensin-Converting Enzyme Inhibitors. Cureus 2020, 12, e11376. [Google Scholar] [CrossRef]
- Nagamine, T. Mechanisms of Drug-Associated Burning Mouth Syndrome. J. Clin. Psychopharmacol. 2024, 44, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Borsook, D.; Linnman, C.; Faria, V.; Strassman, A.M.; Becerra, L.; Elman, I. Reward deficiency and anti-reward in pain chronification. Neurosci. Biobehav. Rev. 2016, 68, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Seminowicz, D.A.; Labus, J.S.; Bueller, J.A.; Tillisch, K.; Naliboff, B.D.; Bushnell, M.C.; Mayer, E.A. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 2010, 139, 48–57.e2. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Garcia, A.; Leon-Llamas, J.L.; Villafaina, S.; Gusi, N. Fibromyalgia impact in the prefrontal cortex subfields: An assessment with MRI. Clin. Neurol. Neurosurg. 2022, 219, 107344. [Google Scholar] [CrossRef]
- Nagamine, T. Two-hit theory by estrogen in burning mouth syndrome. J. Dent. Sci. 2022, 17, 1833–1834. [Google Scholar] [CrossRef]
- Goyette, M.J.; Murray, S.L.; Saldanha, C.J.; Holton, K. Sex Hormones, Neurosteroids, and Glutamatergic Neurotransmission: A Review of the Literature. Neuroendocrinology 2023, 113, 905–914. [Google Scholar] [CrossRef]
- Nagamine, T. Estrogen-Mediated Neural Mechanisms of Sex Differences in Burning Mouth Syndrome. Neurol. Int. 2025, 17, 61. [Google Scholar] [CrossRef]
- Kniffin, A.R.; Briand, L.A. Sex differences in glutamate transmission and plasticity in reward related regions. Front. Behav. Neurosci. 2024, 18, 1455478. [Google Scholar] [CrossRef]
- Bazzari, A.H.; Parri, H.R. Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci. 2019, 9, 300. [Google Scholar] [CrossRef]
- Knouse, M.C.; McGrath, A.G.; Deutschmann, A.U.; Rich, M.T.; Zallar, L.J.; Rajadhyaksha, A.M.; Briand, L.A. Sex differences in the medial prefrontal cortical glutamate system. Biol. Sex. Differ. 2022, 13, 66. [Google Scholar] [CrossRef]
- Torrisi, S.A.; Rizzo, S.; Laudani, S.; Ieraci, A.; Drago, F.; Leggio, G.M. Acute stress alters recognition memory and AMPA/NMDA receptor subunits in a sex-dependent manner. Neurobiol. Stress. 2023, 25, 100545. [Google Scholar] [CrossRef] [PubMed]
- Nees, F.; Becker, S. Psychological Processes in Chronic Pain: Influences of Reward and Fear Learning as Key Mechanisms—Behavioral Evidence, Neural Circuits, and Maladaptive Changes. Neuroscience 2018, 387, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, T. Amitriptyline at low dose for burning mouth syndrome. Oral. Dis. 2024, 30, 4650–4652. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, Y.D.; Boikov, S.I.; Sibarov, D.A.; Abushik, P.A.; Vanchakova, N.P.; Belinskaia, D.; Shestakova, N.N.; Antonov, S.M. Dual action of amitriptyline on NMDA receptors: Enhancement of Ca-dependent desensitization and trapping channel block. Sci. Rep. 2019, 9, 19454. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, H.; Chen, F.M.; Liu, J.L.; Jiang, L.; Zhou, Y.; Chen, Q.M. Efficacy evaluation of clonazepam for symptom remission in burning mouth syndrome: A meta-analysis. Oral. Dis. 2016, 22, 503–511. [Google Scholar] [CrossRef]
- Nagamine, T. Pathogenesis of Orofacial Pain Based on Brain Circuits. Oral Dis. 2025; ahead of print. [Google Scholar] [CrossRef]
Receptors | Role |
---|---|
TRPV1 receptor [22] | This receptor is upregulated in BMS patients, and its activation leads to pain sensation. Capsaicin, a compound found in chili peppers, is a strong agonist of TRPV1, and its use has shown promise in reducing BMS symptoms. |
P2X3 receptor [18] | These receptors are involved in eliciting burning pain sensations, and their activation by adenosine triphosphate (ATP) may play a role in BMS pain. |
CB2 receptor [19] | There’s a complex interplay between CB2 receptors and the condition, with studies suggesting an upregulation of CB2 receptors in the tongue of BMS patients. This increase in CB2 expression may be associated with changes in taste perception and pain signaling, potentially contributing to the burning sensation and other symptoms of BMS. |
NMDA receptor [23] | Glutamate activates NMDA receptors, triggering a cascade of intracellular events that enhance neuronal excitability and synaptic strength. This phenomenon is sometimes referred to as “wind-up”. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagamine, T. Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome. Pharmaceuticals 2025, 18, 894. https://doi.org/10.3390/ph18060894
Nagamine T. Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome. Pharmaceuticals. 2025; 18(6):894. https://doi.org/10.3390/ph18060894
Chicago/Turabian StyleNagamine, Takahiko. 2025. "Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome" Pharmaceuticals 18, no. 6: 894. https://doi.org/10.3390/ph18060894
APA StyleNagamine, T. (2025). Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome. Pharmaceuticals, 18(6), 894. https://doi.org/10.3390/ph18060894