Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = N deficiency conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3400 KB  
Article
EF1α and αTUB Are Stable Reference Gene Pairs for RT-qPCR-Based Gene Expression Studies in Salix suchowensis Under Nitrogen Treatment Conditions
by Lei Huang, Yuyi Zhang, Fei Gao, Yu Fu, Jing Sun, Jie Zhou, Jun Tao, Xudong He and Nan Guo
Plants 2025, 14(19), 3101; https://doi.org/10.3390/plants14193101 - 8 Oct 2025
Abstract
Salix suchowensis is an ideal model organism for investigating nitrogen (N) transport mechanisms due to its low N-input requirements. Accurate quantification of gene expression is essential for elucidating these processes, with quantitative real-time PCR (RT-qPCR) being the preferred method. However, the identification of [...] Read more.
Salix suchowensis is an ideal model organism for investigating nitrogen (N) transport mechanisms due to its low N-input requirements. Accurate quantification of gene expression is essential for elucidating these processes, with quantitative real-time PCR (RT-qPCR) being the preferred method. However, the identification of stable reference genes for normalization in Salix suchowensis under varying N conditions remains unresolved. In this study, thirteen commonly employed candidate reference genes were evaluated across root, stem, and leaf tissues, under four N treatments (NH4NO3, NH4+, NO3, and N deficiency). Five genes (UBQ1, UBQ3, 18S, H2A2, and H2B2) were excluded due to poor amplification efficiency or irregular melting curves. The remaining eight genes were further assessed for expression stability using the geNorm, NormFinder, and BestKeeper algorithms. Integrated ranking via RefFinder identified EF1α, EFβ, and αTUB as the most stable reference genes. GeNorm analysis suggested that two reference genes were sufficient for reliable normalization. Validation using the N-responsive gene SsAMT1 and SsNRT2 confirmed the stability of EF1α, EFβ, and αTUB as suitable reference genes. Based on comprehensive stability assessments and experimental validation, we recommended EF1α + αTUB as optimal reference gene pairs for RT-qPCR normalization under varying N conditions. Furthermore, the consistent expression of EF1α and αTUB across nine willow genotypes highlighted their broader applicability within Salix species. This study provides valuable methodological guidance for advancing molecular research on N transport in woody perennial plants. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

39 pages, 8028 KB  
Article
Parametric Visualization, Climate Adaptability Evaluation, and Optimization of Strategies for the Subtropical Hakka Enclosed House: The Guangludi Case in Meizhou
by Yijiao Zhou, Zhe Zhou, Pei Cai and Nangkula Utaberta
Buildings 2025, 15(19), 3530; https://doi.org/10.3390/buildings15193530 - 1 Oct 2025
Viewed by 157
Abstract
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. [...] Read more.
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. A mixed research method is employed, integrating visualized parametric modeling analysis and on-site measurement comparisons to quantify wind, temperature, solar radiation/illuminance, and humidity, along with human comfort zone limits and building environment. The results reveal that nature erosion in the Guangludi enclosed house is the most pronounced during winter and spring, particularly on exterior walls below 2.8 m. Key issues include bulging, spalling, molding, and fractured purlins caused by wind-driven rain, exacerbated by low wind speeds and limited solar exposure, especially at test spots like the E8–E10 and N1–N16 southeast and southern walls below 1.5 m. Fungal growth and plant intrusion are severe where surrounding trees and fengshui forests restrict wind flow and lighting. In terms of passive survivability, the Guangludi enclosed house has strong thermal insulation and buffering, aided by the Huatai mound; however, humidity and day illuminance deficiencies persist in the interstitial spaces between lateral rooms and the central hall. To address these issues, this study proposes strategies such as adding ventilation shafts and flexible partitions, optimizing patio dimensions and window-to-wall ratios, retaining the spatial layout and Fengshui pond to enhance wind airflow, and reinforcing the identified easily eroded spots with waterproofing, antimicrobial coatings, and extended eaves. Through parametric simulation and empirical validation, this study presents a climate-responsive retrofit framework that supports the sustainability and conservation of the subtropical Hakka enclosed house. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

11 pages, 5768 KB  
Article
Highly Efficient Solar Steam Generation by W18O49@PVA Gels
by Jiefeng Yan, Zhenxing Fang, Jinxing Hu, Yangming Sun, Xinyi Huang, Guannan Zhou, Lu Li, Rui Wang and Yan Chen
Gels 2025, 11(10), 783; https://doi.org/10.3390/gels11100783 - 30 Sep 2025
Viewed by 182
Abstract
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large [...] Read more.
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large amount of oxygen vacancies supports its performance in photothermal conversion. The synthesized tungsten oxides were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible absorption spectroscopy (UV-Vis). The composite gel was fabricated by the insertion of oxygen-deficient tungsten oxide into PVA-based gel, which was cross-linked by glutaraldehyde. The PVA-based gel ensures a matched water supply speed with that of the evaporation rate due to its hydrophilic nature. The result of the solar steam generation shows that the W18O49-PVA gel (steam generation rate 2.65 kg m−2 h−1) was faster than that of the pure PVA gel. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

27 pages, 2865 KB  
Article
Cecytb-2, a Cytochrome b561 Homolog, Functions as an Ascorbate-Specific Transmembrane Ferric Reductase at Intestinal Lumens of Caenorhabditis elegans
by Masahiro Miura, Misaki Fukuzawa, Hiroshi Hori, Kazuo Kobayashi, Mariam C. Recuenco and Motonari Tsubaki
Biomolecules 2025, 15(10), 1385; https://doi.org/10.3390/biom15101385 - 29 Sep 2025
Viewed by 265
Abstract
One of the cytochrome b561 family members in C. elegans, named Cecytb-2, was investigated. Purified recombinant Cecytb-2 showed typical visible absorption spectra, EPR signals, and redox midpoint potentials, very similar to those of human Dcytb, which is responsible for intestinal iron [...] Read more.
One of the cytochrome b561 family members in C. elegans, named Cecytb-2, was investigated. Purified recombinant Cecytb-2 showed typical visible absorption spectra, EPR signals, and redox midpoint potentials, very similar to those of human Dcytb, which is responsible for intestinal iron acquisition by its ferric reductase activity. Fast kinetic experiments using pulse radiolysis and stopped-flow techniques showed that Cecytb-2 donates electrons to monodehydroascorbate radicals with a much lower reactivity than other cytochrome b561 members, but it can accept electrons from ascorbate (AsA) as rapidly as other members. DEPC treatment of Cecytb-2 caused significant inhibition of electron acceptance from AsA and lowered the midpoint potential of heme bL. MS/MS MASCOT analyses verified that N-carbethoxylations of conserved Lys98 and heme bL axial His101 residues on the cytosolic side were major causes of the inhibition. Reconstituted Cecytb-2 in sealed vesicle membranes, in which AsA was entrapped, showed significant transmembrane ferric reductase activity. In situ hybridization analysis revealed that Cecytb-2 mRNA was distributed in intestinal cells. Immunohistochemical analysis indicated that Cecytb-2 resided in intestinal lumens. Knockdown of the Cecytb-2 gene expression in N2 worms indicated a significant suppression of growth under ferrous ion-deficient conditions. Thus, the ferric reductase activity conferred by Cecytb-2 seems to participate in iron acquisition and is very important for normal growth in low-ferrous conditions, confirming that Cecytb-2 is a genuine Dcytb homolog in C. elegans. Full article
(This article belongs to the Special Issue Oxidative Stress and Ferroptosis in Health and Disease)
Show Figures

Figure 1

18 pages, 2745 KB  
Article
Multi-Omics Analysis Reveals Concentrate Supplementation Alleviates Body Weight Loss by Regulating Rumen Function in Lactating Tibetan Sheep During the Cold Season
by Chao Yang, Qingling Ma, Jiancui Wang, Zhiyou Wang and Shengzhen Hou
Animals 2025, 15(19), 2791; https://doi.org/10.3390/ani15192791 - 25 Sep 2025
Viewed by 274
Abstract
The parturition season of grazing Tibetan ewes spans from October to March, a period that exacerbates the adverse impacts of nutrient-deficient herbage on milk yield, body condition, and postpartum recovery. To alleviate the weight loss of ewes during the cold seasons, we provided [...] Read more.
The parturition season of grazing Tibetan ewes spans from October to March, a period that exacerbates the adverse impacts of nutrient-deficient herbage on milk yield, body condition, and postpartum recovery. To alleviate the weight loss of ewes during the cold seasons, we provided concentrate supplements at four levels (dry matter (DM) basis), 260 g (C1), 440 g (C2), 520 g (C3), and 610 g (C4), alongside a basal diet of grazed pasture. A total of 96 multiparous Tibetan ewes (third parity, body weight: 45.17 ± 3.69 kg (body weight (BW) were enrolled within 12–18 h postpartum and randomly allocated to four dietary groups (n = 24 ewes per group). We measured growth performance, ruminal histomorphology, fermentation parameters, and digestive enzymes. A multi-omics technique (16S rRNA gene sequencing and RNA-seq) was employed to investigate the mechanisms underlying alterations in ruminal function. The results showed that increasing the concentrate level decreased body weight loss and increased average dry matter intake (p < 0.05). Rumen morphology was significantly altered: papilla width and muscle layer thickness were greatest in the C4 group, whereas submucosal thickness was highest in the C1 group (p < 0.05). Cellulase activity was lowest in the C1 group (p < 0.05). Papilla width of lactating Tibetan ewes in the C4 group was higher (p < 0.05) than that in the C1 and C3 groups. Concentrate supplementation altered ruminal microbiota composition and diversity. Each group exhibited a distinct microbial signature: the C1 group was characterized by Lachnospiraceae_XPB1014_group, Candidatus_Omnitrophus, Paenibacillus, and unclassified_Oligoflexaceae; the C2 group was enriched in Papillibacter, Anaerovibrio, V9D2013_group, and unclassified_Peptococcaceae; the C3 group was characterized by unclassified_Bacteroidales_RF16_group; and the C4 group was characterized by Ruminococcus, Pseudobutyrivibrio, and Mitsuokella (p < 0.05). Transcriptomic analysis identified differentially expressed genes (TRPA1, EPHB1, GATA3, C4, ABCG2, THBS4, and TNFRSF11B) that are predominantly involved in immune regulation, signal transduction, and nutrient digestion. The results of Spearman correlation analysis showed that Anaerovibrio was negatively correlated with propionate (r = −0.565, p < 0.05). However, it was positively correlated with the ratio of acetate and propionate (r = 0.579, p < 0.05). Moreover, Lachnospiraceae_XPB1014_group was negatively correlated with cellulase (r = −0.699, p < 0.05) and α-amylase (r = −0.514, p < 0.05). These findings suggest that the increasing concentrate supplementation alleviates body weight loss in lactating Tibetan sheep by orchestrating improvements in rumen histomorphology, digestive function, altering bacteria composition, and ruminal immune and modulating host epithelial gene expression. Full article
Show Figures

Figure 1

27 pages, 6994 KB  
Article
Effects of Bacillus amyloliquefaciens QST713 on Growth and Physiological Metabolism in Cucumber Under Low-Calcium Stress
by Li Zhang, Yan Guo, Xufeng Zhou, Shiyan Wang, Lingjuan Han and Bin Li
Horticulturae 2025, 11(9), 1131; https://doi.org/10.3390/horticulturae11091131 - 17 Sep 2025
Viewed by 388
Abstract
Soil acidification from excessive nitrogen and potassium fertilization in protected cucumber systems impairs calcium uptake, triggering physiological calcium deficiency and reducing yield. We investigated whether the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens QST713 could mitigate low-calcium stress in cucumber (‘Jinyou No. 4’). Under controlled [...] Read more.
Soil acidification from excessive nitrogen and potassium fertilization in protected cucumber systems impairs calcium uptake, triggering physiological calcium deficiency and reducing yield. We investigated whether the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens QST713 could mitigate low-calcium stress in cucumber (‘Jinyou No. 4’). Under controlled nutrient solution irrigation (4, 0.4, and 0 mmol/L Ca2+, with or without B. amyloliquefaciens QST713), low-calcium conditions suppressed growth, reduced ion uptake capacity, photosynthetic pigment content, gas exchange (Pn, Gs, Tr), PSII efficiency (ΦPSII, ETR), and decreased carbohydrate (starch, sucrose) accumulation, while disrupting nitrogen balance (decreases in NO3-N, soluble protein, and amino acids; increase in NH4+-N) and inhibiting key N-assimilation enzymes (NR, GS, GOGAT, GDH). Inoculation with B. amyloliquefaciens QST713 reversed these effects: it enhanced ion acquisition, chlorophyll content, and photosynthetic performance; restored carbohydrate reserves; promoted NO3 uptake and NH4+ assimilation; and upregulated N-metabolizing enzyme activities. Principal component analysis confirmed strong coupling among growth, photosynthesis, and C-N metabolism. In summary, low-calcium stress markedly inhibited cucumber growth, suppressed photosynthetic activity, and reduced the levels of carbon and nitrogen metabolism. Application of B. amyloliquefaciens QST713 effectively alleviated the physiological damage caused by low-calcium stress, enhancing photosynthetic performance and thereby accelerating the synthesis and turnover of carbon- and nitrogen-containing metabolites. These effects collectively improved cucumber tolerance to low-calcium conditions and promoted plant growth and development. This study provides a preliminary theoretical basis for further exploration of the stress-resistance capacity of B. amyloliquefaciens. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

22 pages, 3346 KB  
Brief Report
Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin
by Mei Dong, Han Luo and Qingning Wang
Diversity 2025, 17(9), 652; https://doi.org/10.3390/d17090652 - 17 Sep 2025
Viewed by 532
Abstract
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition [...] Read more.
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition under changing environmental conditions. This study investigated the physiological responses of six plant species (Haloxylon ammodendron (H.A.), Nitraria tangutorum Bobr. (N.T.B.), Sympegma regelii Bge. (S.R.B.), Tamarix chinensis (T.C.), Potentilla fruticosa (P.F.R.), and Sabina chinensis (Linn.) Ant. (S.C.A.)) to varying water stress levels through controlled water gradient experiments. Four treatment levels were established: W1 (full water supply, >70% field water holding capacity); W2 (mild stress, 50–55%); W3 (moderate stress, 35–40%); and W4 (severe stress, 20–25%). Height growth and leaf mass per area decreased significantly with increasing water stress across all species. S.C.A. consistently exhibited the highest leaf mass per area among the six species, while H.A. showed the lowest values across all treatments. Leaf water content declined progressively with intensifying water stress, with T.C. and P.F.R. showing the most pronounced reductions (T.C.: 16.53%, 18.07%, and 33.37% under W2, W3, and W4, respectively; P.F.R.: 19.45%, 28.52%, and 36.08%), whereas N.T.B. and H.A. demonstrated superior water retention capacity (N.T.B.: 2.44%, 6.64%, and 9.76%; H.A.: 1.44%, 4.39%, and 5.52%). Water saturation deficit increased correspondingly with declining soil moisture. Diurnal leaf water potential patterns exhibited a characteristic V-shaped curve under well-watered (W1) and mildly stressed (W2) conditions, transitioning to a double-valley pattern with unstable fluctuations under moderate (W3) and severe (W4) stress. Leaf water potential showed linear relationships with air temperature and relative humidity, and a quadratic relationship with atmospheric water potential. For all six species, the relationship between pre-dawn leaf water potential and soil water content followed the curve equation y = a + b/x. Under water-deficient conditions, S.C.A. exhibited the greatest water physiological changes, followed by P.F.R. Both logarithmic and power function relationships between leaf and soil water potentials were highly significant (all F > 55.275, all p < 0.01). T.C. leaf water potential was the most sensitive to soil water potential changes, followed by S.C.A., while H.A. demonstrated the least sensitivity. These findings provide essential theoretical foundations for selecting drought-resistant plant species in arid regions of the Qaidam Basin. This study elucidates the response mechanisms of six distinct drought-tolerant plant species under water stress. It provides critical theoretical support for selecting drought-tolerant species, designing community configurations, and implementing water management strategies in vegetation restoration projects within the arid Qaidam Basin. Furthermore, it contributes empirical data at the plant physiological level to understanding the mechanisms sustaining species diversity in arid ecosystems. Full article
(This article belongs to the Special Issue Ecology and Diversity of Plants in Arid and Semi-Arid Ecosystems)
Show Figures

Figure 1

19 pages, 2534 KB  
Article
Real-Time Driver Attention Detection in Complex Driving Environments via Binocular Depth Compensation and Multi-Source Temporal Bidirectional Long Short-Term Memory Network
by Shuhui Zhou, Wei Zhang, Yulong Liu, Xiaonian Chen and Huajie Liu
Sensors 2025, 25(17), 5548; https://doi.org/10.3390/s25175548 - 5 Sep 2025
Viewed by 1076
Abstract
Driver distraction is a key factor contributing to traffic accidents. However, in existing computer vision-based methods for driver attention state recognition, monocular camera-based approaches often suffer from low accuracy, while multi-sensor data fusion techniques are compromised by poor real-time performance. To address these [...] Read more.
Driver distraction is a key factor contributing to traffic accidents. However, in existing computer vision-based methods for driver attention state recognition, monocular camera-based approaches often suffer from low accuracy, while multi-sensor data fusion techniques are compromised by poor real-time performance. To address these limitations, this paper proposes a Real-time Driver Attention State Recognition method (RT-DASR). RT-DASR comprises two core components: Binocular Vision Depth-Compensated Head Pose Estimation (BV-DHPE) and Multi-source Temporal Bidirectional Long Short-Term Memory (MSTBi-LSTM). BV-DHPE employs binocular cameras and YOLO11n (You Only Look Once) Pose to locate facial landmarks, calculating spatial distances via binocular disparity to compensate for monocular depth deficiency for accurate pose estimation. MSTBi-LSTM utilizes a lightweight Bidirectional Long Short-Term Memory (Bi-LSTM) network to fuse head pose angles, real-time vehicle speed, and gaze region semantics, bidirectionally extracting temporal features for continuous attention state discrimination. Evaluated under challenging conditions (e.g., illumination changes, occlusion), BV-DHPE achieved 44.7% reduction in head pose Mean Absolute Error (MAE) compared to monocular vision methods. RT-DASR achieved 90.4% attention recognition accuracy with 21.5 ms average latency when deployed on NVIDIA Jetson Orin. Real-world driving scenario tests confirm that the proposed method provides a high-precision, low-latency attention state recognition solution for enhancing the safety of mining vehicle drivers. RT-DASR can be integrated into advanced driver assistance systems to enable proactive accident prevention. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 6791 KB  
Article
Hepatic Histopathological Benefit, Microbial Cost: Oral Vancomycin Mitigates Non-Alcoholic Fatty Liver Disease While Disrupting the Cecal Microbiota
by Gül Çirkin, Selma Aydemir, Burcu Açıkgöz, Aslı Çelik, Yunus Güler, Müge Kiray, Başak Baykara, Ener Çağrı Dinleyici and Yeşim Öztürk
Int. J. Mol. Sci. 2025, 26(17), 8616; https://doi.org/10.3390/ijms26178616 - 4 Sep 2025
Viewed by 808
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) encompasses a spectrum of liver conditions and involves gut–liver axis crosstalk. We aimed to evaluate whether oral vancomycin modifies liver injury and the cecal microbiota in a methionine–choline-deficient (MCD) diet model of NASH. Male [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) encompasses a spectrum of liver conditions and involves gut–liver axis crosstalk. We aimed to evaluate whether oral vancomycin modifies liver injury and the cecal microbiota in a methionine–choline-deficient (MCD) diet model of NASH. Male C57BL/6J mice (n = 28) were block-randomized to four groups (n = 7 each) for 10 weeks: standard diet (STD); MCD diet; STD + vancomycin (VANC); and MCD + VANC (2 mg/mouse ≈ 50 mg/kg, every 72 h). After 10 weeks, liver tissues were analyzed for histological changes, cytokine levels [interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor beta 1 (TGF-β1)], and immunohistochemical markers [ubiquitin and cytokeratin 18 (CK18)]. Cecal microbiota composition was evaluated with 16S ribosomal RNA (rRNA) sequencing. The MCD reproduced key NASH features (macrovesicular steatosis, lobular inflammation). Vancomycin shifted steatosis toward a microvesicular pattern and reduced hepatocyte injury: CK18 and ubiquitin immunoreactivity were decreased in MCD + VANC vs. MCD, and hepatic IL-8 and TGF-β1 levels were lower in MCD + VANC vs. STD. Taxonomically, STD mice had Lactobacillus-rich microbiota. The MCD diet alone reduced alpha diversity (α-diversity), modestly lowered Firmicutes and increased Desulfobacterota/Fusobacteriota. Vancomycin alone caused a much larger collapse in richness, depleting Gram-positive commensals and promoting blooms of Escherichia–Shigella, Klebsiella, Parabacteroides, and Akkermansia. In the MCD + VANC group, vancomycin profoundly remodeled the microbiota, eliminating key commensals (e.g., Lactobacillus) and enriching Desulfobacterota, Fusobacteriota, and Campylobacterota. Oral vancomycin in the MCD model of NASH improved liver injury markers and altered steatosis morphology, but concurrently reprogrammed the gut into a low-diversity, pathobiont-enriched ecosystem with near-loss of Lactobacillus. These findings highlight a therapeutic trade-off—hepatic benefit accompanied by microbiome cost—that should guide microbiota-targeted strategies for NAFLD/NASH. Full article
Show Figures

Figure 1

15 pages, 1488 KB  
Article
Deficiency of N1-Adenine Methyltransferase Aggravates RNA and Protein Aggregation
by Marion Alriquet, Roberto Arsiè, Giulia Calloni, Gian G. Tartaglia and R. Martin Vabulas
Cells 2025, 14(17), 1370; https://doi.org/10.3390/cells14171370 - 2 Sep 2025
Viewed by 794
Abstract
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated [...] Read more.
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated in protecting mRNAs during acute protein misfolding stress. However, the role of m1A under chronic proteotoxic conditions, such as intracellular amyloid aggregation, remains poorly understood. To address this gap, we examined the effects of reduced N1-adenine methylation in human cells undergoing amyloidogenesis. Suppression of the methyltransferase TRMT61A or overexpression of the m1A-specific demethylase ALKBH3 enhanced amyloid aggregation. A deficiency of N1-adenine methylation also impaired the expression of a reporter mRNA-encoded protein, highlighting the protective role of m1A in safeguarding transcript functionality. Proteomic analysis of amyloid aggregates from TRMT61A-deficient cells revealed increased co-aggregation of bystander proteins, particularly those with known RNA-binding activity. At the same time, the aggregates from methylation-deficient cells contained elevated levels of mRNAs. Collectively, our findings support a role for m1A in preventing RNA entanglement within aggregates and limiting RNA-mediated propagation of protein co-aggregation. Full article
Show Figures

Figure 1

20 pages, 2002 KB  
Article
Evaluating Growth and Nitrogen and Phosphorus Removal of Four Microalgae in Different Nutrient Concentrations
by Peizhen Ma, Xiaoqin Li, Biao Wu, Zhihong Liu, Zhuanzhuan Li, Xiujun Sun, Liqing Zhou and Meirong Du
Biology 2025, 14(9), 1155; https://doi.org/10.3390/biology14091155 - 1 Sep 2025
Viewed by 647
Abstract
The environmental problems brought about by factory-based aquaculture have become increasingly prominent. Reducing nitrogen and phosphorus concentrations in tailwater has become the key to tailwater management. In order to assess the potential of microalgae in removing nitrogen and phosphorus ions from aquaculture wastewater, [...] Read more.
The environmental problems brought about by factory-based aquaculture have become increasingly prominent. Reducing nitrogen and phosphorus concentrations in tailwater has become the key to tailwater management. In order to assess the potential of microalgae in removing nitrogen and phosphorus ions from aquaculture wastewater, four microalgae species, i.e., Chlorella sp., Dicrateria zhanjiangensis, Nitzschia closterium minutissima, and Platymonas subcordiformis, were used in this study, and their growth and nitrogen and phosphorus removal rates in four nutrient concentrations of simulated aquaculture wastewater were systematically evaluated. After 15 days of cultivation, the cell counts of all four types of microalgae increased. Three species, i.e., Chlorella sp., N. closterium minutissima, and P. subcordiformis, grew best in high PO43− and low NH4+ medium, whereas D. zhanjiangensis possessed best growth in low PO43− and high NH4+ medium. The removal rate of PO43−, NH4+, NO3, and NO2 by four microalgae species exceeded 82.64%, 89.06%, 59.27%, and 42.15%, respectively, even though the four microalgae had different performance in the removal of nitrogen and phosphorus. All microalgae in the low-phosphorus groups removed PO43− at significantly lower rates than those in the high–phosphorus groups, while high NH4+ removal rates were observed in all four microalgae groups. Moreover, in phosphorus-limited conditions, four microalgae exhibit lower removal rates of NO3 when nitrogen content was high. The chlorophyll a contents of microalgae in four culture media strictly corresponded to their final cell densities. P. subcordiformis exhibited the highest intracellular polysaccharide accumulation in high PO43− and low NH4+ type medium, whereas D. zhanjiangensis demonstrated the strongest protein synthesis capacity in high PO43− and low NH4+ medium. The activities of acid phosphatase in all microalgae were higher under phosphorus–deficient conditions than phosphorus-sufficient conditions. Our results might provide useful references for microalgae selection in the treatment of different aquaculture wastewater conditions. Full article
Show Figures

Figure 1

14 pages, 600 KB  
Article
Dental Implants Rehabilitation in Patients with Vitamin D3 Imbalance: A Randomized Controlled Trial
by Ekaterina Diachkova, Marina Skachkova, Yuryi Zhilkov, Magamed Kerimov, Svetlana Tarasenko, Anna Babkova, Natalia Zhukova, Svetlana Bokareva, Silvio Taschieri, Alexey Unkovskiy, Olesya Kytko, Viktoria Zaborova, Elizaveta Kytko and Stefano Corbella
Appl. Sci. 2025, 15(17), 9490; https://doi.org/10.3390/app15179490 - 29 Aug 2025
Viewed by 912
Abstract
Background: Vitamin D3 is an important factor for bone metabolism, and its deficiency may affect dental implantation results. Materials and methods: 384 patients with a diagnosis of tooth loss and vitamin D deficiency were examined and treated with dental implants. Vitamin D3 supplements [...] Read more.
Background: Vitamin D3 is an important factor for bone metabolism, and its deficiency may affect dental implantation results. Materials and methods: 384 patients with a diagnosis of tooth loss and vitamin D deficiency were examined and treated with dental implants. Vitamin D3 supplements were prescribed by the endocrinologist for all patients in the individual dose. The patients were divided into two equal study groups (n = 192) depending on the dental implantation period: Group 1—operation after blood serum vitamin D3 level normalization; group 2—before reaching the reference level of vitamin D3. Follow-up examinations were performed on the day of dental implantation, 7 days later, 1, 3, 6, and 12 months later, and every 1 year after treatment (up to 10 years). Implant stability and peri-implant tissue condition were assessed with clinical and X-ray diagnostics. Patients also visited an endocrinologist 2 months after the start of the treatment, then every 6 months. Results: The target vitamin D3 level (30–60 ng/mL) (p < 0.001) was achieved in all patients after treatment. At the control examinations, peri-implantitis was diagnosed in 10 patients (2.6%). It was detected in the group of patients with severe vitamin D deficiency and vitamin D deficiency—2 (25%) and 8 (3.4%) patients; respectively (p < 0.05). There was no significant difference between groups for risk of complications or bone quality after treatment. Conclusions: Timely screening of vitamin D3 levels and the appropriate treatment by an endocrinologist in young and middle-aged patients allow for achieving 97.4% dental implantation success for a ten-year period. Full article
Show Figures

Figure 1

25 pages, 9557 KB  
Article
Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings
by Fang Wang, Luhui Jia, Zhiming Zhong, Zelong Zhuang, Bingbing Jin, Xiangzhuo Ji, Mingxing Bai and Yunling Peng
Plants 2025, 14(17), 2689; https://doi.org/10.3390/plants14172689 - 28 Aug 2025
Viewed by 494
Abstract
Nitrogen is an essential nutrient for the growth and development of maize (Zea mays L.), and soil nitrogen deficiency is an important factor limiting maize yield. Although excessive application of nitrogen fertilizer can increase yield, it can also cause environmental problems. Therefore, [...] Read more.
Nitrogen is an essential nutrient for the growth and development of maize (Zea mays L.), and soil nitrogen deficiency is an important factor limiting maize yield. Although excessive application of nitrogen fertilizer can increase yield, it can also cause environmental problems. Therefore, screening low-nitrogen-tolerant (LNT) germplasm resources and analyzing their genetic mechanisms are of great significance for the development of efficient and environmentally friendly agriculture. In this study, 201 maize inbred lines were used as materials. Two levels of low nitrogen (LN) (0.05 mmol/L, N1) and normal nitrogen (4 mmol/L, N2) were set up. Phenotypic indicators such as seedling length, root length and biomass were measured, and they were classified into LNT type (18 samples), nitrogen-sensitive (NS) type (27 samples) and intermediate type (156 samples). A total of 47 significant SNP loci were detected through a genome-wide association study (GWAS), and 36 candidate genes were predicted. Transcriptome sequencing (RNA-seq) analysis revealed that the differentially expressed genes (753 upregulated and 620 downregulated) in LNT materials under low nitrogen stress (LNS) were significantly fewer than those in NS materials (2436 upregulated and 2228 downregulated). Further analysis using WGCNA identified a total of eight co-expression modules. Among them, the red module was significantly correlated with root length and underground fresh weight under LN conditions (r = 0.75), and three key genes for stress response (Zm00001d005264, Zm00001d053931, Zm00001d044292) were screened out. Combined with GWAS, RNA-seq and qRT-PCR verification, eight candidate genes closely related to LNT at the seedling stage of maize were finally determined, involving biological processes such as stress response, nitrogen metabolism and substance formation. This study initially revealed the molecular mechanism of maize tolerance to LN through multi-omics analysis, providing a theoretical basis and genetic resources for breeding new nitrogen-efficient maize varieties. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

26 pages, 40392 KB  
Article
Crop Health Assessment from Predicted AGB and NPK Derived from UAV Spectral Indices and Machine Learning Techniques
by Ayyappa Reddy Allu and Shashi Mesapam
Agronomy 2025, 15(9), 2059; https://doi.org/10.3390/agronomy15092059 - 27 Aug 2025
Viewed by 747
Abstract
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer [...] Read more.
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer from coarse spatial resolution, and insufficient precision at the plant level. These limitations hinder accurate and dynamic assessment of crop health, particularly for high-resolution applications such as nutrient diagnosis during different crop growth stages. This study addresses these gaps by leveraging high-resolution UAV (Unmanned Aerial Vehicle) imagery to monitor the health of paddy crops across multiple temporal stages. A novel methodology was implemented to assess the crop health condition from the predicted Above-Ground Biomass (AGB) and essential macro-nutrients (N, P, K) using vegetation indices derived from UAV imagery. Four machine learning models were used to predict these parameters based on field observed data, with Random Forest (RF) and XGBoost outperforming other algorithms, achieving high regression scores (AGB > 0.92, N > 0.96, P > 0.92, K > 0.97) and low prediction errors (AGB < 80 gm/m2, N < 0.11%, P < 0.007%, K < 0.08%). A significant contribution of this study lies in the development of decision-making rules based on threshold values of AGB and specific nutrient critical, optimum, and toxic levels for the paddy crop. These rules were used to derive crop health maps from the predicted AGB and NPK values. The resulting spatial health maps, generated using RF and XGBoost models with high classification accuracy (Kappa coefficient > 0.64), visualize intra-field variability, allowing for site-specific interventions. This research contributes significantly to precision agriculture by offering a robust, plant-level monitoring approach that supports timely, site-specific nutrient management and enhances sustainable crop production practices. Full article
Show Figures

Figure 1

18 pages, 1642 KB  
Article
Evaluation of Cardiac Biomarkers in Lambs with White Muscle Disease
by Gencay Ekinci, Murat Eren, Kübra Yağlı, Celil Bendeş, Görkem Ekebaş, Emre Tüfekçi, Sefa Güzel, Latife Çakır Bayram, Ali Cesur Onmaz, Vehbi Güneş, Mehmet Çitil and İhsan Keleş
Vet. Sci. 2025, 12(8), 774; https://doi.org/10.3390/vetsci12080774 - 19 Aug 2025
Viewed by 703
Abstract
White muscle disease (WMD) is a degenerative condition of the skeletal and/or cardiac muscle associated with selenium (Se) and/or vitamin E deficiency, which can present in acute, subacute, or chronic forms, and is most commonly observed in young, rapidly growing animals, though it [...] Read more.
White muscle disease (WMD) is a degenerative condition of the skeletal and/or cardiac muscle associated with selenium (Se) and/or vitamin E deficiency, which can present in acute, subacute, or chronic forms, and is most commonly observed in young, rapidly growing animals, though it may also occur in older individuals. This study aims to determine the serum concentrations of galectin-3 (Gal-3), cardiac troponin I (cTnI), and N-terminal pro-brain natriuretic peptide (NT-proBNP), as well as the activity of creatine kinase-myocardial band (CK-MB), in lambs diagnosed with WMD, and to investigate the diagnostic potential of these biomarkers in the evaluation of myocardial injury and skeletal and/or cardiac muscle necrosis associated with WMD. A total of 50 lambs, 20 healthy and 30 with WMD, were included in the study. The diagnosis of WMD was made based on clinical signs, laboratory results, necropsy findings, and blood vitamin E and Se concentrations. The lambs in the WMD group were categorized into two subgroups: confirmed, severe aWMD (acute animals, n = 10) lambs and presumed sWMD (subacute animals, n = 20), based on the clinical progression and severity of the disease. Serum levels of NT-proBNP, Gal-3, and cTnI were assessed using the ELISA technique. Levels of cTnI and CK-MB indicative of myocardial injury were found to be considerably elevated in the aWMD group (p < 0.001) in comparison to both the sWMD and control groups. CK-MB showed a strong positive correlation with cTnI (r = 0.819, p < 0.001). The serum concentrations of Gal-3 and NT-proBNP in healthy lambs were 2.55 ± 0.52 ng/mL and 3.28 ± 0.71 ng/mL, respectively. Serum Gal-3 concentrations were measured as 2.99 ± 0.44 ng/mL in the aWMD group and 3.07 ± 0.42 ng/mL in the sWMD group, while NT-proBNP concentrations were 2.15 ± 0.32 ng/mL and 2.64 ± 0.55 ng/mL in the aWMD and sWMD groups, respectively. No statistically significant differences were found in serum Gal-3 or NT-proBNP levels among the three groups (p > 0.05). In conclusion, this study is the first investigation assessing serum concentrations of Gal-3 and NT-proBNP in lambs afflicted with WMD. The results suggest that Gal-3 and NT-proBNP are ineffective biomarkers for assessing myocardial injury and skeletal and/or cardiac muscle necrosis associated with WMD in lambs. However, cTnI and CK-MB appear to be significant indicators of cardiac involvement in both acute and subacute scenarios. Further research is required to elucidate the molecular function of Gal-3 in muscle and cardiac disease in lambs afflicted with WMD. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

Back to TopTop