Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings
Abstract
1. Introduction
2. Results
2.1. Phenotypic Variation Analysis and Material Screening
2.1.1. Variation Characteristics of Phenotypic Traits Under Different Nitrogen Levels
2.1.2. Correlation Analysis of Various Growth Indicators Among Associated Populations Under Different Nitrogen Levels
2.1.3. Comprehensive Evaluation of LNT and Material Classification
2.1.4. Phenotypic Verification and Analysis of LNT and NS Materials
2.2. Genome-Wide Association Analysis
2.2.1. Population Genetic Characteristics and Association Analysis Parameters
2.2.2. GWAS Analysis Reveals the Distribution of Genetic Loci for LNT Traits in Maize
2.2.3. Candidate Gene Prediction and Analysis
2.3. Transcriptomic Analysis
2.3.1. Transcriptome Sequencing Results and Quality Assessment
2.3.2. Analysis of Differentially Expressed Genes
2.3.3. Differential Gene GO (Gene Ontology) Analysis
2.3.4. KEGG (Kyoto Encyclopedia of Genes and Genomes) Annotation Analysis of Differentially Expressed Genes
2.3.5. Weighted Gene Co-Expression Network Analysis
2.4. Candidate Gene Screening Based on Multi-Omics Integration
2.5. Verification and Analysis of Candidate Gene Expression
3. Discussion
3.1. Identification Indicators and Screening System for LNT Materials
3.2. Application of Genome-Wide Association Analysis in the Study of Maize Tolerance to Low Ni Trogen
3.3. Analysis of the Transcriptional Regulatory Mechanism of Maize Tolerance to Low Nitrogen
3.4. Candidate Genes and Molecular Regulatory Networks for LNT in Maize
4. Materials and Methods
4.1. Experimental Materials and Phenotypic Analysis Under Low Nitrogen Stress
4.2. Whole-Genome Resequencing and GWAS Analysis
4.3. Transcriptome Sequencing and Data Analysis
- NS materials: NS0.05L (leaves), NS0.05R (roots), NS4L (leaves), NS4R (roots)
- LNT materials: NT0.05L (leaves), NT0.05R (roots), NT4L (leaves), NT4R (roots)
4.4. Candidate Gene Verification and qRT-PCR Analysis
4.5. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Liu, E.K.; Zong, R.; Gao, X.; Fu, X.Y.; Gao, Y.; Li, Q.M.; Li, Q.Q. Response of water and nitrogen utilization efficiency of maize to phased drought and nitrogen application 3. Chin. Agric. Sci. Bull. 2024, 40, 11–16. Available online: http://www.casb.org.cn (accessed on 20 July 2025).
- Wu, Y.C.; Gao, T.T.; Hou, Z.Y.; Du, J.H.; Dai, Y.X.; Ren, J.; Jin, Y.N.; Liu, Y.F.; Xu, G.L.; Li, M. Identification and screening of low-nitrogen tolerance in maize inbred lines at seedling stage. Jiangsu Agric. Sci. 2024, 52, 62–68. [Google Scholar] [CrossRef]
- Gironde, A.; Poret, M.; Etienne, P.; Jacques, T.; Alain, B.; Cahérec, F.L.; Laurent, L.; Mathilde, O.; Niogret, M.F.; Carole, D. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape. J. Exp. Bot. 2015, 66, 2461–2473. [Google Scholar] [CrossRef]
- Pia, W.L.; Forde, B.G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l-glutamate-induced changes in root architecture. Plant J. 2008, 54, 820–828. [Google Scholar] [CrossRef]
- Li, C. Functional Analysis of Ammonium Transporter Genes OsAMT1.1 and OsAMT2.1 in Rice. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2016. [Google Scholar]
- Fan, X.; Zhong, T.; Tan, Y.; Yong, Z.; Xu, G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc. Natl. Acad. Sci. USA 2016, 113, 7118–7123. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Islam, M.M.; Wang, R.; Guo, J.Y.; Luo, H.L.; Chen, F.J.; Li, X.X. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta 2020, 251, 66. [Google Scholar] [CrossRef]
- Zhang, M.L.; Wang, Y.C.; Wu, Q.; Sun, Y.M.; Zhao, C.X.; Ge, M.; Zhou, L.; Zhang, T.F.; Zhang, W.; Qian, Y.L.; et al. Time-course transcriptomic analysis reveals transcription factors involved in modulating nitrogen sensibility in maize. J. Genet. Genom. 2024, 53, 400–410. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Olokhnuud, C.; Glass, A.D.M.; Tong, Y.; Zhang, F.; Mi, G. Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. J. Plant Nutr. Soil Sci. 2009, 172, 230–236. [Google Scholar] [CrossRef]
- Saengwilai, P.; Tian, X.; Lynch, J.P. Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol. 2014, 166, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.L.; Li, Q.; Zha, L.; Zhu, M.; Cheng, Q.B.; Yuan, J.C.; Kong, F.L. Effects of low nitrogen stress on root morphology and physiological characteristics of maize varieties with different low-nitrogen tolerance at seedling stage. Chin. J. Eco-Agric. 2015, 23, 946–953. [Google Scholar] [CrossRef]
- Wu, Y.W.; Li, Q.; Dou, P.; Kong, F.L.; Ma, X.J.; Cheng, Q.B.; Yuan, J.C. Effect of low nitrogen stress on bleeding sap characters and root activity of maize cultivars with different low N tolerance. J. Plant Nutr. Fertil. 2017, 23, 278–288. [Google Scholar] [CrossRef]
- Li, P.C. Genetic Analysis of Root Traits and the Relationship with Nitrogen Use Efficiency in Maize (Zea mays L.). Ph.D. Thesis, China Agricultural University, Beijing, China, 2015. [Google Scholar]
- Guo, X.Y.; Chen, J.J.; Wei, X.Y.; Zhu, Y.F.; Wang, A.G.; Liu, P.F.; Tang, J.H.; Chen, Z.H. QTL mapping of flowering related traits of maize with and without nitrogen application. J. Plant Nutr. Fertil. 2017, 23, 297–303. [Google Scholar] [CrossRef]
- Li, X.P.; Zhou, Z.J.; Ding, J.Q.; Wu, Y.B.; Zhou, B.; Wang, R.X.; Ma, J.L.; Wang, S.W.; Zhang, X.C.; Xia, Z.L.; et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front. Plant Sci. 2017, 7, 833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Wang, X.; Pan, Q.C.; Li, P.; Liu, Y.J.; Lu, X.D.; Zhong, W.S.; Li, M.Q.; Han, L.Q.; Li, J.; et al. QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. BMC Plant Biol. 2019, 12, 426–437. [Google Scholar] [CrossRef] [PubMed]
- He, B. QTL Mapping for Controlling Leaf Type-Related Traits of Maize Under Different Nitrogen Treatment Conditions. Master’s Thesis, Guizhou University, Guiyang, China, 2021. [Google Scholar] [CrossRef]
- Xing, J.P.; Zhang, J.; Wang, Y.B.; Wei, X.; Yin, Z.C.; Zhang, Y.Q.; Pu, A.Q.; Dong, Z.Y.; Long, Y.; Wan, X.Y. Mining genic resources reg-ulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. Plant J. 2024, 117, 1148–1164. [Google Scholar] [CrossRef]
- Li, J.F.; Cao, H.R.; Li, S.X.; Dong, X.N.; Zhao, Z.; Jia, Z.T.; Yuan, L.X. Genetic and molecular mechanisms underlying nitrogen use efficiency in maize. J. Genet. Genom. 2025, 53, 276–286. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.P.; Zhang, M.W.; Niu, J.; Zhao, X.; He, G.H.; Qiao, J.F. Analysis of differentially expressed genes in two different nitrogen efficiency maize varieties in response to nitrogen reduction. J. Henan Agric. Sci. 2022, 51, 10–24. [Google Scholar] [CrossRef]
- Wang, B.T.; Yang, M.L.; Guo, H.; Wang, J.; Wang, Z.H.; Lu, H.W.; Cheng, J.M.; Qin, G.W.; Chen, J.F. Genome-wide association analysis for maize stem nutritional quality traits and candidate gene selection. J. North. Agric. 2023, 51, 227. [Google Scholar] [CrossRef]
- Li, B.; Chen, L.; Sun, W.; Wu, D.; Wang, M.; Yu, Y.; Chen, G.; Yang, W.; Lin, Z.; Zhang, X. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol. J. 2020, 18, 2533–2544. [Google Scholar] [CrossRef]
- Wang, H.M.; Wei, J.; Li, P.C.; Wang, Y.Y.; Ge, Z.Z.; Qian, J.Y.; Fan, Y.Y.; Ni, J.R.; Xu, Y.; Yang, Z.F.; et al. Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes 2019, 10, 773. [Google Scholar] [CrossRef]
- Shi, J.; Shi, J.X.; Liang, W.Q.; Zhang, D.B. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor. Appl. Genet. 2021, 134, 3553–3562. [Google Scholar] [CrossRef]
- Khatab, A.A.; Li, J.G.; Hu, L.H.; Yang, J.Y.; Fan, C.C.; Wang, L.Q.; Xie, G.S. Global identifcation of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. Planta 2022, 256, 82. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Y.; Pan, X.D.; Du, J.J.; Ma, L.M.; Guo, X.Y. Discovery of leaf region and time point related modules and genes in maize (Zea mays L.) leaves by weighted gene co-expression network analysis (WGCNA) of gene expression profiles of carbon metabolism. J. Integr. Agric. 2019, 18, 350–360. [Google Scholar] [CrossRef]
- Liu, D.; Sun, Y.Y.; Chai, Y.S.; Wei, C.Q.; Xie, Z.; Li, H.L.; Chen, D.J.; Xu, D.H. Research progress on screening of nitrogen efficient rice 786 genotypes and related genes. China Seed Ind. 2018, 18–21. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.W.; Li, W.; Zhou, S.M.; Xu, F.D.; He, D.X. Analysis of root morphological quantitative traits in wheat seedlings with different nitrogen use efficiency. J. Triticeae Crops 2021, 1–9. [Google Scholar] [CrossRef]
- Liu, D.P. Comparative Study on Nitrogen Absorption and Utilization Characteristics of Different Rapeseed Varieties. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2006. [Google Scholar]
- Zheng, J.K.; Wen, C.Y.; Zhang, T.; Yang, L.; Yang, Q.H.; Zhen, J.M.; Yang, S.T.; Tang, J.Y.; Tian, C. Screening of rice materials tolerant to low nitrogen and study on screening indices. J. Anhui Agric. Sci. 2009, 37, 7361–7363+7377. [Google Scholar] [CrossRef]
- Cheng, H. Screening of Potato Varieties with high Nitrogen Use Efficiency and Study on Their Physiological Mechanisms. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2010. [Google Scholar]
- Li, Q.; Luo, Y.H.; Yu, D.H.; Kong, F.L.; Yang, S.M.; Yuan, J.C. Effects of low nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of low-nitrogen tolerant maize varieties at seedling stage. J. Plant Nutr. Fertil. 2015, 21, 1132–1141. [Google Scholar] [CrossRef]
- Zeng, J.M. Establishment of Nitrogen Efficiency Evaluation System and Study on the Mechanism of High Nitrogen Efficiency Formation in Rice. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2006. [Google Scholar]
- Wang, H.L.; Han, J.J.; Li, M.M.; Nan FBLi, W.H. Development of functional markers and their application in cereal crops. J. Nucl. Agric. Sci. 2014, 28, 1963–1971. [Google Scholar]
- Cao, Y.J.; Yang, J.F.; Wang, Y. Application of genome-wide association study in crop breeding research. J. Nucl. Agric. Sci. 2019, 33, 1508–1518. [Google Scholar]
- Liang, Y.Y.; Li, D.Y.; Xu, H.; Wang, Y.; Tang, J.H.; Han, Y.L. QTL mapping for biomass, nitrogen concentration and nitrogen accumulation in maize SSSL population under high and low nitrogen conditions. J. Plant Nutr. Fertil. 2020, 26, 1226–1238. [Google Scholar]
- Li, L.L. QTL Mapping for Fast Chlorophyll Fluorescence Parameters and Yield-Related Traits In Maize. Master’s Thesis, Yangzhou University, Yangzhou, China, 2020. [Google Scholar] [CrossRef]
- Ma, J.; Wang, H.; Wang, L.F.; Cao, Y.Y.; Li, J.J.; Thomas, L.; Wang, L.Y.; Li, H.Y. Mapping of yield-related traits and meta-QTL integration in maize. J. Plant Genet. Resour. 2019, 20, 37–47. [Google Scholar] [CrossRef]
- Gao, W.C. QTL Mapping for Yield-Related Traits Using IBM Syn10 DH Population in Maize. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2014. [Google Scholar]
- He, K H. Mining of Genetic Loci for Nitrogen Use Efficiency in Maize Based on Genome-Wide Association Study. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018.
- Xu, D.D.; Sun, F.; Wang, Y.X.; Shi, Y.Y.; Wang, W.S.; Fu, B.Y. Research progress on biological functions of ubiquitin/26S proteasome pathway in rice. J. Agric. Sci. Technol. 2018, 20, 25–33. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhu, J.H.; Ni, Y.M.; Zhang, Z.L. Structural characteristics and biological functions of bHLH transcription factors in plants. J. Trop. Subtrop. Bot. 2011, 19, 84–90. [Google Scholar]
- Zhang W, T. Functional Study of Maize ZmCYP72A5 Gene. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2020. [Google Scholar] [CrossRef]
- Wang, C.; Xiang, C.; Qu, L.J.; Zhang, J.W.; Shi, Y.Y. Research progress on physiological mechanisms of nitrogen absorption, transport and utilization, and genetic basis of low-nitrogen tolerance in rice. Chin. Agric. Sci. Bull. 2014, 30, 1–9. [Google Scholar]
- Wu, Y. Changes in Root Anatomical Structure Induced by Low Nitrogen and Their Effects on Nitrogen Uptake and Allocation in Rice. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, F.; Ying, F.; Chen, X.; Chen, Y.; Zhang, W.; Dai, H.E.; Lin, R.; Lin, L. The non-canonical tetratricopeptide repeat (tpr) domain of fluorescent (flu) mediates complex formation with glutamyl-tRNA reductase. J. Biol. Chem. 2015, 290, 17559–17565. [Google Scholar] [CrossRef]
- Pan, R.H.; Liu, J.; Wang, S.S.; Hu, J.P. Peroxisomes: Versatile organelles with diverse roles in plants. New Phytol. 2019, 225, 1410–1423. [Google Scholar] [CrossRef]
- Tseng, T.S.; Salomé, P.A.; Mcclung, B.C.R.; Olszewskia, N.E. SPINDLY and GIGANTEA Interact and Act in Arabidopsis thaliana Pathways Involved in Light Responses, Flowering, and Rhythms in Cotyledon Movements. Plant Cell 2004, 16, 1550–1563. [Google Scholar] [CrossRef]
- Lin, Z.; Chin-Wen, H.; Don, G. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J. Exp. Bot. 2009, 60, 3697–3714. [Google Scholar] [CrossRef] [PubMed]
- Rodrıguez, A.A.; Grunberg, K.A.; Taleisnik, E.L. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol. 2002, 129, 1627–1632. [Google Scholar] [CrossRef]
- Tamás, L.; Mistrík, I.; Huttová, J.; Valentovicová, K.; Zelinová, V. Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 2010, 231, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, Q.F.; Chen, H.L.; Jin, H. Genome-wide analysis of ubiquitin-conjugating enzyme gene family and expression analysis of UBC2 subfamily under low nitrogen stress in maize. Chin. J. Trop. Crops 2020, 41, 305–314. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Vaseva, I.I.; Qudeimat, E.; Potuschak, T.; Der Straeten, D.V. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc. Natl. Acad. Sci. USA 2018, 115, 4130–4139. [Google Scholar] [CrossRef]
- Wang, J.X.; Yan, X.L.; Pan, R.C. Relationship between adventitious root formation and plant hormones. Plant Physiol. Commun. 2005, 41, 133–142. [Google Scholar] [CrossRef]
- Cui, F.B. Expression Characteristics and Preliminary Study on Biological Functions of Cytokinin Oxidase in Rice. Master’s Thesis, Zhejiang Normal University, Jinhua, China, 2018. [Google Scholar]
- Giehl, R.F.; Wirén, N.V. Root nutrient foraging. Plant Physiol. 2014, 166, 509–517. [Google Scholar] [CrossRef]
- Krapp, A.; David, L.C.; Chardin, C.; Girin, T.; Marmagne, A.; Leprince, A.S.; Chaillou, S.; Ferrario-Méry, S.; Meyer, C.; Daniel-Vedele, F. Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 2014, 65, 789–798. [Google Scholar] [CrossRef]
- Briat, J.F.; Duc, C.; Ravet, K.; Gaymard, F. Ferritins and iron storage in plants. Biochim. Biophys. Acta (BBA) Gen. Subj. 2010, 1800, 806–814. [Google Scholar] [CrossRef]
- Tian, Q.Y. The Role of Root Morphology in Nitrogen Acquisition Efficiency and Its Physiological Regulation Mechanism in Maize. Ph.D. Thesis, China Agricultural University, Beijing, China, 2005. [Google Scholar]
- Li, Q.; Luo, Y.H.; Tan, J.; Kong, F.L.; Yang, S.M.; Yuan, J.C. Screening and comprehensive evaluation of low-nitrogen tolerance indices 784 for maize hybrids at seedling stage. Chin. J. Eco-Agric. 2014, 22, 1190–1199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Jia, L.; Zhong, Z.; Zhuang, Z.; Jin, B.; Ji, X.; Bai, M.; Peng, Y. Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings. Plants 2025, 14, 2689. https://doi.org/10.3390/plants14172689
Wang F, Jia L, Zhong Z, Zhuang Z, Jin B, Ji X, Bai M, Peng Y. Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings. Plants. 2025; 14(17):2689. https://doi.org/10.3390/plants14172689
Chicago/Turabian StyleWang, Fang, Luhui Jia, Zhiming Zhong, Zelong Zhuang, Bingbing Jin, Xiangzhuo Ji, Mingxing Bai, and Yunling Peng. 2025. "Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings" Plants 14, no. 17: 2689. https://doi.org/10.3390/plants14172689
APA StyleWang, F., Jia, L., Zhong, Z., Zhuang, Z., Jin, B., Ji, X., Bai, M., & Peng, Y. (2025). Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings. Plants, 14(17), 2689. https://doi.org/10.3390/plants14172689