Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin †
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
2.3. Measurement and Calculation
2.3.1. Height Growth of Plant and Leaf Mass per Area
2.3.2. Relative Water Content and Water Saturation Deficit
2.3.3. Measurement of Water Conservation Capacity
2.3.4. Measurement of Leaf Water Potential
2.3.5. Soil Water Content and Soil Water Potential
2.4. Data Processing
3. Results
3.1. Effects of Water Stress on Plant Growth
3.1.1. Height Growth
3.1.2. Leaf Mass per Area
3.2. Effects of Water Stress on Leaf Water Physiology
3.2.1. Relative Water Content
3.2.2. Water Conservation Capacity
3.2.3. Leaf Water Potential
Daily Variation of Leaf Water Potential Under the Same Soil Moisture Conditions
Daily Variation of Leaf Water Potential of the Same Plant Under Different Soil Moisture Conditions
3.3. Study of Potential Energy Gradients in SPAC Systems
3.3.1. Relationship Between the Leaf Water Potential and Environmental Factors
3.3.2. Relationship Between Leaf Water Potential and Soil Water Content
3.3.3. Relationship Between Leaf Water Potential and Soil Water Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grossiord, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, X.M.; Zhao, W.; Hou, X.M.; Dong, S.K. Current views of drought research: Experimental methods, adaptation mechanisms and regulatory strategies. Front. Plant Sci. 2024, 15, 1371895. [Google Scholar] [CrossRef]
- Li, S.B.; He, S.Y.; Xu, Z.; Liu, Y.; von Bloh, W. Desertification Process and its Effects on Vegetation Carbon Sources and Sinks Vary under Different Aridity Stress in Central Asia during 1990–2020. Catena 2023, 221, 106767. [Google Scholar] [CrossRef]
- Zheng, T.; Jia, Y.P.; Zhang, S.J.; Li, X.B.; Wu, Y.; Wu, C.L.; He, H.D.; Peng, Z.R. Impacts of Vegetation on Particle Concentrations in Roadside Environments. Environ. Pollut. 2021, 282, 117067. [Google Scholar] [CrossRef]
- Jin, X.M.; Guo, R.H.; Xia, W. Distribution of Actual Evapotranspiration over Qaidam Basin, an Arid Area in China. Remote Sens. 2013, 5, 6976–6996. [Google Scholar] [CrossRef]
- Keram, A.; Halik, Ü.; Aishan, T.; Keyimu, M.; Jiapaer, K.; Li, G.L. Tree Mortality and Regeneration of Euphrates Poplar Riparian Forests along the Tarim River, Northwest China. For. Ecosyst. 2021, 8, 49. [Google Scholar] [CrossRef]
- Hickin, M.; Preisser, E.L. Effects of Light and Water Availability on the Performance of Hemlock Woolly Adelgid (Hemiptera: Adelgidae). Environ. Entomol. 2015, 44, 128–135. [Google Scholar] [CrossRef]
- Wang, L.N.; Gesang, Q.Z.; Luo, J.F.; Wu, X.L.; Rebi, N.S.; You, Y.G.; Zhou, J.X. Drivers of plant diversification along an altitudinal gradient in the alpine desert grassland, Northern Tibetan Plateau. Glob. Ecol. Conserv. 2024, 53, e02987. [Google Scholar] [CrossRef]
- Bai, Y.H.; Tang, Z.Y. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. Proc. Natl. Acad. Sci. USA 2024, 121, e2410467121. [Google Scholar] [CrossRef]
- Zhao, S.H.; Cong, D.M.; He, K.X.; Yang, H.; Qin, Z.H. Spatial-Temporal Variation of Drought in China from 1982 to 2010 Based on a modified Temperature Vegetation Drought Index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Rodríguez-Sánchez, A.L.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of Vegetation Type on the Ecosystem Services Provided by Urban Green Areas in an Arid Zone of Northern Mexico. Urban For. Urban Green. 2021, 62, 127135. [Google Scholar] [CrossRef]
- D’Ippólito, S.; Rey-Burusco, M.F.; Feingold, S.E.; Guevara, M.G. Role of Proteases in the Response of Plants to Drought. Plant Physiol. Biochem. 2021, 168, 1–9. [Google Scholar] [CrossRef]
- Xie, X.H.; Wang, X.Q.; Wu, L.; Lv, J.N.; Zhou, X. Spatiotemporal variations of soil water retention and its influencing factors in the alpine-cold river source area, southern Gansu Plateau. J. Hydrol. 2024, 639, 131597. [Google Scholar] [CrossRef]
- Liu, Z.X.; Guo, C.X.; Wu, R.; Wang, J.J.; Zhou, Y.P.; Yu, X.L.; Zhang, Y.X.; Zhao, Z.H.; Liu, H.; Sun, S.S.; et al. Identification of the Regulators of Epidermis Development under Drought- and Salt-Stressed Conditions by Single-Cell RNA-Seq. Int. J. Mol. Sci. 2022, 23, 2759. [Google Scholar] [CrossRef]
- Xiao, L.; Min, X.X.; Liu, G.B.; Li, P.; Xue, S. Effect of Plant-Plant Interactions and Drought Stress on the Response of Soil Nutrient Contents, Enzyme Activities and Microbial Metabolic Limitations. Appl. Soil Ecol. 2023, 181, 104666. [Google Scholar] [CrossRef]
- Li, C.Y.; Berninger, F.; Koskela, J.; Sonninen, E. Drought Responses of Eucalyptus microtheca Provenances Depend on Seasonality of Rainfall in Their Place of Origin. Aust. J. Plant Physiol. 2000, 27, 231–238. [Google Scholar] [CrossRef]
- Elshamly, A.M.S.; Parrey, Z.A.; Gaafar, A.R.Z.; Siddiqui, M.H.; Hussain, S. Potassium Humate and Cobalt Enhance Peanut Tolerance to Water Stress Through Regulation of Proline, Antioxidants, and Maintenance of Nutrient Homeostasis. Sci. Rep. 2024, 14, 1625. [Google Scholar] [CrossRef]
- Mao, P.L.; Lin, Q.Z.; Pang, Y.X.; Wang, K.X.; Ni, R.Q.; Han, X.; Cao, B.H. Eco-physiological response mechanism of Tamarix chinensis to soil water changes in coastal wetlands of the Yellow River Delta. Front. Mar. Sci. 2023, 10, 1231928. [Google Scholar] [CrossRef]
- Mohkami, A.; Yazdanpanah, N.; Saeidnejad, A. Vermicompost-based Amendment Compensated for the Reducing Effect of Water Stress on Growth and Yield of Quinoa by Improving Soil Moisture Characteristic. Paddy Water Environ. 2024, 22, 155–171. [Google Scholar] [CrossRef]
- Long, R.W.; Pratt, R.B.; Jacobsen, A.L. Drought Resistance in Two Populations of Invasive Tamarix Compared Using Multiple Methods. Tree Physiol. 2024, 44, 140. [Google Scholar] [CrossRef]
- Liu, C.G.; Duan, N.; Chen, X.N.; Li, H.Q.; Zhao, X.L.; Duo, P.Z.; Wang, J.; Li, Q.H. Metabolic Pathways Involved in the Drought Stress Response of Nitraria tangutorum as Revealed by Transcriptome Analysis. Forests 2022, 13, 509. [Google Scholar] [CrossRef]
- Liu, S.S.; Xu, G.Q.; Chen, T.Q.; Wu, X.; Li, Y. Quantifying the Effects of Precipitation Exclusion and Groundwater Drawdown on Functional Traits of Haloxylon ammodendron—How Does This Xeric Shrub Survive the Drought? Sci. Total Environ. 2023, 904, 166945. [Google Scholar] [CrossRef] [PubMed]
- Chelli, S.; Bricca, A.; Tsakalos, J.L.; Andreetta, A.; Bonari, G.; Campetella, G.; Carnicelli, S.; Cervellini, M.; Puletti, N.; Wellstein, C.; et al. Multiple Drivers of Functional Diversity in Temperate Forest Understories: Climate, Soil, and Forest Structure Effects. Sci. Total Environ. 2024, 916, 170258. [Google Scholar] [CrossRef] [PubMed]
- Gillani, S.F.A.; Zhuang, Z.L.; Rasheed, A.; UlHaq, I.; Abbasi, A.; Ahmed, S.; Wang, Y.X.; Khan, M.T.; Sardar, R.; Peng, Y.L. Brassinosteroids Induced Drought Resistance of Contrasting Drought-responsive Genotypes of Maize at Physiological and Transcriptomic Levels. Front. Plant Sci. 2022, 25, 13. [Google Scholar] [CrossRef]
- Chaimala, A.; Jogloy, S.; Vorasoot, N.; Holbrook, C.C.; Kvien, C.K.; Laohasiriwong, S. The Variation of Relative Water Content, SPAD Chlorophyll Meter Reading, Stomatal Conductance, Leaf Area, and Specific Leaf Area of Jerusalem artichoke Genotypes under Different Durations of Terminal Drought in Tropical Region. J. Agron. Crop Sci. 2021, 209, 12–26. [Google Scholar] [CrossRef]
- Khan, B.; Anjum, M.M.; Ali, N.; Ullah, M.; Khan, G.R. Grain Quality, Biochemical Traits, and Internal Water Status of Chinese Elite Wheat Lines by Sowing Interval in Semiarid Conditions. Gesunde Pflanz. 2023, 75, 1653–1664. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Forner, A.; Martorell, S.; Choat, B.; Lopez, R.; Peters, J.M.R.; Pfautsch, S.; Mayr, S.; Carins-Murphy, M.R.; McAdam, S.A.M.; et al. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant Cell Environ. 2022, 45, 2037–2061. [Google Scholar] [CrossRef]
- Guo, B.H.; Arndt, S.K.; Miller, R.E.; Szota, C.; Farrell, C. How Does Leaf Succulence Relate to Plant Drought Resistance in Woody Shrubs. Tree Physiol. 2023, 43, 1501–1513. [Google Scholar] [CrossRef]
- Minif, F.L.; Chaieb, M. Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa. J. Arid Land. 2022, 15, 77–90. [Google Scholar] [CrossRef]
- Dou, H.T.; Xu, Q.; Lin, T.; Tong, Z.W.; Aili, A.S.J.; Xu, H.L. Metabolic and antioxidant responses drive Haloxylon ammodendron’s adaptation to drip irrigation with saline and freshwater in saline-alkali soils. Environ. Exp. Bot. 2025, 238, 106225. [Google Scholar] [CrossRef]
- Cao, Y.H.; Ren, W.; Gao, H.J.; Lü, X.P.; Zhao, Q.; Zhang, H.; Rensing, C.; Zhang, J.L. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. Plant Sci. 2023, 328, 111572. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.D.; Zhu, G.F.; Bhat, M.A.; Wang, L.; Liu, Y.W.; Sang, L.Y.; Lin, X.R.; Zhang, W.H.; Sun, N. Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. J. Hydrol. 2023, 624, 129918. [Google Scholar] [CrossRef]
- Tayir, M.; Dai, Y.; Shi, Q.D.; Abdureyim, A.; Erkin, F.; Huang, W.Y. Distinct leaf functional traits of Tamarix chinensis at different habitats in the hinterland of the Taklimakan desert. Front. Plant Sci. 2022, 13, 1094049. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.L.; Ding, N.N.; Tian, T.T.; Gao, P.F.; Wan, Y.K.; Ma, M.J.; Sun, K. Different water and photosynthetic resource use strategies explain the widespread distribution of Dasiphora fruticosa in Qinghai-Tibet Plateau alpine meadows. Environ. Exp. Bot. 2025, 231, 106106. [Google Scholar] [CrossRef]
- Dai, L.C.; Fu, R.Y.; Guo, X.W.; Du, Y.G.; Hu, Z.M.; Cao, G.M. Alpine shrub had a stronger soil water retention capacity than the alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 133, 108362. [Google Scholar] [CrossRef]
- Tu, W.Q.; Lu, W.X.; Gu, J.Q.; Lou, A.R. The species diversity and phylogenetic structure patterns of desert plant communities in the Turpan-Hami region, Xinjiang. Glob. Ecol. Conserv. 2024, 55, e03239. [Google Scholar] [CrossRef]
- Jia, J.; Qu, G.J.; Jia, P.; Li, D.Z.; Yao, Y.F. The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis. Tree Physiol. 2024, 44, tpae060. [Google Scholar] [CrossRef]
- Ma, T.T.; Luo, T.R.; Feng, Z.K.; Yu, Z.; An, J.Y.; Wang, S.; Hu, L.L.; Shao, Y.K.; Zhang, B. Radial Growth Responses of Sabina chinensis (L.) Ant. cv. Kaizuca to Climate Shifts in the Northern Transition Zones of the Yangtze River Delta (YRD) Coastal Region. Forests 2025, 16, 433. [Google Scholar] [CrossRef]
- Hussein, H.A.A.; Alshammari, S.O.; Kenawy, S.K.M.; Elkady, F.M.; Badawy, A.A. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 2022, 11, 1219. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Mohapatra, P.K.D.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M. Current Scenario and Future Prospects of Plant Growth-Promoting Rhizobacteria: An Economic Valuable Resource for the Agriculture Revival under Stressful Conditions. J. Plant Nutr. 2020, 43, 3062–3092. [Google Scholar] [CrossRef]
- Al-Amri, S.M. Application of Bio-Fertilizers for Enhancing Growth and Yield of Common Bean Plants Grown under Water Stress Conditions. Saudi J. Biol. Sci. 2021, 28, 3901–3908. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Smith-Ramesh, L.M.; Kuebbing, S.E. Beyond Nutrients: A Meta-Analysis of the Diverse Effects of Arbuscular Mycorrhizal Fungi on Plants and Soils. Ecology 2017, 98, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Ali, S.; Qi, L.K.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.L.; Dai, T. Physiological and Biochemical Changes During Drought and Recovery Periods at Tillering and Jointing Stages in Wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.; Huang, B. Changes in Antioxidant Enzyme Activities and Lipid Peroxidation for Bentgrass Species in Response to Drought Stress. J. Am. Soc. Hortic. Sci. 2007, 132, 319–326. [Google Scholar] [CrossRef]
- Abd Elbar, O.H.; Farag, R.E.; Shehata, S.A. Effect of Putrescine Application on Some Growth, Biochemical and Anatomical Characteristics of Thymus vulgaris L. under Drought Stress. Ann. Agric. Sci. 2019, 64, 129–137. [Google Scholar] [CrossRef]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) Alleviates Drought Stress of Broccoli Plants by Improving Nutrient Uptake, Secondary Metabolites, and Antioxidative Defense System. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- Ahmed, A.H.H.; Darwish, E.; Alobaidy, M.G. Impact of Putrescine and 24-Epibrassinolide on Growth, Yield and Chemical Constituents of Cotton (Gossypium barbadense L.) Plant Grown under Drought Stress Conditions. Asian J. Plant Sci. 2017, 16, 9–23. [Google Scholar]
- Qin, J.; Si, J.H.; Jia, B.; Zhao, C.Y.; Zhou, D.M.; He, X.H.; Wang, C.L.; Zhu, X.L. Water use strategies of Nitraria tangutorum in the lake-basin region of the Badain Jaran Desert. Front. Plant Sci. 2023, 14, 1240656. [Google Scholar] [CrossRef]
- Jia, M.; Colombo, R.; Rossini, M.; Celesti, M.; Zhu, J.; Cogliati, S.; Cheng, T.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; et al. Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. Eur. J. Agron. 2021, 122, 126192. [Google Scholar] [CrossRef]
- Lei, Z.Y.; Wang, H.; Wright, I.J.; Zhu, X.G.; Niinemets, Ü.; Li, Z.L.; Sun, D.S.; Dong, N.; Zhang, W.F.; Zhou, Z.L.; et al. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynth. Res. 2021, 150, 239–250. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Khoyerdi, F.F.; Shamshiri, M.H.; Estaji, A. Changes in Some Physiological and Osmotic Parameters of Several Pistachio Genotypes under Drought Stress. Sci. Hortic. 2016, 198, 44–51. [Google Scholar] [CrossRef]
- Badawy, A.A.; Alotaibi, M.O.; Abdelaziz, A.M.; Osman, M.S.; Khalil, A.M.A.; Saleh, A.M.; Mohammed, A.E.; Hashem, A.H. Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites 2021, 11, 428. [Google Scholar] [CrossRef]
- Lotfi, N.; Vahdati, K.; Amiri, R.; Kholdebarin, B. Drought-Induced Accumulation of Sugars and Proline in Radicle and Plumule of Tolerant Walnut Varieties During Germination Phase. Acta Hortic. 2010, 861, 289–296. [Google Scholar] [CrossRef]
- Liu, B.H.; Cheng, L.; Liang, D.; Zou, Y.J.; Ma, F.W. Growth, Gas Exchange, Water-Use Efficiency, and Carbon Isotope Composition of ‘Gale Gala’ Apple Trees Grafted onto 9 Wild Chinese Rootstocks in Response to Drought Stress. Photosynthetica 2012, 50, 401–410. [Google Scholar] [CrossRef]
- De-Ville, S.; Edmondson, J.; Green, D.; Stirling, R.; Dawson, R.; Stovin, V. Effect of Vegetation Treatment and Water Stress on Evapotranspiration in Bioretention Systems. Water Res. 2024, 252, 121182. [Google Scholar] [CrossRef]
- Sharma, M.; Delta, A.K.; Kaushik, P. Glomus mosseae and Pseudomonas fluorescens Application Sustains Yield and Promote Tolerance to Water Stress in Helianthus annuus L. Stresses 2021, 1, 305–316. [Google Scholar] [CrossRef]
- Richardson, M.; Kumar, P. Discerning the Thermodynamic Feasibility of the Spontaneous Coexistence of Multiple Functional Vegetation Groups. Sci. Rep. 2020, 10, 18321. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Sun, Y.H.; Lu, X.M.; Zhao, X.Z.; Yang, L.; Sun, Z.Y.; Bai, Y.F. Hyperspectral Retrieval of Leaf Physiological Traits and Their Links to Ecosystem Productivity in Grassland Monocultures. Ecol. Indic. 2021, 122, 107267. [Google Scholar] [CrossRef]
- Liu, B.H.; Liang, J.; Tang, G.M.; Wang, X.F.; Liu, F.C.; Zhao, D.C. Drought Stress Affects on Growth, Water use efficiency, Gas Exchange and Chlorophyll Fluorescence of Juglans Rootstocks. Sci. Hortic. 2019, 250, 230–235. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Lukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
Plants | Macrophanerophytes/ Shrub | Characteristic |
---|---|---|
H. Ammodendron (H.A.) | Macrophanerophytes | Resistant to drought, cold and salt tolerant |
Nitraria tangutorum Bobr. (N.T.B.) | Shrub | Resistant to drought and salinity |
Sympegma regelii Bge. (S.R.B.) | Shrub | Roots stout, in lightly alkaline deserts |
T. Chinensis (T.C.) | Macrophanerophytes/Shrub | Resistant to drought and salinity, with a well-developed root system |
Potentilla fruticosa (P.F.R.) | Shrub | Resistant to cold and drought |
Sabina chinensis (Linn.) Ant. (S.C.A.) | Macrophanerophytes | Resistant to cold heat drought |
Plant Species | Relative Water Content/% | Water Saturation Deficit/% | ||||||
---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | |
N.T.B. | 75.38 | 73.53 | 70.37 | 68.02 | 24.62 | 26.47 | 29.63 | 31.98 |
T.C. | 79.61 | 63.08 | 61.54 | 46.24 | 20.39 | 36.92 | 38.46 | 53.76 |
S.R.B. | 76.30 | 71.82 | 64.42 | 57.20 | 23.70 | 28.18 | 35.58 | 42.80 |
P.F.R. | 64.71 | 50.00 | 44.37 | 39.68 | 35.29 | 50.00 | 55.63 | 60.32 |
H.A. | 82.32 | 81.13 | 78.70 | 77.78 | 17.68 | 18.87 | 21.30 | 22.22 |
S.C.A. | 69.83 | 65.51 | 61.11 | 58.94 | 30.17 | 34.49 | 38.89 | 41.06 |
Plant Species | Maximum Leaf Water Potential/MPa | Minimum Leaf Water Potential/MPa | Range/MPa |
---|---|---|---|
N.T.B. | −1.18 (b) | −2.19 (a) | 1.01 (a) |
H.A. | −1.24 (a) | −2.32 (a) | 1.08 (a) |
T.C. | −0.83 (c) | −2.11 (a) | 1.28 (b) |
S.R.B. | −0.87 (c) | −2.09 (a) | 1.22 (ab) |
P.F.R. | −0.61 (d) | −1.98 (a) | 1.37 (b) |
S.C.A. | −0.59 (d) | −1.91 (a) | 1.32 (b) |
Plant Species | Environmental Factor | Relationship Model | R2 | F | Sig. |
---|---|---|---|---|---|
N.T.B. | T | Ψl = −0.054T − 0.713 | 0.870 * | 33.516 | 0.02 |
RH | Ψl = 0.026RH − 2.521 | 0.968 ** | 151.496 | 0 | |
AWP | Ψl = 1.529 × 10−5AWP2 + 0.011AWP − 0.370 | 0.969 ** | 61.789 | 0.001 | |
H.A. | T | Ψl = −0.052T − 0.807 | 0.695 * | 11.408 | 0.02 |
RH | Ψl = 0.028RH − 2.646 | 0.945 ** | 86.398 | 0 | |
AWP | Ψl = 1.078 × 10−6AWP2 + 0.006AWP − 0.734 | 0.952 ** | 39.594 | 0.002 | |
S.R.B. | T | Ψl = −0.058T − 0.411 | 0.674 * | 10.339 | 0.024 |
RH | Ψl = 0.032RH − 2.466 | 0.919 ** | 56.901 | 0.001 | |
AWP | Ψl = 3.686 × 10−5AWP2 + 0.019AWP + 0.593 | 0.922 ** | 23.581 | 0.006 | |
T.C. | T | Ψl = −0.140T − 0.070 | 0.743 * | 14.441 | 0.013 |
RH | Ψl = 0.037RH − 2.595 | 0.966 ** | 139.934 | 0 | |
AWP | Ψl = −9.547 × 10−6AWP2 + 0.005AWP − 0.351 | 0.994 ** | 331.992 | 0 | |
P.F.R. | T | Ψl = −0.064T − 0.051 | 0.804 ** | 20.52 | 0.006 |
RH | Ψl = 0.032RH − 2.222 | 0.889 ** | 40.114 | 0.001 | |
AWP | Ψl = −4.164 × 10−6AWP2 + 0.005AWP − 0.225 | 0.907 ** | 19.521 | 0.009 | |
S.C.A. | T | Ψl = −0.069T + 0.031 | 0.845 ** | 27.185 | 0.003 |
RH | Ψl = 0.034RH − 2.294 | 0.958 ** | 114.714 | 0 | |
AWP | Ψl = 3.842 × 10−6AWP2 + 0.008AWP − 0.077 | 0.969 ** | 62.317 | 0.001 |
Plant Species | Relationship Model ΨL (−MPa); ΨS (−MPa) | R2 | F | Sig. |
---|---|---|---|---|
H.A. | ΨL = 11.204ΨS0.627 | 0.944 ** | 169.489 | 0 |
ΨL = 1.114lnΨS + 5.098 | 0.901 ** | 101.217 | 0 | |
N.T.B. | ΨL = 21.402ΨS0.847 | 0.916 ** | 109.363 | 0 |
ΨL = 1.477lnΨS + 6.171 | 0.867 ** | 65.294 | 0 | |
S.R.B. | ΨL = 22.596ΨS0.920 | 0.901 ** | 91.168 | 0 |
ΨL = 1.319lnΨS + 5.448 | 0.830 ** | 48.909 | 0 | |
T.C. | ΨL = 38.674ΨS1.050 | 0.912 ** | 82.657 | 0 |
ΨL = 1.802lnΨS + 7.135 | 0.872 ** | 54.258 | 0 | |
P.F.R. | ΨL = 18.323ΨS0.799 | 0.874 ** | 55.275 | 0 |
ΨL = 1.234lnΨS + 5.447 | 0.772 ** | 27.045 | 0.001 | |
S.C.A. | ΨL = 26.851ΨS0.919 | 0.953 ** | 183.989 | 0 |
ΨL = 1.515lnΨS + 6.314 | 0.910 ** | 91.034 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, M.; Luo, H.; Wang, Q. Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin. Diversity 2025, 17, 652. https://doi.org/10.3390/d17090652
Dong M, Luo H, Wang Q. Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin. Diversity. 2025; 17(9):652. https://doi.org/10.3390/d17090652
Chicago/Turabian StyleDong, Mei, Han Luo, and Qingning Wang. 2025. "Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin" Diversity 17, no. 9: 652. https://doi.org/10.3390/d17090652
APA StyleDong, M., Luo, H., & Wang, Q. (2025). Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin. Diversity, 17(9), 652. https://doi.org/10.3390/d17090652