Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (972)

Search Parameters:
Keywords = N, P, and K fertilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4784 KiB  
Article
Optimization of Anaerobic Co-Digestion Parameters for Vinegar Residue and Cattle Manure via Orthogonal Experimental Design
by Yuan Lu, Gaoyuan Huang, Jiaxing Zhang, Tingting Han, Peiyu Tian, Guoxue Li and Yangyang Li
Fermentation 2025, 11(9), 493; https://doi.org/10.3390/fermentation11090493 (registering DOI) - 23 Aug 2025
Abstract
The anaerobic co-digestion of agricultural residues emerges as a promising strategy for energy recovery and nutrient recycling within circular agricultural systems. This study aimed to optimize co-digestion parameters for vinegar residue (VR) and cattle manure (CM) using an orthogonal experimental design. Three key [...] Read more.
The anaerobic co-digestion of agricultural residues emerges as a promising strategy for energy recovery and nutrient recycling within circular agricultural systems. This study aimed to optimize co-digestion parameters for vinegar residue (VR) and cattle manure (CM) using an orthogonal experimental design. Three key variables were investigated which are the co-substrate ratio (VR to CM), feedstock-to-inoculum (F/I) ratio, and total solids (TS) content. Nine experimental combinations were tested to evaluate methane yield, feedstock degradation, and digestate characteristics. Results showed that the optimal condition for methane yield comprised a 2:3 co-substrate ratio, 1:2 F/I ratio, and 20% TS, achieving the highest methane yield of 267.84 mL/g volatile solids (VS) and a vs. degradation rate of 58.65%. Digestate analysis indicated this condition generated the most nutrient-rich liquid digestate and solid digestate, featuring elevated N, P, and K concentrations, acceptable seed germination indices (GI), and moderate humification levels. While total nutrient content did not meet commercial organic fertilizer standards, the digestate is suitable for direct land application in rural settings. This study underscores the need to balance energy recovery and fertilizer quality in anaerobic co-digestion systems, providing practical guidance for decentralized biogas plants seeking to integrate waste treatment with agricultural productivity. Full article
(This article belongs to the Section Industrial Fermentation)
13 pages, 1516 KiB  
Article
Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands
by Gyeongwon Baek and Choonsig Kim
Forests 2025, 16(8), 1338; https://doi.org/10.3390/f16081338 - 17 Aug 2025
Viewed by 220
Abstract
Compound fertilizer is generally applied to alleviate multi-nutrient deficiency problems in forest stands, but research on the effect of fertilizer application on soil CO2 efflux (Rs) processes has focused on the role of single-nitrogen (N) application. This study evaluates the effects of [...] Read more.
Compound fertilizer is generally applied to alleviate multi-nutrient deficiency problems in forest stands, but research on the effect of fertilizer application on soil CO2 efflux (Rs) processes has focused on the role of single-nitrogen (N) application. This study evaluates the effects of N addition in compound fertilizer on the rates in Pinus densiflora S. et Z. (Korean red pine) stands. Compound fertilizer with N (N3P4K1 = 113:150:37 kg ha−1 yr−1) and without N (P4K1 = 150:37 kg ha−1 yr−1) was applied on the forest floor for three years. Rs rates were measured for four years, from April 2011 to March 2015. The mean annual Rs rates during the study period were 3.10 µmol m−2 s−1 in the N3P4K1, 3.08 µmol m−2 s−1 in the P4K1, and 3.08 µmol m−2 s−1 in the control treatment. The rates in all treatments were significantly lower in 2013 (2.73 µmol m−2 s−1) than in other sampling years (3.03–3.58 µmol m−2 s−1) when the mean soil water content was the lowest (15.7%) during the four sampling years (other sampling years: 23.0–24.1%). The exponential relationships between Rs and the soil temperature were slightly more significant in the fertilized (N3P4K1: R2 = 0.72–0.80; P4K1: R2 = 0.70–0.81) treatments compared to the control (R2 = 0.62–0.74) treatment. The mean Q10 values for the four years were similar between the N3P4K1 treatment (4.19), the control (4.23) treatment, and the P4K1 (4.24) treatment. The results demonstrate that mean annual Rs rates in Korean red pine stands were not affected by the increased N availability in compound fertilizer, whereas decreases in mean annual Rs rates may be strongly attributed to the soil water content. Full article
Show Figures

Figure 1

21 pages, 1178 KiB  
Article
Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile
by Marianela Simonutti, Gonzalo Berhongaray, Marcos Derita and Juan Marcelo Zabala
Int. J. Plant Biol. 2025, 16(3), 92; https://doi.org/10.3390/ijpb16030092 - 16 Aug 2025
Viewed by 264
Abstract
Cannabis sativa L. is a high-value medicinal crop whose nutritional requirements and fertilization strategies remain poorly defined, particularly in relation to cannabinoid production. This study evaluated the effects of inorganic fertilization (N, P, and K) on biomass accumulation, nutrient uptake and balance, and [...] Read more.
Cannabis sativa L. is a high-value medicinal crop whose nutritional requirements and fertilization strategies remain poorly defined, particularly in relation to cannabinoid production. This study evaluated the effects of inorganic fertilization (N, P, and K) on biomass accumulation, nutrient uptake and balance, and cannabinoid content in Cannabis sativa L. A high-cannabidiol (CBD) cultivar was propagated from ex vitro cuttings and grown in 10 L pots with commercial substrate. Treatments included a non-fertilized control and increasing doses of N (0–10 g plant−1), P (0–6 g plant−1), and K (0–10 g plant−1), with higher P and K doses applied during the reproductive stage. Biomass production peaked at 5 g N, 2 g P, and 3 g K plant−1, yielding 41.9% more than the control. Fertilized plants showed harvest indexes of 31–42%. Additional P and K during the reproductive stage did not enhance inflorescence biomass and CBD content. Tissue nutrient concentrations increased with fertilization. Inflorescences had maximum N and P levels at 5 g N and 2 g P plant−1, while leaves accumulated more K at 7.5 g K plant−1. CBD content increased and THC (%) decreased progressively with nutrient supply. High nutrient doses, however, led to nutritional imbalances and plant health issues. Nutrient balance analysis showed differential macronutrient extraction by treatment. These findings highlight the importance of optimized fertilization strategies to enhance both biomass and cannabinoid production in high-CBD cannabis cultivars. Full article
Show Figures

Figure 1

19 pages, 3177 KiB  
Article
Phosphorus-Driven Stem-Biased Allocation: NPK Synergy Optimizes Growth and Physiology in Dalbergia odorifera T. C. Chen Seedlings
by Mengwen Zhang, Chuanteng Huang, Ling Lin, Lin Chen, Xiaoli Yang, Xiaona Dong, Jiaming Song and Feifei Chen
Plants 2025, 14(16), 2545; https://doi.org/10.3390/plants14162545 - 15 Aug 2025
Viewed by 280
Abstract
Valued for furniture, crafts, and medicine, Dalbergia odorifera T. C. Chen confronts critically depleted wild populations and slow cultivation growth, necessitating precision nutrient formulation to overcome physiological constraints. Using a ‘3414’ regression design with four levels of N, P, and K, this study [...] Read more.
Valued for furniture, crafts, and medicine, Dalbergia odorifera T. C. Chen confronts critically depleted wild populations and slow cultivation growth, necessitating precision nutrient formulation to overcome physiological constraints. Using a ‘3414’ regression design with four levels of N, P, and K, this study identified phosphorus (P) as the most influential nutrient in regulating growth (P > N > K). Maximal growth enhancement occurred under T7 (N2P3K2), with height and basal diameter increments increasing by 239% and 128% versus controls (p < 0.05). Both traits exhibited progressive gains with rising P but unimodal responses to N and K, initially increasing then declining. T7 boosted total biomass by 50% (p < 0.05) with stem-biased partitioning (stem > root > leaf; 52%, 26%, 22%). Photosynthetic capacity increased significantly under T7 (p < 0.05), driven by P-mediated chlorophyll gains (Chla + 70%; Chlb + 75%) and an 82% higher net photosynthetic rate. Metabolic shifts revealed peak soluble sugar in T7 (+139%) and soluble protein in T9 (+226%) (p < 0.05), associated primarily with P and K availability, respectively. Correlation networks revealed significant associations among structural growth, photosynthesis, and metabolism. Principal component analysis established T7 as optimal, defining a “medium-N, high-P medium-K” precision fertilization protocol. These findings elucidate a phosphorus-centered regulatory mechanism governing growth in D. odorifera, providing a scientific foundation for efficient cultivation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

19 pages, 1124 KiB  
Article
Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage
by María R. Yagüe, José A. González-Pérez, Gonzalo Almendros and M. Carmen Lobo
Sustainability 2025, 17(16), 7335; https://doi.org/10.3390/su17167335 - 14 Aug 2025
Viewed by 365
Abstract
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content [...] Read more.
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content of plant residues and fungal biomass, which could be repurposed as soil amendments under suitable conditions. This study evaluated the agronomic potential of spent mushroom substrates from Agaricus bisporus and Pleurotus ostreatus, including recomposted A. bisporus residues. A range of analytical procedures was employed to assess their suitability for soil improvement and the formation of humic-like substances, including physical, chemical, microbiological, phytotoxicity, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analyses. The spent Pleurotus substrate exhibited low nutrient content (1.1% N, negligible P, 0.9% K), but high water retention (820 kg water Mg−1) and 48% organic carbon (OC), indicating its potential as a soil amendment or seedling substrate. In contrast, spent and composted Agaricus substrates showed moderate nutrient content (1.8–2.7% N; 0.8–0.7% P and 1.3–1.8% K), appropriate C/N ratios (10–15), and sufficient OC levels (24–30%), supporting their use as fertilizers. However, elevated salinity levels (18–23 dS m−1) may restrict their application for salt-sensitive crops. No significant phytotoxic effects on seed germination were observed, and microbiological analyses confirmed the absence of Salmonella spp. in the three substrates. Py-GC/MS revealed a humic acid-like fraction comprising altered lignin structures enriched with lipid and nitrogen compounds. Overall, the studied materials demonstrate promising agronomic value and the capacity to contribute to long-term soil carbon storage. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

18 pages, 4034 KiB  
Article
Effects of Irrigation Practices on Potato Yield and Water Productivity: A Global Meta-Analysis
by Yining Niu, Linlin Wang, Zhuzhu Luo, Setor Kwami Fudjoe, Jairo A. Palta, Lingling Li and Shiqing Li
Agronomy 2025, 15(8), 1942; https://doi.org/10.3390/agronomy15081942 - 12 Aug 2025
Viewed by 414
Abstract
The efficiency of water use in irrigated agriculture is a global priority to address water scarcity. A comprehensive meta-analysis was conducted to evaluate the effects of irrigation practices on potato yield, crop evapotranspiration (ETc), water productivity (WP), and irrigation water productivity (IWP) across [...] Read more.
The efficiency of water use in irrigated agriculture is a global priority to address water scarcity. A comprehensive meta-analysis was conducted to evaluate the effects of irrigation practices on potato yield, crop evapotranspiration (ETc), water productivity (WP), and irrigation water productivity (IWP) across diverse growing conditions, including soil texture, fertilizer application rates, annual precipitation, and soil organic carbon (SOC). The results revealed that supplementary irrigation increased potato yield by 55% and ETc by 39% while maintaining WP comparable to non-irrigated conditions. The greatest yield and WP improvements from supplementary irrigation occurred under drip irrigation with moderate N, P, and K application rates (150–250 kg ha−1) and irrigation amounts below 150 mm. This practice was particularly effective in sandy soils with 1.5–2.0% SOC and annual rainfall of 200–400 mm. Conversely, deficit irrigation reduced potato yield and ETc by 25% and 24%, respectively, but significantly enhanced WP and IWP by 9% and 28% compared to full irrigation. When a water-saving ratio of 10–20% was implemented under drip irrigation with optimal fertilizer rates (240–360 kg N ha−1, >104 kg P2O5 ha−1, 150–200 kg K2O ha−1), deficit irrigation improved WP without yield loss in sandy soils with annual rainfall of 600–800 mm when compared to full irrigation. The IWP increased with rising SOC levels, indicating that SOC improvement in low-carbon soils enhances water productivity in irrigated potato systems. These findings demonstrate that tailored irrigation strategies can simultaneously reduce water inputs and achieve higher yield and WP in potato production systems. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

22 pages, 2586 KiB  
Article
Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation
by Lanqi Jing, Jianshe Li, Yongqiang Tian, Longguo Wu, Yanming Gao and Yune Cao
Plants 2025, 14(16), 2496; https://doi.org/10.3390/plants14162496 - 11 Aug 2025
Viewed by 431
Abstract
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants [...] Read more.
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants under brackish water irrigation conditions. The ‘Jingcai 8’ tomato was used as the research object, and an orthogonal experimental design was used to set up three nutritional factors of N, P, and K. Each factor was set at three levels: N (mmol·L−1): 2.00 (N1), 4.00 (N2), and 8.00 (N3); P (mmol·L−1): 0.67 (P1), 1.33 (P2), and 2.00 (P3); K (mmol·L−1): 8.00 (K1), 12.00 (K2), and 16.00 (K3). The effects of different levels of N, P, and K on plant growth indexes, root vigor and antistress enzymes, biomass and nutrients of plants and fruits, yield, quality, soil nutrients, and soil enzymes were investigated, and metabolomic measurements were performed on treatments ranked first (N:P:K ratio was 2:1.33:12) and ninth (N:P:K ratio was 8:1.33:8) for overall quality. In general, a N concentration of 8 mmol·L−1 promoted plant vegetative growth and plant biomass accumulation by promoting the accumulation of aboveground nitrogen content, but it reduced the weight of single fruit and tomato quality due to an increase in soil EC and pH. In contrast, 0.67 mmol·L−1 of P and 12 mmol·L−1 of K were able to promote both plant vegetative growth and tomato quality formation. In addition, 0.67 mmol·L−1 of P enhanced soil nutrient availability and enzyme activity, while 16 mmol·L−1 of K reduced nutrient availability and enzyme activity and increased soil EC. The concentrations of ferulic acid, cinnamic acid, caffeic acid, coumarin, and (-)-epigallocatechin were generally higher in tomatoes from the T2 treatment (N:P:K ratio was 2:1.33:12) than in those from other treatments. Together, the optimum N:P:K ratio (2:1.33:12) of fertilization enhances tomato yield and quality under brackish water irrigation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

22 pages, 6844 KiB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Viewed by 394
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 - 7 Aug 2025
Viewed by 371
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 591 KiB  
Article
Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars
by Hashim Abdel-Lattif and Mohamed Abbas
Crops 2025, 5(4), 51; https://doi.org/10.3390/crops5040051 - 5 Aug 2025
Viewed by 286
Abstract
Chemical fertilizers pose significant risks to both human health and the environment. To investigate the effect of substituting nitrogen fertilizer with vermicompost tea on wheat yield, shoot chemical constituents, and grain quality under clay-loam soil conditions, two field experiments were conducted at the [...] Read more.
Chemical fertilizers pose significant risks to both human health and the environment. To investigate the effect of substituting nitrogen fertilizer with vermicompost tea on wheat yield, shoot chemical constituents, and grain quality under clay-loam soil conditions, two field experiments were conducted at the Faculty of Agriculture, Cairo University, Egypt, during the winter seasons of 2021–2022 and 2022–2023. A split-plot design in randomized complete blocks with three replications was employed. Vermicompost tea was assigned to the main plots, while wheat cultivars were assigned to the subplots. The cultivars were evaluated under four treatments involving partial substitution of mineral nitrogen (recommended dose of nitrogen (RDN%, 190 kg N ha−1): a control (90% of RDN + 25 kg vermicompost tea), 80% of RDN + 37.5 kg vermicompost tea, and 70% of RDN + 50 kg vermicompost tea. Nitrogen fertilizer (RDN%) was applied at rates of 190 (control), 170 (90%), 150 (80%), and 130 (70%) kg N ha−1. The results indicated that partially substituting mineral nitrogen with vermicompost tea significantly increased grain weight/Ha, chlorophyll A, chlorophyll B, carotenoids, nitrogen, phosphorus (P), and potassium (K) content in shoots, as well as ash, crude protein, crude fiber, total sugar, and N, P, and K content in wheat grains. The grain weight/Ha of the Sakha-95, Giza-171, and Sads-14 cultivars increased by 38.6%, 33.5%, and 39.3%, respectively, when treated with 70% RDN + 50 kg vermicompost tea. The combination of the Sads-14 cultivar and 70% RDN + 50 kg vermicompost tea resulted in the highest values for grain weight/ha (9.43 tons ha−1), chlorophyll A (1.39 mg/g), chlorophyll B (1.04 mg/g), N (5.08%), P (1.63%), and P (2.43%) content in shoots. The same combination also improved ash (2.89%), crude fiber (2.84%), and K (6.05%) content in grains. In conclusion, the application of vermicompost tea in conjunction with chemical fertilizers offers a viable alternative to using chemical fertilizers alone, promoting sustainable agricultural practices and improving wheat production. It is recommended that mineral nitrogen fertilizer be partially replaced with vermicompost tea to enhance both the productivity and grain quality of wheat while minimizing environmental pollution. Full article
Show Figures

Figure 1

23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Viewed by 342
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

11 pages, 1381 KiB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Viewed by 172
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

13 pages, 764 KiB  
Article
Influence of Mineral Fertilizers and Application Methods on Raspberry Composition Cultivated in an Acid Soil
by Biljana Sikirić, Vesna Mrvić, Nikola Koković, Sonja Tošić Jojević, Mila Pešić, Nenad Prekop and Olivera Stajković-Srbinović
Horticulturae 2025, 11(8), 914; https://doi.org/10.3390/horticulturae11080914 - 4 Aug 2025
Viewed by 228
Abstract
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, [...] Read more.
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, the influence of different amounts of NPK and urea fertilizers and methods of their application on the chemical properties of a very acidic soil and the accumulation of essential biogenic elements (N, P, K, Ca, Mg, and Al) in raspberry plants (leaves and fruits) was evaluated. The field trial with the raspberry plants was set up on a very acidic soil (pH in KCl 3.6), type Dystric Cambisol, and was monitored for 2 years. The application of NPK and urea mainly increased soil acidity in the second year in all treatments (for 0.10–0.18 pH unit) (except for urea applied in rows). The application of higher amounts of NPK increased the content of available forms of P (for 9.3–30.8 mg/kg) and K (for 57–95 mg/kg) in soil in both years, as well as exchangeable Ca (for 200–510 mg/kg) and Mg in the first year (15–165 mg/kg). The introduction of fertilizers in rows, compared to fertilization of the entire surface, influenced the reduction in mobile Al (especially when applying NPK, from 5.89 to 7.13 mg/100 g), the increase in mineral N and K content in the soil, and the increase in Ca and Mg only when applying urea, i.e., P when applying NPK in rows. In the leaves, the application of fertilizers in rows increased the content of Ca and Mg in the first year and P and K in the second year. In the fruits, the content of all estimated elements was not in correlation with their content in leaves and the fertilizer application, which indicates the influence of other ecological and biological factors on plant nutrition. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

13 pages, 1316 KiB  
Article
Effect of Fertilization Levels on Growth and Physiological Characteristics of Containerized Seedlings of Vaccinium oldhamii
by Da Hyun Lee, Chung Youl Park, Do Hyun Kim, Jun Hyeok Kim, Hyeon Min Kim, Chae Sun Na and Wan Geun Park
Plants 2025, 14(15), 2409; https://doi.org/10.3390/plants14152409 - 4 Aug 2025
Viewed by 346
Abstract
Vaccinium oldhamii, a blueberry species native to Korea, is a deciduous shrub in the Ericaceae family. Its fruit possesses various pharmacological properties, including anti-inflammatory effects and potential for treating osteoporosis. This study evaluated the effects of five fertilization concentration levels using Multifeed [...] Read more.
Vaccinium oldhamii, a blueberry species native to Korea, is a deciduous shrub in the Ericaceae family. Its fruit possesses various pharmacological properties, including anti-inflammatory effects and potential for treating osteoporosis. This study evaluated the effects of five fertilization concentration levels using Multifeed 20 (N:P:K = 20:20:20) on the growth and physiological characteristics of one-year-old V. oldhamii container seedlings. Treatments included 0 g·L−1 (control), 0.5, 1.0, 1.5, and 2.0 g·L−1. Increases in stem thickness, root length, and total dry weight were observed in the control, 0.5, 1.0, and 1.5 g·L−1 treatments, whereas growth declined at 2.0 g·L−1. Mortality rates exceeded 15% at concentrations above 1.0 g·L−1. Photosynthetic capacity and chlorophyll content increased with fertilization. However, while growth improved with increasing fertilizer up to a certain level, it declined at the highest concentration. A fertilization rate of 0.5 g·L−1 proved to be the most economically and environmentally efficient for producing healthy seedlings. This study provides the first fertilization threshold for V. oldhamii, offering practical guidance for nursery production and forming a foundation for future domestication strategies. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

24 pages, 3631 KiB  
Article
Mineral–Soil–Plant–Nutrient Synergism: Carbonate Rock Leachate Irrigation Enhances Soil Nutrient Availability, Improving Crop Yield and Quality
by Yifei Du, Xiao Ge, Yimei Du, Hongrui Ding and Anhuai Lu
Minerals 2025, 15(8), 825; https://doi.org/10.3390/min15080825 - 2 Aug 2025
Viewed by 392
Abstract
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance [...] Read more.
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance soil nutrient availability. A pot experiment with lettuce showed that irrigation significantly increased soil NO3-N (+102.20%), available K (+16.45%), available P (+17.95%), Ca (+6.04%), Mg (+11.65%), and Fe (+11.60%), and elevated the relative abundance of Firmicutes. Lettuce biomass per plant rose by 23.78%, with higher leaf minerals (P, K, Ca, and Mg) and antioxidants (carotenoids and ascorbic acid). A field experiment further confirmed improvement of soil nutrient availability and peanut yield. This carbonate rock leachate irrigation technique effectively enhances soil quality and crop productivity/quality, offering a sustainable approach for green agriculture. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Back to TopTop