Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. The Origin of Spent Mushroom Substrates
2.2. Chemical Analyses
2.3. Organic C and Its Fractions (Humic and Fulvic Acids)
2.4. Physical Characteristics: Water Retention, Bulk Density, Real Density, and Total Porosity
2.5. Phytotoxicity Test and Pathogen Analysis
2.6. Pyrolysis-Gas Chromatography–Mass Spectrometry (Py-GC/MS)
2.7. Statistical Analysis
3. Results
3.1. Physical, Chemical, and Biological Characteristics of the Substrate
3.2. Analysis by Pyrolysis-Gas Chromatography
4. Discussion
4.1. Physical and Chemical Characteristics of the Substrates
4.2. Assessment of the Environmental Safety of the Substrates: Microbial Analysis and Phytotoxicity Testing
4.3. Analysis of Soil Organic Matter Fractions and Molecular Characterization of the Humic Acid-Type Substances by Py-GC/MS
4.4. The Potential of SMS Humic Substances to Transform into Long-Term Stable Forms of Organic Matter in the Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BD | Bulk density |
Cw | Carbon soluble in water |
DM | Dry matter |
DP | Degree of polymerization |
EC | Electrical conductivity |
FA | Fulvic acids |
FS | Fresh sample |
GI | Germination index |
HA | Humic acid |
HI | Humification index |
HR | Humification ratio |
OC | Organic carbon |
OM | Organic matter |
RD | Particle density |
Py-GC/MS | pyrolysis-gas chromatography/mass spectrometry |
SMS-A | Spent mushroom substrate of Agaricus bisporus |
SMS-CO | Spent mushroom substrate compost |
SMS-P | Spent mushroom substrate of Pleurotus ostreatus |
SOM | Soil organic matter |
THE | Total humic extract |
TOCx | Total OC by oxidation |
References
- Ahmed, M.; Ahmad, S.; Fayyaz-ul-Hassan; Qadir, G.; Hayat, R.; Shaheen, F.A.; Raza, M.A. Innovative processes and technologies for nutrient recovery from wastes: A Comprehensive Review. Sustainability 2019, 11, 4938. [Google Scholar] [CrossRef]
- Steinmann, T.; Welp, G.; Wolf, A.; Holbeck, B.; Große-Rüschkampm, T.; Amelung, W. Repeated monitoring of organic carbon stocks after eight years reveals carbon losses from intensively managed agricultural soils in Western Germany. J. Plant Nutr. Soil Sci. 2016, 179, 355–366. [Google Scholar] [CrossRef]
- Verger, Y.; Petit, C.; Barles, S.; Billen, G.; Garnier, J.; Esculier, F.; Maugis, P. A N, P, C, and water flows metabolism study in a peri-urban territory in France: The case study of the Saclay plateau. Resour. Conserv. Recycl. 2018, 137, 200–213. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, H.A.; Kulkarni, G.; Han, S.S. Municipal solid waste: Generation composition and GHG emissions in Bangalore, India. Renew. Sustain. Energy Rev. 2018, 82, 1122–1136. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Simaoka, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef]
- Xun, W.; Xiong, W.; Huang, T.; Ran, W.; Li, D.; Shen, Q.; Li, Q.; Zhang, R. Swine manure and quicktime have different impacts on chemical properties and composition of bacterial communities of and acidic soil. Appl. Soil Ecol. 2016, 100, 34–44. [Google Scholar] [CrossRef]
- Industry Report. Global Mushroom Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies 2018 to 2026. PR Newswire. 2018. Available online: https://www.prnewswire.com/news-releases/global-mushroom-market-2018-2026-the-market-is-expected-to-grow-at-a-cagr-of-7-9-300712332.html (accessed on 4 August 2025).
- FAOstat. 2019. Available online: https://www.fao.org/statistics/en (accessed on 19 June 2025).
- Finney, K.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. The Reuse of Spent Mushroom Compost and Coal Tailings for Energy Recovery: Comparison of Thermal Treatment Technologies. Bioresour. Technol. 2009, 100, 310–315. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Zied, D.C.; Sánchez, J.E.; Noble, R.; Pardo-Giménez, A. Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy 2020, 10, 1239. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Efficiency of organic amendments used in containerized plant production: Part 1–Compost-based amendments. Sci. Hortic. 2020, 266, 108856. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relations between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173–174, 152–161. [Google Scholar] [CrossRef]
- Hackett, R. Spent mushroom compost as a nitrogen source for spring barley. Nutr Cycl. Agroecosyst. 2015, 102, 253–263. [Google Scholar] [CrossRef]
- Gümüs, I.; Seker, C. Effects of spent mushroom compost applications on the physicochemical properties of a degraded soil. Solid Earth 2017, 8, 1153–1160. [Google Scholar] [CrossRef]
- Ma, X.; Yan, S.; Wang, M. Spent mushroom substrate: A review on present and future of green applications. J. Environ. Manag. 2025, 373, 123970. [Google Scholar] [CrossRef]
- Becher, M.; Banach-Szott, M.; Godlewska, A. Organic Matter Properties of Spent Button Mushroom Substrate in the Context of Soil Organic Matter Reproduction. Agronomy 2021, 11, 204. [Google Scholar] [CrossRef]
- Almendros, G.; Dorado, J.; González-Vila, F.J.; Blanco, M.J.; Lankes, U. 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol. Biochem. 2000, 32, 793–804. [Google Scholar] [CrossRef]
- Kadiri, M.; Mustapha, Y. The use of spent mushroom substrate of Lentinus subnudus (Berk) as a soil conditioner for vegetables. Bayero J. Pure Appl. Sci. 2010, 3, 16–19. [Google Scholar]
- Sendi, H.; Mohamed, M.T.M.; Anwar, M.P.; Saud, H.M. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013, 2013, 25862. [Google Scholar] [CrossRef]
- López, R.; Antelo, J.; Silva, A.C.; Bento, F.; Fiol, S. Factors that affect physicochemical and acid-base properties of compost and its potential use as a soil amendment. J. Environ. Manag. 2021, 300, 113702. [Google Scholar] [CrossRef]
- Garau, M.; Pinna, M.V.; Nieddu, M.; Castaldi, P.; Garau, G. Mixing compost and biochar can enhance the chemical and biological recovery of soils contaminated by potentially toxic elements. Plants 2024, 13, 284. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Maffia, A.; Marra, F.; Canino, F.; Battaglia, S.; Mallamaci, C.; Oliva, M.; Muscolo, A. Humic substances from waste-based fertilizers for improved soil fertility. Agronomy 2024, 14, 2657. [Google Scholar] [CrossRef]
- Straatsma, G.; Gerrits, J.P.G.; Thissen, J.T.N.M.; Amsing, J.G.M.; Loeffen, H.; Van Griensven, L.J.L.D. Adjustment of the composting process for mushroom cultivation based on initial substrate composition. Bioresour. Technol. 2000, 72, 67–74. [Google Scholar] [CrossRef]
- Zdruli, P.; Jones, R.J.A.; Montanarella, L. Organic Matter in the Soils of Southern Europe; European Soil Bureau Technical Report, EUR 21083 EN; Office for Official Publications of the European Communities: Luxembourg, 2004; 16p. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Das, D.S.; Field, D.J.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Action Plan: For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020; Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 26 July 2025).
- European Commission. The Common Agricultural Policy 2023–2027: Key Policy Objectives; European Commission: Brussels, Belgium, 2023; Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance/key-policy-objectives-cap-2023-27_en (accessed on 26 July 2025).
- European Commission. The “4 per 1000” Initiative: Soils for Food Security and Climate; European Commission: Brussels, Belgium, 2023; Available online: https://4p1000.org/?lang=en (accessed on 26 July 2025).
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physical too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Acosta, Y.; Paolini, J.; Benítez, E. Indice de humificación y prueba de fitotoxicidad en residuos orgánicos de uso agrícola potencia. Rev. Fac. Agron. 2004, 21, 185–194. [Google Scholar]
- Senesi, N. Composted materials as organic fertilizers. Sci. Total Environ. 1989, 81/82, 521–542. [Google Scholar] [CrossRef]
- Zucconi, F.; Monaco, A.; Forte, M. Phytotoxins during the stabilization of organic matter. In Composting of Agricultural and Other Wastes; Gasser, J.K.R., Ed.; Elsevier Applied Science Publication: New York, NY, USA, 1985; pp. 73–86. [Google Scholar]
- EU 2019/1009. Regulation 2019/1009 of the European Parliament and the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilizing Products and Amending Regulations (EC) No.1069/2009 and (EC) No. 1107/2009 and Repealing Regulation (EC) No. 2003/2003; European Union: Brussels, Belgium, 2019.
- Ma, Y.; Liu, L.; Zhou, X.; Tian, T.; Xu, S.; Li, D.; Li, C.; Li, Y. Optimizing straw-rotting cultivation for sustainable edible mushroom production: Composting spent mushroom substrate with straw additions. J. Fungi 2023, 9, 925. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Doyle, M.P.; Erickson, M.C.; Jiang, X.; Millner, P.; Sharma, M. Composting to inactivate foodborne pathogens for crop soil application: A review. J. Food Prot. 2018, 81, 1821–1837. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Yang, R.; Lin, W.; Wang, H.; Kang, Y.; Qi, Z.; Zhou, W. Reducing the phytotoxicity of spent mushroom substrate (SMS) for sustainable growing media by superheated steam torrefaction: Effects of temperature and residence time. Biomass Convers. Biorefin. 2025, 15, 4733–4744. [Google Scholar] [CrossRef]
- European Union. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources; European Union: Brussels, Belgium, 1991; Available online: https://eur-lex.europa.eu/eli/dir/1991/676/oj/eng (accessed on 4 August 2025).
- Chamoli, V.; Singh, K.; Kaushik, G.; Pant, A. The usage of spent mushroom substrate. Int. J. Plant Pathol. Microbiol. 2023, 3, 48–50. [Google Scholar]
- Iglesias, H.; Paredes Ortiz, A.; Soriano Disla, J.M.; Lara-Guillén, A.J. Environmental and Economic Life Cycle Impacts of Using Spent Mushroom Substrate as a Soil Improver. Environments 2025, 12, 31. [Google Scholar] [CrossRef]
- Martín, C.; Zervakis, G.I.; Xiong, S.; Koutrotsios, G.; Strætkvern, K.O. Spent substrate from mushroom cultivation: Exploitation potential toward various applications and value-added products. Bioengineered 2023, 14, 2252138. [Google Scholar] [CrossRef] [PubMed]
- Bower, C.A.; Reitemeier, R.F.; Fireman, M. Exchange cation analysis of saline and alkali soils. Soil Sci. 1952, 73, 251–261. [Google Scholar] [CrossRef]
- AOAC—Association Official Analytical Chemists. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación. Orden del 17 de septiembre de 1981 por la que se establecen métodos oficiales de análisis de aceites y grasas, aguas, carnes y productos cárnicos, fertilizantes, productos fitosanitarios, leche y productos lácteos, piensos y sus primeras materias, productos orgánicos fertilizantes, plantas, suelos, productos derivados de la uva y similares y toma de muestras. BOE 1981, 246, 24003–24034. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic carbon matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Dabin, B. Étude d’une méthode d’extraction de la matière humique du sol. Sci. Sol 1971, 1, 47–63. [Google Scholar]
- Chantigny, M.H.; Angers, D.A.; Kaiser, K.; Kalbitz, K. Extraction and characterization of dissolves organic matter. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Roig, A.; Lax, A.; Cegarra, J.; Costa, F.; Hérnandez, M.T. Cation-exchange capacity as a parameter for measuring the humification degree of manures. Soil Sci. 1988, 146, 311–316. [Google Scholar] [CrossRef]
- Roletto, E.; Barberis, R.; Consiglio, M.; Jodice, R. Chemical parameters for evaluating compost maturity. Biocycle 1985, 26, 46–47. [Google Scholar]
- Niedziela, C.E.; Nelson, P.V. A rapid method for determining physical properties of undisturbed substrate. HortScience 1982, 27, 1279–1280. [Google Scholar] [CrossRef]
- ISO 7251:2005; Microbiology of Food and Animal Feeding Stuffs Horizontal Method for the Detection and Enumeration of Presumptive Escherichia coli—Most Probable Number Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- UNE-EN ISO 6579-1:2017; Microbiología de la cadena alimentaria. Método horizontal para la detección, enumeración y serotipado de Salmonella. Parte 1: Detección de Salmonella spp. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Jiménez-Morillo, N.T.; Cabrita, M.J.; Dias, C.B.; González-Vila, F.J.; González-Pérez, J.A. Pyrolysis-compound-specific hydrogen isotope analysis (δ2H Py-CSIA) of Mediterranean olive oils. Food Control 2020, 110, 107023. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT Software, Version B8.2; SAS Institute: Cary, NC, USA, 1999. [Google Scholar]
- Almendros, G. An analysis of some wheat straw humification factors and their bearing on the response to compost of soil and plant. Sci. Total Environ. 1989, 81/82, 569–578. [Google Scholar] [CrossRef]
- Tinoco, P.; Almendros, G.; González-Vila, F.J.; Lankes, U.; Lüdemann, H.-D. Analysis of carbon and nitrogen forms in soil fractions after addition of 15N-compost by 13C and 15N nuclear magnetic resonance. J. Agric. Food Chem. 2004, 52, 5412–5417. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G.; González-Vila, F.J. Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis. J. Anal. Appl. Pyrolysis 2016, 117, 56–63. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; González-Vila, F.J.; Almendros, G. The diversity of methoxyphenols released by pyrolysis-gas chromatography as predictor of soil carbon storage. J. Chromatogr. A 2017, 1508, 130–137. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Lobo, M.C. Reuse of the spent mushroom substrate in a vegetable seedbed. Inf. Tec. Econ. Agrar. 2021, 117, 347–359. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Pérez-Murcina, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substsrates as component of growing media for gemination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef]
- Pardo-Giménez, A.; Pardo-González, J.E. Evaluation of casing material made from spent mushroom substrate and coconut fibre pit for use in production of Agaricus biporus (Lage) Imbach. Span. J. Agric. Res. 2008, 6, 683–690. [Google Scholar] [CrossRef]
- Vieira Junior, W.; Caitano, C.; Alves, L.; Teixeira, P.A.; Noble, R.; Pardo, J.; Zied, D. From waste to resource: Sustainable reuse of spent shiitake mushroom substrate in subsequent production cycles. Int. Biodeterior. Biodegrad. 2025, 200, 106034. [Google Scholar] [CrossRef]
- Illera-Vives, M.; López-Mosquera, M.E.; Salas-Sanjuan, M.C.; López-Fabal, A. Leaching techniques for saline wastes composts used as growing media in organic agriculture: Assessment and modelling. Environ. Sci. Pollut. Res. 2015, 22, 6854–6863. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Gomis, M.P.; Pérez-Murcia, M.D.; Gangi, D.; Ceglie, F.G.; Paredes, C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Use of livestock waste composts as nursery growing media: Effect of a washing pre-treatment. Sci. Hortic. 2021, 281, 109954. [Google Scholar] [CrossRef]
- Chefetz, B.; Van Heemst, J.D.H.; Chen, Y.; Romaine, C.P.; Chorover, J.; Rosario, R.; Mingxin, G.; Hatcher, P.G. Organic matter transformation during weathering process of spent mushroom substrate. J. Environ. Qual. 2000, 29, 592–602. [Google Scholar] [CrossRef]
- Paredes, C.; Medina, E.; Moral, E.; Pérez-Murcia, M.D.; Moreno-Caselles, J.; Bustamante, M.A.; Cecilia, J.A. Characterization of different organic matter fractions of spent mushroom substrate. Commun. Soil Sci. Plant Anal. 2009, 40, 150–161. [Google Scholar] [CrossRef]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO Soils Bulletin 80; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within composting: A review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, C.; Govi, M.; Sequi, P. Characterization of organic matter in compost produced with municipal solid wastes: An Italian approach. Compost Sci. Util. 1993, 1, 75–81. [Google Scholar] [CrossRef]
- Gallardo-Lara, F.; Nogales, R. Effect of the application of town refuse compost on the soil-plant system: A review. Biol. Wastes 1987, 19, 35–62. [Google Scholar] [CrossRef]
- Nabi, F.; Sarfaraz, A.; Kama, R.; Kanwal, R.; Li, H. Structure-based function of humic acid in abiotic stress alleviation in plants: A review. Plants 2025, 14, 1916. [Google Scholar] [CrossRef]
- Gowthamchand, N.J.; Sujaina, M. A review on humic substances: Their significance in agriculture as stimulations of plant physiological growth and development. Pharma Innov. J. 2023, SP-12, 177–184. [Google Scholar]
- Haynes, R.J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol. Biochem. 2000, 32, 211–219. [Google Scholar] [CrossRef]
- Hofman, J.; Bezchlebova, J.; Dusek, L.; Dolezal, L.; Holoubek, I.; Andel, P.; Ansorgova, A.; Maly, S. Novel approach to monitoring of the soil biological quality. Environ. Int. 2003, 28, 771–778. [Google Scholar] [CrossRef]
- Summerell, B.A.; Burgess, L.W. Decomposition and chemical-composition of cereal straw. Soil Biol. Biochem. 1989, 21, 551–559. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter: Berlin, Germany, 1984. [Google Scholar]
- Schulten, H.R.; Schnitzer, M. A state of the art structural concept for humic substances. Naturwissenschaften 1993, 80, 29–30. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; Almendros, G.; de la Rosa, J.M.; González-Vila, F.J. Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py-GC/MS). J. Anal. Appl. Pyrolysis 2014, 109, 1–8. [Google Scholar] [CrossRef]
- Leinweber, P.; Jordan, E.; Schulten, H.-R. Molecular characterization of soil organic matter in Pleistocene moraines from the Bolivian Andes. Geoderma 1996, 72, 133–148. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Mazurek, M.A. Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western United States, Atmos. Environ. 1982, 16, 2139–2159. [Google Scholar]
- Almendros, G.; Lobo, M.C.; Polo, A.; Dorado, E. Naturaleza y propiedades de la materia orgánica en dos tipos de compost de paja de trigo. Anal. Edafol. Agrobiol. 1984, 42, 2083–2093. [Google Scholar]
- Almendros, G.; González-Pérez, J.A. Soil organic carbon sequestration mechanisms and the molecular composition of soil organic matter—A review. Sustainability 2025, 17, 6689. [Google Scholar] [CrossRef]
Substrate Type | pH | pH1:2.5 | EC | EC1:2.5 | Dry Matter | Organic Matter | Total-N | C/N |
---|---|---|---|---|---|---|---|---|
–––––––dS m−1––––––– | % FS | –––––––% DM–––––––– | ||||||
SMS-A | 7.26 ± 0.02 a | 7.36 ± 0.01 b | 18.08 ± 1.57 a | 10.87 ± 0.06 b | 29.4 ± 0.9 b | 58.0 ± 3.1 b | 2.7 ± 0.07 a | 11–13 |
SMS-P | 6.60 ± 0.04 c | 8.14 ± 0.04 a | 4.00 ± 0.62 b | 2.79 ± 0.02 c | 22.7 ± 0.7 c | 72.8 ± 2.3 a | 1.1 ± 0.03 c | 40–45 |
SMS-CO | 7.57 ± 0.04 b | 7.44 ± 0.20 b | 22.30 ± 1.24 a | 11.20 ± 0.20 a | 54.7 ± 0.4 a | 43.8 ± 5.3 c | 1.8 ± 0.04 b | 14–15 |
Significance | ** | *** | ** | *** | *** | *** | *** | - |
Parameters | SMS-A | SMS-P | SMS-CO |
---|---|---|---|
Organic-N (%) | 2.15 | 0.94 | 1.48 |
NH4+-N (%) | 0.51 | 0.13 | 0.15 |
NO3−-N (%) | 0.001 | ND | 0.13 |
Ureic-N (%) | ND | ND | ND |
Mineral-N/total-N | 0.19 | 0.13 | 0.16 |
Organic-N/total-N | 0.80 | 0.86 | 0.82 |
Total-P (%) | 0.77 | ND | 0.66 |
Soluble-P (%) | 0.68 | ND | 0.41 |
Soluble-P/total-P | 88.3 | – | 62.1 |
Available cations (g kg−1) | |||
K+ | 17.7 | 8.9 | 13.1 |
Na+ | 2.0 | 0.5 | 1.3 |
Ca2+ | 28.0 | 7.7 | 19.0 |
Mg2+ | 2.6 | 1.3 | 2.0 |
Salmonella spp. (CFU/25 g) | ND | ND | ND |
Escherichia coli (MPN) | >110 | >110 | ND |
Substrate Type | TOCx | Cw1:10 | C-THE | C-HAs | C-FAs |
---|---|---|---|---|---|
––––––––––––––––––––– C % DM ––––––––––––––––––––– | |||||
SMS-A | 29.9 ± 0.5 b | 1.35 ± 0.11 b | 12.3 ± 0.6 a | 9.1 ± 0.9 a | 3.2 ± 0.9 b |
SMS-P | 48.1 ± 0.8 a | 1.51 ± 0.20 a | 11.5 ± 1.1 b | 4.2 ± 0.7 c | 7.2 ± 1.4 a |
SMS-CO | 24.4 ± 0.3 c | 0.32 ± 0.02 c | 6.6 ± 0.3 c | 5.4 ± 0.6 b | 1.2 ± 0.5 c |
SMS-CO/SMS-A (%) | 81 (19%) | 24 (76%) | 54 (46%) | 59 (41%) | 38 (62%) |
Significance | *** | *** | *** | *** | *** |
Substrate Type | Water Retention | Initial Water Content | Total Porosity ɛ | Bulk Density | Particle Density |
---|---|---|---|---|---|
––– kg water Mg−1 FS ––– | % | ––––– kg DM m−3 ––––– | |||
SMS-A | 649 ± 73 b | 706 | 55 ± 7 b | 139 ± 11 b | 309 ± 40 b |
SMS-P | 820 ± 108 a | 773 | 77 ± 1 a | 50 ± 3 c | 218 ± 5 c |
SMS-CO | 607 ± 89 b | 473 | 44 ± 1 c | 350 ± 19 a | 628 ± 35 a |
Significance | ** | - | *** | ** | *** |
Treatment | Seed Germination (%) | Radicle Length (mm) |
---|---|---|
Control | 97 ± 6 | 12.2 ± 1.2 b |
SMS-A | 92 ± 3 | 16.3 ± 2.8 ab |
SMS-P | 97 ± 3 | 18.2 ± 1.1 a |
SMS-CO | 93 ± 8 | 17.5 ± 3.1 a |
Significance | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagüe, M.R.; González-Pérez, J.A.; Almendros, G.; Lobo, M.C. Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage. Sustainability 2025, 17, 7335. https://doi.org/10.3390/su17167335
Yagüe MR, González-Pérez JA, Almendros G, Lobo MC. Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage. Sustainability. 2025; 17(16):7335. https://doi.org/10.3390/su17167335
Chicago/Turabian StyleYagüe, María R., José A. González-Pérez, Gonzalo Almendros, and M. Carmen Lobo. 2025. "Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage" Sustainability 17, no. 16: 7335. https://doi.org/10.3390/su17167335
APA StyleYagüe, M. R., González-Pérez, J. A., Almendros, G., & Lobo, M. C. (2025). Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage. Sustainability, 17(16), 7335. https://doi.org/10.3390/su17167335