Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Rs Rates and Environmental Factors
2.3. Stand and Soil Characteristics
2.4. Data Analysis
3. Results
3.1. Soil and Stand Attributes
3.2. Relationships Between Rs Rates and Soil or Stand Environmental Attributes
4. Discussion
4.1. Stand and Soil Attributes
4.2. Factors Controlling the Monthly Fluctuation of Rs Rates
4.3. Factors Affecting Mean Annual Rs Rates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowden, R.D.; Davidson, E.; Savage, K.; Arabia, C.; Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For. Ecol. Manag. 2004, 196, 43–56. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 5th ed.; John Wiley and Sons Ltd.: Chichester, UK, 2020; p. 440. [Google Scholar]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.-A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 2016, 25, 475–488. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Sun, T.; Chen, L.; Pang, X.; Wang, Y.; Xiao, F. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agric. For. Meteorol. 2017, 232, 66–73. [Google Scholar] [CrossRef]
- Jeong, J.; Bolan, N.; Kim, C. Heterotrophic soil respiration affected by compound fertilizer types in red pine (Pinus densiflora S. et Z.) stands of Korea. Forests 2016, 7, 309. [Google Scholar] [CrossRef]
- He, T.; Wang, Q.; Wang, S.; Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 2016, 11, e0155881. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, G.; Bai, S.H.; Song, J.; Shang, Y.; He, M.; Wang, X.; Zheng, Z. Differential response of soil respiration to nitrogen and phosphorus addition in a highly phosphorus-limited subtropical forest, China. For. Ecol. Manag. 2019, 448, 499–508. [Google Scholar] [CrossRef]
- Kim, C. Soil carbon storage, litterfall and CO2 efflux in fertilized and unfertilized larch (Larix leptolepis) plantations. Ecol. Res. 2008, 23, 757–763. [Google Scholar] [CrossRef]
- Hasselquist, N.J.; Metcalfe, D.B.; Högberg, P. Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Glob. Change Biol. 2012, 18, 3596–3605. [Google Scholar] [CrossRef]
- Baek, G.; Lim, H.; Noh, N.J.; Kim, C. No impact of nitrogen fertilization on carbon sequestration in a temperate Pinus densiflora forest. Sci. Rep. 2023, 13, 1743. [Google Scholar] [CrossRef]
- Han, Y.; Wang, G.; Zhou, S.; Li, W.; Xiong, L. Day-night discrepancy in soil respiration varies with seasons in a temperate. Func. Ecol. 2023, 37, 2002–2013. [Google Scholar] [CrossRef]
- Kalra, Y.P.; Maynard, D.G. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada Northwest Region Information Report NOR-X-319; Forestry: Edmonton, AB, Canada, 1991. [Google Scholar]
- SAS Institute Inc. SAS/STAT Statistical Software, Version 9.1; SAS Publishing: Cary, NC, USA, 2003.
- Feng, J.; Zhu, B. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biol. Biochem. 2019, 135, 38–47. [Google Scholar] [CrossRef]
- Goswami, S.; Fisk, M.C.; Vadeboncoeur, M.A.; Garrison-Johnston, M.; Yanai, R.D.; Fahey, T.J. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 2018, 99, 438–449. [Google Scholar] [CrossRef]
- Håkansson, C.; Hedwall, P.; Bader, M.; Strömgren, M.; Axelsson, M.; Bergh, J. Forest fertilization transiently increases soil CO2 efflux in young Norway spruce stands in Sweden. Agric. For. Meteorol. 2025, 360, 110287. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Zhou, G.; Liu, J.; Liu, S.; Duan, H.; Zhang, D. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences 2010, 7, 315–328. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Wu, J.; Chen, H.; Lin, Y.; Zhou, L.; Fu, S. Impacts of understory species removal and/or addition on soil respiration in mixed forest plantation with native species in southern China. For. Ecol. Manag. 2011, 261, 1053–1060. [Google Scholar] [CrossRef]
- Micks, P.; Aber, J.D.; Boone, R.D.; Davidson, E.A. Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. For. Ecol. Manag. 2004, 196, 57–70. [Google Scholar] [CrossRef]
- Tietema, A.; Emmett, B.A.; Gundersen, P.; Kjønaas, O.J.; Koopmans, C.J. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For. Ecol. Manag. 1998, 101, 19–27. [Google Scholar] [CrossRef]
- Zang, H.; Wang, J.; Kuzyakov, Y. N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl. Soil Ecol. 2016, 108, 47–53. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, Q.; Wang, L.; Liu, S. Effects of understory shrub biomass on variation of soil respiration in a temperate-subtropical transitional oak forest. Forests 2019, 10, 88. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Zhang, C.; Wang, H.; Fu, X.; Chen, F.; Wan, S.; Sun, X.; Wen, X.; Wang, J. Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities. Biogeosciences 2018, 15, 4481–4494. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, X.; Zhang, B.; Lu, M.; Luo, Y.; Liu, L.; Li, B. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Glob. Change Biol. 2014, 20, 2332–2343. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Change Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Wood, T.E.; Detto, M.; Silver, W.L. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS ONE 2013, 8, e80965. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Welp, G.; Amelung, W. The temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 2018, 32, 306–323. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, D.; Hall, S.J.; Wen, H.; Li, X.; Fu, H.; Wan, C.; Elser, J.J. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 2014, 75, 113–123. [Google Scholar] [CrossRef]
- Tjoelker, M.G.; Oleksyn, J.; Reich, P.B. Modelling respiration of vegetation: Evidence for a general temperature-dependent Q10. Glob. Change Biol. 2001, 7, 223–230. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. A global database of soil respiration data. Biogeosciences 2010, 7, 1915–1926. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Zhao, Z.; Zhang, Z.; Guo, B.; Wang, W.; Jiang, H.; Zhu, Q. Quantification of soil respiration in forest ecosystems across China. Atmos. Environ. 2014, 94, 546–551. [Google Scholar] [CrossRef]
Treatment | Total N (mg g−1) | Available P (mg kg−1) | ||
---|---|---|---|---|
2010 | 2014 | 2010 | 2014 | |
Control | 0.7 | 1.5 | 3.9 | 5.4 |
(0.1) a | (0.2) ab | (0.40) a | (0.67) b | |
N3P4K1 | 0.9 | 2.1 | 6.5 | 105.7 |
(0.01) a | (0.3) a | (0.73) a | (23.5) a | |
P4K1 | 0.8 | 1.3 | 5.8 | 47.5 |
(0.1) a | (0.1) b | (1.61) a | (20.7) ab |
Year | Treatment | Stand Density (tree ha−1) | DBH (cm) | Basal Area (m2 ha−1) | Aboveground C Stock (Mg C ha−1) | Tree C Density (kg C tree−1) |
---|---|---|---|---|---|---|
Dec. 2010 | Control | 1217 | 15.36 | 23.85 | 32.4 | 27.3 |
(133) | (0.90) | (2.31) | (2.9) | (2.3) | ||
N3P4K1 | 1150 | 15.31 | 21.61 | 34.6 | 33.2 | |
(193) | (1.04) | (3.24) | (5.1) | (6.6) | ||
P4K1 | 1150 | 16.25 | 23.78 | 31.1 | 28.8 | |
(152) | (1.46) | (1.98) | (2.2) | (3.3) | ||
Dec. 2011 | Control | 1217 | 15.73 | 24.82 | 33.3 | 28.1 |
(133) | (0.82) | (2.32) | (2.9) | (2.1) | ||
N3P4K1 | 1150 | 15.62 | 22.60 | 35.5 | 34.0 | |
(193) | (1.04) | (3.38) | (5.1) | (6.5) | ||
P4K1 | 1150 | 16.46 | 24.45 | 31.6 | 29.3 | |
(152) | (1.46) | (2.00) | (2.3) | (3.3) | ||
Dec. 2012 | Control | 1217 | 16.08 | 26.61 | 34.9 | 29.4 |
(133) | (0.75) | (2.49) | (3.1) | (2.1) | ||
N3P4K1 | 1150 | 16.31 | 24.75 | 37.5 | 35.8 | |
(193) | (1.03) | (3.76) | (5.2) | (6.5) | ||
P4K1 | 1150 | 17.02 | 26.12 | 33.0 | 30.5 | |
(152) | (1.48) | (2.10) | (2.4) | (3.3) | ||
Dec. 2013 | Control | 1217 | 16.62 | 28.41 | 36.4 | 30.6 |
(133) | (0.77) | (2.65) | (3.2) | (2.2) | ||
N3P4K1 | 1150 | 16.80 | 26.37 | 38.9 | 37.1 | |
(193) | (1.02) | (3.93) | (5.3) | (6.6) | ||
P4K1 | 1150 | 17.48 | 27.66 | 34.2 | 31.6 | |
(152) | (1.49) | (2.12) | (2.4) | (2.1) | ||
Dec. 2014 | Control | 1217 | 17.00 | 29.68 | 37.4 | 31.5 |
(133) | (0.78) | (2.73) | (3.2) | (2.2) | ||
N3P4K1 | 1150 | 17.49 | 28.90 | 40.9 | 38.9 | |
(193) | (1.10) | (4.18) | (5.2) | (6.6) | ||
P4K1 | 1150 | 17.94 | 29.22 | 35.4 | 32.7 | |
(152) | (1.51) | (2.17) | (2.4) | (3.5) | ||
p-value | Treatment (T) | - | 0.846 | 0.892 | 0.702 | 0.571 |
Year (Y) | - | <0.001 | <0.001 | <0.001 | <0.001 | |
T x Y | - | 0.564 | 0.557 | 0.191 | 0.112 |
Treatment | Tree (kg ha−1) | Herbaceous Plant (kg ha−1) | Total (kg ha−1) | |
---|---|---|---|---|
Stem and Branches | Leaves | |||
Control | 109.1 (37.0) b | 39.3 (9.5) b | 45.6 (25.4) ab | 193.9 (43.1) b |
N3P4K1 | 259.4 (40.1) a | 111.4 (21.8) a | 40.4 (13.8) b | 411.1 (55.1) a |
P4K1 | 44.4 (27.1) b | 21.6 (7.6) b | 149.1 (41.3) a | 215.2 (53.1) b |
Year | Treatment | Soil CO2 Efflux (µmol m−2 s−1) | Soil Temperature (°C) | Soil Water Content (%) | Soil pH | Soil Organic C (%) | Soil NH4+ (mg kg−1) | Soil NO3− (mg kg−1) |
---|---|---|---|---|---|---|---|---|
Apr. 2011–Mar. 2012 | Control | 3.07 | 13.71 | 22.2 | 4.65 | 4.75 | 2.45 | 0.28 |
(0.33) | (0.98) | (0.84) | (0.03) | (0.32) | (0.44) | (0.06) | ||
N3P4K1 | 3.05 | 13.66 | 22.7 | 4.86 | 4.46 | 28.91 | 3.37 | |
(0.30) | (0.95) | (1.19) | (0.05) | (0.29) | (7.96) | (1.92) | ||
P4K1 | 2.95 | 13.71 | 24.1 | 4.73 | 4.70 | 2.32 | 0.18 | |
(0.30) | (0.96) | (1.1) | (0.04) | (0.29) | (0.50) | (0.13) | ||
Mean | 3.02 | 13.69 | 23.0 | 4.74 | 4.64 | 12.89 | 1.28 | |
(0.18) | (0.55) | (0.60) | (0.02) | (0.17) | (3.80) | (0.80) | ||
Apr. 2012–Mar. 2013 | Control | 2.82 | 13.12 | 24.2 | 4.82 | 4.78 | 1.76 | 1.19 |
(0.20) | (0.90) | (1.4) | (0.03) | (0.35) | (0.26) | (0.11) | ||
N3P4K1 | 3.19 | 13.16 | 24.2 | 4.80 | 4.86 | 15.56 | 3.64 | |
(0.22) | (0.88) | (1.1) | (0.04) | (0.31) | (2.33) | (1.92) | ||
P4K1 | 3.50 | 13.10 | 23.2 | 4.80 | 4.38 | 3.10 | 0.75 | |
(0.16) | (0.88) | (1.2) | (0.04) | (0.32) | (1.20) | (0.12) | ||
Mean | 3.02 | 13.13 | 23.8 | 4.80 | 4.67 | 6.81 | 1.86 | |
(0.19) | (0.51) | (0.7) | (0.02) | (0.18) | (1.50) | (0.38) | ||
Apr. 2013–Mar. 2014 | Control | 2.69 | 13.71 | 15.5 | 4.70 | 4.45 | 1.91 | 0.85 |
(0.29) | (0.33) | (1.2) | (0.04) | (0.27) | (0.12) | (0.05) | ||
N3P4K1 | 2.79 | 13.90 | 16.3 | 4.75 | 4.20 | 9.77 | 1.92 | |
(0.30) | (0.89) | (1.0) | (0.05) | (0.25) | (1.82) | (0.39) | ||
P4K1 | 2.72 | 13.94 | 15.2 | 4.76 | 4.76 | 4.12 | 0.72 | |
(0.30 | (0.89) | (0.9) | (0.04) | (0.04) | (1.01) | (0.08) | ||
Mean | 2.73 | 13.92 | 15.7 | 4.74 | 4.52 | 5.27 | 1.16 | |
(0.17) | (0.51) | (0.63) | (0.03) | (0.19) | (1.04) | (0.18) | ||
Apr. 2014–Mar. 2015 | Control | 3.74 | 13.28 | 23.7 | 4.85 | 4.87 | - | - |
(0.42) | (0.80) | (1.0) | (0.04) | (0.49) | ||||
N3P4K1 | 3.37 | 13.12 | 25.3 | 4.99 | 4.76 | - | - | |
(0.40) | (0.79) | (1.0) | (0.05) | (0.33) | ||||
P4K1 | 3.62 | 13.12 | 23.3 | 4.97 | 4.32 | - | - | |
(0.40) | (0.79) | (0.9) | (0.05) | (0.42) | ||||
Mean | 3.58 | 13.17 | 24.10 | 4.94 | 4.65 | - | - | |
(0.23) | (0.46) | (0.6) | (0.03) | (0.24) | ||||
Mean | Control | 3.08 | 13.51 | 21.42 | 4.76 | 4.72 | 2.11 | 0.75 |
(0.18) | (0.45) | (4.76) | (0.02) | (0.19) | (0.26) | (0.06) | ||
N3P4K1 | 3.10 | 13.46 | 22.13 | 4.85 | 4.57 | 20.20 | 3.28 | |
(0.17) | (0.44) | (0.57) | (0.02) | (0.15) | (3.55) | (1.01) | ||
P4K1 | 3.08 | 13.47 | 21.46 | 4.81 | 4.57 | 7.52 | 0.48 | |
(0.17) | (0.44) | (0.54) | (0.02) | (0.17) | (2.82) | (0.08) | ||
p-value | Treatment (T) | 0.988 | 0.894 | 0.584 | 0.651 | 0.946 | <0.001 | 0.012 |
Year (Y) | <0.001 | <0.001 | <0.001 | <0.001 | 0.953 | 0.006 | 0.470 | |
T × Y | 0.725 | 0.603 | 0.764 | 0.227 | 0.580 | 0.010 | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, G.; Kim, C. Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands. Forests 2025, 16, 1338. https://doi.org/10.3390/f16081338
Baek G, Kim C. Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands. Forests. 2025; 16(8):1338. https://doi.org/10.3390/f16081338
Chicago/Turabian StyleBaek, Gyeongwon, and Choonsig Kim. 2025. "Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands" Forests 16, no. 8: 1338. https://doi.org/10.3390/f16081338
APA StyleBaek, G., & Kim, C. (2025). Influence of Nitrogen in Compound Fertilizer on Soil CO2 Efflux Rates in Pinus densiflora S. et Z. Stands. Forests, 16(8), 1338. https://doi.org/10.3390/f16081338