Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = Mytilus galloprovincialis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1882 KiB  
Article
Assessing Pharmaceuticals in Bivalves and Microbial Sewage Contamination in Hout Bay, Cape Town: Identifying Impact Zones in Coastal and Riverine Environments
by Cecilia Y. Ojemaye, Amy Beukes, Justin Moser, Faith Gara, Jo Barnes, Lesley Petrik and Lesley Green
Environments 2025, 12(8), 257; https://doi.org/10.3390/environments12080257 - 28 Jul 2025
Viewed by 1065
Abstract
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms [...] Read more.
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms such as mussels, as well as microbial indicators of faecal contamination in river water and seawater, for estimating the extent of impact zones in the coastal environment of Hout Bay. This research investigated the persistent pharmaceuticals found in marine outfall wastewater effluent samples in Hout Bay, examining whether these substances were also detectable in marine biota, specifically focusing on Mytilus galloprovincialis mussels. The findings reveal significant levels of sewage-related pollutants in the sampled environments, with concentrations ranging from 32.74 to 43.02 ng/g dry weight (dw) for acetaminophen, up to 384.96 ng/g for bezafibrate, and as high as 338.56 ng/g for triclosan. These results highlight persistent PPCP contamination in marine organisms, with increasing concentrations observed over time, suggesting a rise in population and pharmaceutical use. Additionally, microbial analysis revealed high levels of E. coli in the Hout Bay River, particularly near stormwater from the Imizamo Yethu settlement, with counts exceeding 8.3 million cfu/100 mL. These findings underscore the significant impact of untreated sewage on the environment. This study concludes that current sewage treatment is insufficient to mitigate pollution, urging the implementation of more effective wastewater management practices and long-term monitoring of pharmaceutical levels in marine biota to protect both the environment and public health. Full article
Show Figures

Figure 1

16 pages, 1842 KiB  
Article
Ancestral Origin and Functional Expression of a Hyaluronic Acid Pathway Complement in Mussels
by Umberto Rosani, Nehir Altan, Paola Venier, Enrico Bortoletto, Nicola Volpi and Carrie Bernecky
Biology 2025, 14(8), 930; https://doi.org/10.3390/biology14080930 - 24 Jul 2025
Viewed by 291
Abstract
Hyaluronic acid (HA) is a key extracellular matrix component of vertebrates, where it mediates cell adhesion, immune regulation, and tissue remodeling through its interaction with specific receptors. Although HA has been detected in a few invertebrate species, the lack of fundamental components of [...] Read more.
Hyaluronic acid (HA) is a key extracellular matrix component of vertebrates, where it mediates cell adhesion, immune regulation, and tissue remodeling through its interaction with specific receptors. Although HA has been detected in a few invertebrate species, the lack of fundamental components of the molecular HA pathway poses relevant objections about its functional role in these species. Mining genomic and transcriptomic data, we considered the conservation of the gene locus encoding for the extracellular link protein (XLINK) in marine mussels as well as its expression patterns. Structural and phylogenetic analyses were undertaken to evaluate possible similarities with vertebrate orthologs and to infer the origin of this gene in invertebrates. Biochemical analysis was used to quantify HA in tissues of Mytilus galloprovincialis. As a result, we confirm that the mussel can produce HA (up to 1.02 ng/mg in mantle) and that its genome encodes two XLINK gene loci. These loci are conserved in Mytilidae species and show a complex evolutionary path. Mussel XLINK genes appeared to be expressed during developmental stages in three mussel species, ranking in the top 100 expressed genes in M. trossulus at 17 h post-fertilization. In conclusion, the presence of HA and an active gene with the potential to bind HA suggests that mussels have the potential to synthesize and use HA and are among the few invertebrates encoding this gene. Full article
Show Figures

Figure 1

13 pages, 2293 KiB  
Article
Mytilus galloprovincialis as a Natural Reservoir of Vibrio harveyi: Insights from GFP-Tagged Strain Tracking
by Arkaitz Almaraz, Flor O. Uriarte, María González-Rivacoba, Inés Arana, Itziar Arranz-Veiga, Beñat Zaldibar and Maite Orruño
Pathogens 2025, 14(7), 687; https://doi.org/10.3390/pathogens14070687 - 13 Jul 2025
Viewed by 321
Abstract
Vibrios are widespread in marine environments, and their persistence is often linked to natural reservoirs such as filter-feeding bivalves. This study investigated the capacity of the Mediterranean mussel, Mytilus galloprovincialis, to act as a reservoir of Vibrio harveyi using a GFP-tagged strain [...] Read more.
Vibrios are widespread in marine environments, and their persistence is often linked to natural reservoirs such as filter-feeding bivalves. This study investigated the capacity of the Mediterranean mussel, Mytilus galloprovincialis, to act as a reservoir of Vibrio harveyi using a GFP-tagged strain in controlled experiments. Mussels (shell length 4–6 cm) were exposed to V. harveyi gfp in estuarine and seawater at 12 °C and 20 °C over six days. Bacterial accumulation in gills, digestive gland, and gonads, as well as in feces and pseudofeces, was quantified, and the immune response following microbial challenge was assessed by histopathological analysis. Mussels actively removed V. harveyi from the water, but not completely. Vibrios were rapidly accumulated in organs, with the highest densities in the digestive gland (up to 107–108 CFU g−1), and substantial bacterial loads detected in biodeposits (1.55–3.77 × 107 CFU g−1). Salinity had a greater effect than temperature on bacterial accumulation, with consistently higher counts in seawater assays. Concurrently with bacterial accumulation, mussels activated their immune system, as evidenced by the detection of granulocytomas and hemocytic infiltrations. Overall, these results demonstrate that M. galloprovincialis accumulates V. harveyi in tissues and biodeposits, serving as a natural reservoir for this bacterium. Full article
Show Figures

Figure 1

25 pages, 1034 KiB  
Article
A Human Health Risk Assessment of Persistent Organic Pollutants in Wild Marine Mussels from the Western Cape Province of South Africa
by Deborah Caitlin Firth, Philip E. Strydom, Lutz Auerswald and Louwrens Christiaan Hoffman
Foods 2025, 14(13), 2226; https://doi.org/10.3390/foods14132226 - 24 Jun 2025
Viewed by 284
Abstract
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed [...] Read more.
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polyaromatic hydrocarbon (PAHs) via gas chromatography tandem mass spectrometry. The results showed eleven PAHs at concentrations ranging from NF to 50.3 ng g−1 d.w., five PCBs at concentrations between 4.1 and 18.6 ng g−1 d.w., and two OCPs, namely β-hexachlorocyclohexane (NF–7.9 ng g−1 d.w.) and chlordane (7.2–14.5 µg g−1 d.w.). A Human Health Risk Assessment (HHRA) determined PAH concentrations to pose little health risk to adults and children consuming < 1000 g and 500 g per month (g m−1) wild mussel meat, respectively. The HHRA of PCBs found adults and children would experience negative health effects at a consumption rate of 250 g m−1. HHRAs determined chlordane concentrations to pose unacceptable health risks for adults and children at all consumption rates (similar results for lindane). To avoid unnecessary POP-related health risks over a lifetime, it is recommended that adults consume < 250 g m−1 of wild mussels from the Western Cape Province, and children should avoid consuming mussels. This research demonstrates the legacy of POP contamination along the coastline of the Western Cape Province; more monitoring of these contaminants is imperative to protect marine ecosystems and food chains. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 5446 KiB  
Article
At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour
by Soledad Torres-Guijarro, David Santos-Domínguez, Jose M. F. Babarro, Laura García Peteiro and Miguel Gilcoto
Sensors 2025, 25(13), 3914; https://doi.org/10.3390/s25133914 - 23 Jun 2025
Viewed by 288
Abstract
Anthropogenic underwater noise is an increasing form of pollution that negatively affects biota. The effect of this pollutant on many marine species is still largely unknown, especially those that are more sensitive to particle motion than to sound pressure. In these cases, experiments [...] Read more.
Anthropogenic underwater noise is an increasing form of pollution that negatively affects biota. The effect of this pollutant on many marine species is still largely unknown, especially those that are more sensitive to particle motion than to sound pressure. In these cases, experiments at sea are necessary, due to the difficulty of recreating the particle movement of a real acoustic field under laboratory conditions. This work aims to contribute to the knowledge of the effect of ship noise on the behaviour of mussels (Mytilus galloprovincialis), performing measurements at sea on a real mussel cultivation raft for the first time. The study is carried out on cluster-forming individuals living in the rafts where they are cultivated. Their behaviour is monitored by means of valvometry systems, which measure the magnitude of shell opening using a High-Frequency Non-Invasive (HFNI) system. Simultaneously, the acoustic field generated by the abundant traffic in the area is measured. The results show cause-and-effect relationships between ship noise and valve closure events. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 554
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

20 pages, 2340 KiB  
Article
Essential Trace Elements in the Shells of Commercial Mollusk Species from the Black Sea and Their Biotechnological Potential
by Larisa L. Kapranova, Juliya D. Dikareva, Sergey V. Kapranov, Daria S. Balycheva and Vitaliy I. Ryabushko
Animals 2025, 15(11), 1637; https://doi.org/10.3390/ani15111637 - 2 Jun 2025
Viewed by 644
Abstract
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation [...] Read more.
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation and harvesting volumes. Mollusk shells are attracting attention due to their potential use in various biotechnological applications, including nutraceutical production. In the present study, using inductively coupled plasma mass spectrometry, concentrations of essential trace elements (Cr, Mn, Fe, Co, Cu, Zn, Se, Mo, and I) were measured in shells of the five mollusks sampled from the same biotope. The essential element concentrations in the mollusk shells differed significantly. The highest concentrations of Cr, Mn, and I were found in Anadara shells; Fe and Co in Crassostrea shells; Zn in Mytilus shells; and Cu and Se in Rapana shells. Principal component analyses demonstrated the overall accumulation of all elements as the main cause of the total data variance and the species-specific accumulation of certain elements as the second most important source of the data dispersion. Matrices of element concentration correlations showed considerable dissimilarity, which suggested species specificity in the concerted or competing element accumulation. Powdered shells of Anadara, Crassostrea, and Rapana are most suitable to fulfill the daily human requirements for many essential elements, and the consumption of these powders in amounts of less than a few tens of grams appears to be sufficient for this purpose. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 1596 KiB  
Article
In Situ Investigation of Ecological and Molecular Stress Mechanisms Triggered by Marine Heat Waves in Adriatic Populations of the Mediterranean Mussel
by Martina Capriotti, Luca Bracchetti, Paolo Cocci, Valentina Mazzocchi, Massimiliano Fazzini, Francesco Corvaro and Francesco Alessandro Palermo
Diversity 2025, 17(6), 385; https://doi.org/10.3390/d17060385 - 30 May 2025
Viewed by 523
Abstract
Global warming is influencing marine dynamics, with marine heat waves (MHWs) threatening the survival of several species. After observing mussels’ massive mortality for three consecutive years (2022–2024) along the Italian Mid-Adriatic Coast, the present study aimed to evaluate, from an ecological and molecular [...] Read more.
Global warming is influencing marine dynamics, with marine heat waves (MHWs) threatening the survival of several species. After observing mussels’ massive mortality for three consecutive years (2022–2024) along the Italian Mid-Adriatic Coast, the present study aimed to evaluate, from an ecological and molecular perspective, the evolution of the health state of the Mediterranean mussel (Mytilus galloprovincialis) population facing the effects of summer heatwave in 2024, in situ. Three MHWs were recorded over the summer, with the second being 41 days long and having temperatures higher than 30 °C. In both sites considered (at the Tronto River mouth and the Frana San Nicola) inside the Piceno coast, the mussel beds experienced a clear decrease in individual density from April (the reference month) to August, with the total mortality recorded in September. The transcriptional levels of the molecular biomarkers analyzed during this time span revealed a state of heat stress with HSP70 (heat shock protein 70) and HSP90 (heat shock protein 90) upregulated in July and August. The apoptotic signal measured through the branchial transcript quantification of p53 and caspase 3 is less clear. The occurrence of MHWs is reshaping the local macrozoobenthonic community structure: the permanent mussel beds that characterized the intertidal and shallow submerged reef along the Mid-Adriatic coast are shifting to a temporary population that renovates yearly. Full article
Show Figures

Figure 1

22 pages, 1385 KiB  
Article
Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms
by Federica Impellitteri, Cristiana Roberta Multisanti, Kristian Riolo, Giorgia Zicarelli, Miriam Porretti, Giovanna Cafeo, Marina Russo, Paola Dugo, Giuseppa Di Bella, Giuseppe Piccione, Alessia Giannetto and Caterina Faggio
Antioxidants 2025, 14(5), 539; https://doi.org/10.3390/antiox14050539 - 30 Apr 2025
Cited by 2 | Viewed by 603
Abstract
Nutraceuticals are gaining research interest due to their beneficial potential and their use to counter the impact of emerging contaminants on natural ecosystems. Particularly, during the COVID-19 pandemic, the use of personal hygiene/care products and disinfectants increased significantly. These products contain several substances [...] Read more.
Nutraceuticals are gaining research interest due to their beneficial potential and their use to counter the impact of emerging contaminants on natural ecosystems. Particularly, during the COVID-19 pandemic, the use of personal hygiene/care products and disinfectants increased significantly. These products contain several substances in their formulations, including surfactants, which have proven to be hazardous to the entire aquatic ecosystem. In the present study, bergamot (Citrus bergamia) peel extract was used as a nutraceutical to counteract the toxicity of sodium lauryl sulphate (SLS), a common anionic detergent with antimicrobial activity. Specimens of Mytilus galloprovincialis, were exposed to SLS (0.01 mg/L), bergamot peels’ extract (BRG: 5 mg/L), and their mixture for 14 days. The cellular and physiological alterations in haemocytes, digestive gland (DG) and gill cells were analysed. The analyses included cell viability of haemocytes and DG cells (trypan blue exclusion assay and the neutral red retention test); the ability of DG cells to regulate their volume (RVD); haemocyte phagocytic activity; expression of genes involved in antioxidant response (Cu/ZnSOD, MnSOD, Hsp70, and CYP4Y) on gills and DG; the energy efficiency of the organism through byssus production; and the measurement of key macromolecules, including total lipid and fatty acid content, total protein, tocopherols and carotenoids, which play a key role in maintaining physiological and metabolic functions in the organism. Overall, significant differences emerged between the control (CTR) and treated groups, with the CTR and BRG groups resembling each other, while the SLS-treated groups showed significant alterations. Meanwhile, the groups exposed to the combination showed a recovery, suggesting the potential beneficial effect of the BRG. Full article
Show Figures

Figure 1

15 pages, 1656 KiB  
Article
Nanosilver Environmental Safety in Marine Organisms: Ecotoxicological Assessment of a Commercial Nano-Enabled Product vs an Eco-Design Formulation
by Arianna Bellingeri, Analía Ale, Tatiana Rusconi, Mattia Scattoni, Sofia Lemaire, Giuseppe Protano, Iole Venditti and Ilaria Corsi
Toxics 2025, 13(5), 338; https://doi.org/10.3390/toxics13050338 - 25 Apr 2025
Viewed by 493
Abstract
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three [...] Read more.
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three trophic levels, microalgae, microcrustaceans, and bivalves. Acute toxicity was assessed on the diatom Phaeodactylum tricornutum, brine shrimp larvae Artemia franciscana, and bivalve Mytilus galloprovincialis. The behavior of the formulations in marine media, including stability across a concentration range (0.001–100 mg/L), was also evaluated. Results showed that nanArgen™ was less stable compared to AgNpcitLcys, releasing more silver ions and exhibiting higher toxicity to microalgae (100% growth inhibition at 1 mg/L) and microcrustaceans (>80% mortality at 10 mg/L). Conversely, AgNPcitLcys (10 µg/L) was more toxic to bivalves, possibly due to the smaller nanoparticle size affecting lysosomal membrane stability. This study highlights how eco-design, such as surface coating, influences AgNP behavior and toxicity. These findings emphasize the importance of eco-design in minimizing environmental impacts and guiding the development of safer, more sustainable nanomaterials. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

22 pages, 4136 KiB  
Article
Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov.
by Nihed Ajmi, Muhammed Duman, Batuhan Coskun, Ceren Esen, Oner Sonmez, Gorkem Tasci, Orkide Coskuner-Weber, Hilal Ay, Digdem Yoyen-Ermis, Artun Yibar, Andrew P. Desbois and Izzet Burcin Saticioglu
Animals 2025, 15(7), 948; https://doi.org/10.3390/ani15070948 - 26 Mar 2025
Cited by 3 | Viewed by 866
Abstract
The Gram-negative genus Aeromonas contains diverse bacterial species that are prevalent in aquatic environments. This present study describes three novel Aeromonas strains: A. ichthyocola sp. nov. A-5T and A. mytilicola subsp. aquatica subsp. nov. A-8T isolated from rainbow trout (Oncorhynchus [...] Read more.
The Gram-negative genus Aeromonas contains diverse bacterial species that are prevalent in aquatic environments. This present study describes three novel Aeromonas strains: A. ichthyocola sp. nov. A-5T and A. mytilicola subsp. aquatica subsp. nov. A-8T isolated from rainbow trout (Oncorhynchus mykiss), and A. mytilicola sp. nov. A-7T isolated from mussels (Mytilus galloprovincialis), respectively. Genomic analyses revealed that strains A-5T and A-7T shared the highest 16S rRNA gene sequence similarity with A. rivipollensis P2G1T (99.7% and 99.8%, respectively), while strain A-8T exhibited 99.7% identity with A. media RMT. Together with morphological, physiological, and biochemical data, genome-based analyses provided additional evidence for species differentiation. Digital DNA–DNA hybridization (dDDH; 56.8−65.9%) and average nucleotide identity (ANI; 94.2–95.7%) values fell below the species delineation thresholds, confirming that these isolates represent distinct taxa. Pathogenicity assays using greater wax moth (Galleria mellonella) larvae demonstrated strain-specific virulence profiles. Further genomic analyses identified biosynthetic gene clusters for nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), which often have roles in secondary metabolite production. Ecological analyses, based on genomic comparisons and metagenomic database searches, revealed the adaptability of the strains to diverse habitats, including freshwater, wastewater, and activated sludge. Based on the genetic and phenotypic data, the novel taxa Aeromonas ichthyocola sp. nov. A-5ᵀ (LMG 33534ᵀ = DSM 117488ᵀ), Aeromonas mytilicola sp. nov. A-7ᵀ (LMG 33536ᵀ = DSM 117490ᵀ), and Aeromonas mytilicola subsp. aquatica subsp. nov. A-8ᵀ (LMG 33537ᵀ = DSM 117493ᵀ) are proposed. Full article
(This article belongs to the Special Issue Bacterial Aquaculture Pathology)
Show Figures

Figure 1

9 pages, 219 KiB  
Article
Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates
by Marina Brailo Šćepanović, Jasna Maršić-Lučić, Romana Beloša and Sanja Tomšić
Appl. Sci. 2025, 15(6), 3101; https://doi.org/10.3390/app15063101 - 13 Mar 2025
Cited by 1 | Viewed by 836
Abstract
Antibacterial resistance has become a major problem where new promising drugs are needed. The extracts obtained from marine invertebrates Mytilus galloprovincialis, Patella sp., Gibbula sp. and Arbacia lixula were tested against bacteria using the disc diffusion method. Citrobacter sp. from seawater and [...] Read more.
Antibacterial resistance has become a major problem where new promising drugs are needed. The extracts obtained from marine invertebrates Mytilus galloprovincialis, Patella sp., Gibbula sp. and Arbacia lixula were tested against bacteria using the disc diffusion method. Citrobacter sp. from seawater and Paenibacillus sp., Bacillus sp. and Geobacillus sp. from soil were used as well as the reference bacterial strains Staphylococcus aureus NCTC 12981, S. aureus subsp. aureus Rosenbach ATCC 6538, Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serotype Typhimurium NCTC 12023, Listeria monocytogenes ATCC 19111, Klebsiella aerogenes ATCC 13048 and Escherichia coli NCTC 12241. The most successful bacterial inhibitors, inhibiting 8 of 13 strains were extracts of M. galloprovincialis, Patella sp., Gibbula sp., Enteromorpha sp., C. sinuosa and U. lactuca, extract of A. lixula showed antibacterial activity against five bacteria, while extract of C. officinalis showed no antibacterial activity. These results indicate the potential of these marine organisms as a source of antibacterial compounds and may serve as a basis for further research and development of new antibacterial agents. Full article
(This article belongs to the Section Marine Science and Engineering)
15 pages, 3542 KiB  
Article
Excretion Routes of Okadaic Acid and Dinophysistoxin-2 from Mussels (Mytilus galloprovincialis) and Cockles (Cerastoderma edule)
by Juan Blanco, Noelia Estévez-Calvar and Helena Martín
Toxins 2025, 17(3), 128; https://doi.org/10.3390/toxins17030128 - 9 Mar 2025
Viewed by 893
Abstract
The knowledge of the routes of excretion of the toxins accumulated by molluscs is a key step in designing methods that accelerate depuration. In this work, the excretion route, in mussels and cockles, of the main diarrhetic shellfish poisoning (DSP) toxins in Europe [...] Read more.
The knowledge of the routes of excretion of the toxins accumulated by molluscs is a key step in designing methods that accelerate depuration. In this work, the excretion route, in mussels and cockles, of the main diarrhetic shellfish poisoning (DSP) toxins in Europe (okadaic acid and dinophysistoxin-2) after natural intoxication were studied. During depuration, the amounts of free toxins and their derivatives were quantified in bivalves, faeces, and water. Most toxins (>98%) were excreted through faeces as acyl derivatives (most likely 7-O-acyl esters), independent of the ratio between these derivatives and free toxins in soft tissues. The small proportion of toxins excreted into water mostly constituted the free forms of the toxins. Both species shared the same route even though they contained very different proportions of free toxins in their soft tissues. No substantial changes in this general pattern were observed during the experiment. The esters of fatty acids with 16 carbon atoms were the most abundant in both soft tissues and faeces, but they were not the same in mussels and cockles. Most of the variability in ester proportions can be attributed to the species more than to their differential excretion (water or faeces) suggesting that there are not large differences in the depuration of the different esters. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

18 pages, 4931 KiB  
Article
Microplastics in Mussels (Mytilus galloprovincialis): Understanding Pollution in Italian Seas
by Silva Rubini, Martina Munari, Erika Baldini, Filippo Barsi, Daniela Meloni, Nicola Pussini, Francesca Barchiesi, Gabriella Di Francesco, Carmen Losasso, Cristiano Cocumelli, Salvatore Dara, Sebastiano Virgilio, Fabio Di Nocera, Antonio Petrella, Matteo Zinni, Carmela Vaccaro, Negar Eftekhari, Stefano Manfredini and Silvia Vertuani
Toxics 2025, 13(3), 144; https://doi.org/10.3390/toxics13030144 - 20 Feb 2025
Cited by 1 | Viewed by 1219
Abstract
Plastic marine litter is a critical issue that threatens marine ecosystems. This study investigated microplastics (MPs) contamination in the Italian seas, involving regions significantly affected by pollution from urban, industrial and agricultural sources. The research, conducted in collaborations between 10 different Experimental Zooprophylactic [...] Read more.
Plastic marine litter is a critical issue that threatens marine ecosystems. This study investigated microplastics (MPs) contamination in the Italian seas, involving regions significantly affected by pollution from urban, industrial and agricultural sources. The research, conducted in collaborations between 10 different Experimental Zooprophylactic Institutes throughout Italy, analyzed Mytilus galloprovincialis (common mussels) for its filtration capacity and suitability as a bioindicator. Using data from two projects funded by the Italian Ministry of Health, MPs were detected from 7% to 13% of mussel samples, mainly polypropylene and polystyrene fragments and fibers. These findings align with previous studies highlighting the pervasive presence of MPs and their potential risks as mussels are consumed whole, allowing MPs to be ingested. The study underscores the need for standardized detection methods and coordinated policies to mitigate plastic pollution. Public awareness campaigns and improved waste management practices are key to addressing the environmental and health impacts of MPs. Further research on the long-term effects of MPs on marine ecosystems and human health is essential to developing comprehensive mitigation strategies. Full article
Show Figures

Graphical abstract

9 pages, 1949 KiB  
Article
Species-Specific Mytilus Markers or Hybridization Evidence?
by Hardy S. Guzmán, Jorge E. Toro, Pablo A. Oyarzún, Alex Illesca, Xiomara Ávila and Jonathan P. A. Gardner
Diversity 2025, 17(2), 82; https://doi.org/10.3390/d17020082 - 23 Jan 2025
Viewed by 904
Abstract
The development of molecular methods to detect Mytilus hybrids is important for food authentication, conservation, and the sustainable management of shellfish aquaculture as accurate food labeling is a legal requirement, and because introgression may promote undesirable phenotypes or displace native species. However, nuclear [...] Read more.
The development of molecular methods to detect Mytilus hybrids is important for food authentication, conservation, and the sustainable management of shellfish aquaculture as accurate food labeling is a legal requirement, and because introgression may promote undesirable phenotypes or displace native species. However, nuclear and mitochondrial markers can segregate independently, compromising diagnostic congruence between these markers. This study aimed to detect hybrids in the Mytilus edulis species complex using a multi-locus approach, including RFLP-PCR assays for Me 15/16, 16S rRNA, and COIxba, in samples collected from five continents. We used a model-based Bayesian method for hybrid and pure species detection to analyze the diagnostic potential of nuclear and mitochondrial markers in mussel samples from South America, North America, Africa, Oceania, and Europe. Our results showed that the combined use of markers can differentiate between M. trossulus, M. edulis, M. galloprovincialis, and M. chilensis. The combined use of nuclear and mitochondrial molecular markers also improves hybrid detection and allows us to identify introgression using Bayesian analysis. Full article
(This article belongs to the Special Issue Diversity, Biogeography, Fossil Record and Evolution of Bivalvia)
Show Figures

Figure 1

Back to TopTop