Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Marine Organisms and Extract Preparation
2.2. Bacteria
2.3. Disc Diffusion Method
2.4. Sequencing of 16S DNA and Bacterial Identification
3. Results
3.1. Environmental Bacteria Identification
3.2. Antibacterial Activity of Marine Organisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhowmick, S.; Mazumdar, A.; Moulick, A.; Adam, V. Algal Metabolites: An Inevitable Substitute for Antibiotics. Biotechnol. Adv. 2020, 43, 107571. [Google Scholar] [CrossRef] [PubMed]
- Thawabteh, A.M.; Swaileh, Z.; Ammar, M.; Jaghama, W.; Yousef, M.; Karaman, R.A.; Bufo, S.; Scrano, L. Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins 2023, 15, 93. [Google Scholar] [CrossRef]
- Ardita, N.; Mithasari, L.; Untoro, D.; Salasia, S. Potential antimicrobial properties of the Ulva lactuca extract against methicillin-resistant Staphylococcus aureus-infected wounds: A review. Vet. World 2021, 14, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Scharf, C.; Rocha, J.L.; Cieslinsk, J.; Becker, G.N.; Arend, L.N. KPC-producing Enterobacter aerogenes infection. Braz. J. Infect. Dis. 2015, 19, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Baek, K.H. Antibacterial Activity and Action Mechanism of the Essential Oil from Enteromorpha linza L. against Foodborne Pathogenic Bacteria. Molecules 2016, 21, 388. [Google Scholar] [CrossRef]
- Zahli, R.; Soliveri, J.; Abrini, J.; Copa-Patiño, J.L.; Nadia, A.; Scheu, A.K.; Nadia, S.S. Prevalence, typing and antimicrobial resistance of Salmonella isolates from commercial shellfish in the North coast of Morocco. World J. Microbiol. Biotechnol. 2021, 37, 170. [Google Scholar] [CrossRef]
- Koopmans, M.M.; Brouwer, M.C.; Vazquez-Boland, J.A.; van de Beek, D. Human Listeriosis. Clin. Microbiol. Rev. 2023, 36, e00060-19. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.H. Anti-Listerial Activity of Four Seaweed Essential Oils Against Listeria monocytogenes. Jundishapur J. Microbiol. 2016, 9, e31784. [Google Scholar] [CrossRef]
- Hassan, A.; Khan, M.K.I.; Fordos, S.; Hasan, A.; Khalid, S.; Naeem, M.Z.; Usman, A. Emerging Foodborne Pathogens: Challenges and Strategies for Ensuring Food Safety. Biol. Life Sci. Forum 2024, 31, 32. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Baek, K.H. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium. Bot Stud. 2015, 56, 13. [Google Scholar] [CrossRef]
- Notariale, R.; Basile, A.; Montana, E.; Romano, N.C.; Cacciapuoti, M.G.; Aliberti, F.; Gesuele, R.; De Ruberto, F.; Sorbo, S.; Tenore, G.C.; et al. Protamine-like proteins have bactericidal activity. The first evidence in Mytilus galloprovincialis. Acta Biochim. Pol. Nov. 2018, 65, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Kiuru, P.; D’Auria, M.V.; Muller, C.D.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring Marine Resources for Bioactive Compounds. Planta Med. 2014, 80, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef]
- Rey-Campos, M.; Novoa, B.; Pallavicini, A.; Gerdol, M.; Figueras, A. Comparative genomics reveals 13 different isoforms of mytimycins (a-m) in Mytilus galloprovincialis. Int. J. Mol. Sci. 2021, 22, 3235. [Google Scholar] [CrossRef]
- Romano, G.; Almeida, M.; Varela Coelho, A.; Cutignano, A.; Gonçalves, L.G.; Hansen, E.; Khnykin, D.; Mass, T.; Ramšak, A.; Rocha, M.S.; et al. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar. Drugs 2022, 20, 219. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.C.; Ghosh, J.; Buckley, K.M.; Clow, L.A.; Dheilly, N.M.; Haug, T.; Henson, J.H.; Li, C.; Lun, C.M.; Majeske, A.J.; et al. Echinoderm Immunity. Adv. Exp. Med. Biol. 2010, 708, 260–301. [Google Scholar]
- Quarta, S.; Scoditti, E.; Zonno, V.; Siculella, L.; Damiano, F.; Carluccio, M.A.; Pagliara, P. In Vitro anti-inflammatory and vasculoprotective effects of red cell extract from the Black sea urchin Arbacia lixula. Nutrients 2023, 15, 1672. [Google Scholar] [CrossRef]
- Matulja, D.; Grbčić, P.; Bojanić, K.; Topić-Popović, N.; Čož-Rakovac, R.; Laclef, S.; Šmuc, T.; Jović, O.; Marković, D.; Pavelić Kraljević, S. Chemical Evaluation, Antioxidant, Antiproliferative, Anti-Inflammatory and Antibacterial Activities of Organic Extract and Semi-Purified Fractions of the Adriatic Sea Fan, Eunicella cavolini. Molecules 2021, 26, 5751. [Google Scholar] [CrossRef]
- Stanojkovic, T.P.; Filimonova, M.; Grozdanic, N.; Petovic, S.; Shitova, A.; Soldatova, O.; Filimonov, A.; Vladic, J.; Shegay, P.; Kaprin, A.; et al. Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models. Molecules 2022, 27, 9048. [Google Scholar] [CrossRef]
- De Rosa, S.; Kamenarska, Z.; Seizova, K.; Iodice, C.; Petrova, A.; Nedelcheva, D.; Stefanov, K.; Popov, S. Volatile and polar compounds from Geodia cydonium and two Tedania species. Bulg. Chem. Commun. 2008, 40, 48–53. [Google Scholar]
- De Rosa, S.; Milone, A.; de Giulio, A.; Crispino, A.; Iodice, C. Sulfated Furanosesterterpenes from Two Sponges of the Genus Ircinia. Nat. Prod. Lett. 1996, 8, 245–251. [Google Scholar] [CrossRef]
- De Rosa, S.; Crispino, A.; de Giulio, A.; Iodice, C.; Milone, A. Sulfated Polyprenylhydroquinones from the Sponge Ircinia spinosula. J. Nat. Prod. 1995, 58, 1450–1454. [Google Scholar] [CrossRef]
- Sami, H.; Sultan, A.; Rizvi, M.; Khan, F.; Ahmad, S.; Shukla, I.; Khan, H.M. Citrobacter as a uropathogen, its prevalence and antibiotics susceptibility pattern. CHRISMED J. Health Res. 2017, 4, 23–26. [Google Scholar] [CrossRef]
- Jabeen, I.; Islam, S.; Hassan, A.K.M.I.; Tasnim, Z.; Shuvo, S.R. A brief insight into Citrobacter species—A growing threat to public health. Front. Antibiot. 2023, 2, 1276982. [Google Scholar] [CrossRef] [PubMed]
- Celandroni, F.; Salvetti, S.; Gueye, S.A.; Mazzantini, D.; Lupetti, A.; Senesi, S.; Ghelardi, E. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates. PLoS ONE 2016, 11, e0152831. [Google Scholar] [CrossRef]
- Haydushka, I.A.; Markova, N.; Kirina, V.; Atanassova, M. Recurrent sepsis due to Bacillus licheniformis. J. Glob. Infect. Dis. 2012, 4, 82–83. [Google Scholar] [CrossRef]
- Smith, D.; Bastug, K.; Burgoine, K.; Thakur, N. Coexistence of Heavy Metal Tolerance and Antibiotic Resistance in Thermophilic Bacteria Belonging to Genus Geobacillus. Front. Microbiol. 2022, 13, 914037. [Google Scholar] [CrossRef]
- Smith, D.; Bastug, K.; Burgoine, K.; Broach, J.R.; Hammershaimb, E.A.; Hehnly, C.; Morton, S.U.; Osman, M.; Schiff, S.J.; Ericson, J.E. A Systematic Review of Human Paenibacillus Infections and Comparison of Adult and Pediatric Cases. Pediatr. Infect. Dis. J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tsankova, G.; Todorova, T.; Ermenlieva, N.; Merdzhanova, A.; Panayotova, V.; Dobreva, D.; Peytcheva, K. Antibacterial activity of different extracts of black mussel (Mytilus galloprovincialis) from the Black Sea, Bulgaria. J. IMAB 2021, 27, 3506–3509. [Google Scholar] [CrossRef]
- Borquaye, L.S.; Darko, G.; Ocansey, E.; Ankomah, E. Antimicrobial and antioxidant properties of the crude peptide extracts of Galatea paradoxa and Patella rustica. Springerplus 2015, 4, 500. [Google Scholar] [CrossRef]
- Silva, M.; Azevedo, J.; Rodríguez, P.; Alfonso, A.; Botana, L.; Vasconcelos, V. New gastropod vectors and tetrodotoxin potential expansion in temperate waters of the Atlantic Ocean. Mar. Drugs 2012, 10, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Barreiro, A.; Rodriguez, P.; Otero, P.; Azevedo, J.; Alfonso, A.; Botana, L.M.; Vasconcelos, V. New Invertebrate Vectors for PST, Spirolides and Okadaic Acid in the North Atlantic. Mar. Drugs 2013, 11, 1936–1960. [Google Scholar] [CrossRef] [PubMed]
- Stabili, L.; Acquaviva, M.; Cavallo, R.; Gerardi, C.; Narracci, M.; Pagliara, P. Screening of three echinoderm species as new opportunity for drug discovery: Their bioactivities and antimicrobial properties. J. Evid. Based Complement. Altern. Med. 2018, 2018, 7891748. [Google Scholar] [CrossRef] [PubMed]
- Luparello, C.; Ragona, D.; Asaro, D.M.L.; Lazzara, V.; Affranchi, F.; Arizza, V.; Vazzana, M. Cell-Free Coelomic Fluid Extracts of the Sea Urchin Arbacia lixula Impair Mitochondrial Potential and Cell Cycle Distribution and Stimulate Reactive Oxygen Species Production and Autophagic Activity in Triple-Negative MDA-MB231 Breast Cancer Cells. J. Mar. Sci. Eng. 2020, 8, 261. [Google Scholar] [CrossRef]
- Cirino, P.; Brunet, C.; Ciaravolo, M.; Galasso, C.; Musco, L.; Vega Fernández, T.; Sansone, C.; Toscano, A. The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin. Mar. Drugs 2017, 15, 187. [Google Scholar] [CrossRef]
Source | Bacteria | GenBank Accession Number |
---|---|---|
Soil origin | Paenibacillus cookii strain L1.2 | PP549971 |
Bacillus licheniformis strain MA-42 | PP549972 | |
Geobacillus sp. HBB272 | PP549973 | |
Marine origin | Citrobacter sp. strain YB074 | PP549974 |
Citrobacter freundii strain EF55 | PP549975 | |
Citrobacter sp. strain EB-C-4 | PP549976 |
Marine Invertebrates | ||||
---|---|---|---|---|
Bacteria | Patella sp. | Gibula sp. | Mytilus galloprovincialis | Arbacia lixula |
Paenibacillus cookii strain L1.2 | 0 | 0 | 0 | 0 |
Bacillus licheniformis strain MA-42 | 2 | 2 | 3 | 1 |
Geobacillus sp. HBB272 | 0 | 3 | 1 | 0 |
Citrobacter sp. strain YB074 | 6 | 5 | 4 | 5 |
Citrobacter freundii strain EF55 | 4 | 4 | 4 | 3 |
Citrobacter sp. strain EB-C-4 | 4 | 5 | 3 | 3 |
Marine Invertebrates | ||||
---|---|---|---|---|
Bacteria | Patella sp. | Gibula sp. | Mytilus galloprovincialis | Arbacia lixula |
Escherichia coli | 0 | 0 | 0 | 0 |
Klebsiella aerogenes | 0 | 0 | 0 | 0 |
Staphylococcus aureus | 0 | 0 | 0 | 0 |
Staphylococcus aureus subsp. aureus Rosenbach | 1 | 0 | 0 | 0 |
Salmonella enterica subsp. enterica serovar Enteritidis | 1 | 2 | 1 | 0 |
Salmonella enterica subsp. enterica serotype Typhimurium | 1 | 1.5 | 1 | 0 |
Listeria monocytogenes | 3 | 3.5 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brailo Šćepanović, M.; Maršić-Lučić, J.; Beloša, R.; Tomšić, S. Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates. Appl. Sci. 2025, 15, 3101. https://doi.org/10.3390/app15063101
Brailo Šćepanović M, Maršić-Lučić J, Beloša R, Tomšić S. Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates. Applied Sciences. 2025; 15(6):3101. https://doi.org/10.3390/app15063101
Chicago/Turabian StyleBrailo Šćepanović, Marina, Jasna Maršić-Lučić, Romana Beloša, and Sanja Tomšić. 2025. "Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates" Applied Sciences 15, no. 6: 3101. https://doi.org/10.3390/app15063101
APA StyleBrailo Šćepanović, M., Maršić-Lučić, J., Beloša, R., & Tomšić, S. (2025). Preliminary Findings on Antibacterial Activity of Selected Marine Invertebrates. Applied Sciences, 15(6), 3101. https://doi.org/10.3390/app15063101