Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Morphological, Biochemical, and Physiological Tests
2.3. Assessment of Biofilm Formation and Antibiotic Susceptibility
2.4. Gene Seqeuncing Analysis Based on 16S rRNA
2.5. Multilocus Phylogenetic Analysis (MLPA)
2.6. Genome Sequencing and Analysis
2.7. Ecological Distribution
2.8. Pathogenicity in G. mellonella
3. Results
3.1. Phenotypic Characteristics
3.2. Biofilm Formation and Antibiotic Susceptibility
3.3. Phylogenetic Analysis
3.4. Multilocus Phylogenetic Analysis (MLPA)
3.5. Genome Analysis
3.6. Ecological Distribution and Habitat Preferences
3.7. Pathogenicity of Strains in G. mellonella
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartie, K.L.; Desbois, A.P. Aeromonas Dhakensis: A Zoonotic Bacterium of Increasing Importance in Aquaculture. Pathogens 2024, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; Silva, L.D.; Kumarage, P.M.; Heo, G. Occurrence of Potential Virulence Determinants in Aeromonas Spp. Isolated from Different Aquatic Environments. J. Appl. Microbiol. 2023, 134, lxad031. [Google Scholar] [CrossRef]
- Argayosa, A.M.; Santos, M.N.M.; Argayosa, V.B.; Pakingking, R.V.; Buhian, W.; Salvador, M.L.; Teh, R.E. Pathogenicity of Aeromonas veronii from Nile Tilapia (Oreochromis niloticus) and Efficacy of Fish Oral Vaccine against Motile Aeromonad Septicemia in Tank Trials. Aquac. J. 2024, 4, 163–179. [Google Scholar] [CrossRef]
- Elgendy, M.; Abdelsalam, M.; Kenawy, A.; Younis, N.A. Phenotypic, Genotypic and Virulence Traits Analysis of Aeromonads Causing Massive Mortality in Farmed Oreochromis niloticus. Bull. Eur. Assoc. Fish Pathol. 2024. [Google Scholar] [CrossRef]
- Bartie, K.L.; Ngô, T.P.H.; Bekaert, M.; Hoang Oanh, D.T.; Hoare, R.; Adams, A.; Desbois, A.P. Aeromonas hydrophila ST251 and Aeromonas dhakensis Are Major Emerging Pathogens of Striped Catfish in Vietnam. Front. Microbiol. 2022, 13, 1067235. [Google Scholar] [CrossRef]
- Abu-Elala, N.; Abdelsalam, M.; Marouf, S.; Setta, A. Comparative Analysis of Virulence Genes, Antibiotic Resistance and gyrB-based Phylogeny of Motile Aeromonas Species Isolates from Nile Tilapia and Domestic Fowl. Lett. Appl. Microbiol. 2015, 61, 429–436. [Google Scholar]
- Vega-Sánchez, V.; Latif-Eugenín, F.; Soriano-Vargas, E.; Beaz-Hidalgo, R.; Figueras, M.J.; Aguilera-Arreola, M.G.; Castro-Escarpulli, G. Re-Identification of Aeromonas Isolates from Rainbow Trout and Incidence of Class 1 Integron and β-Lactamase Genes. Vet. Microbiol. 2014, 172, 528–533. [Google Scholar]
- Pessoa, R.B.G.; de Oliveira, W.F.; Marques, D.S.C.; dos Santos Correia, M.T.; de Carvalho, E.V.M.M.; Coelho, L.C.B.B. The Genus Aeromonas: A General Approach. Microb. Pathog. 2019, 130, 81–94. [Google Scholar]
- Joseph, A.V.; Sasidharan, R.S.; Nair, H.P.; Bhat, S. Occurrence of Potential Pathogenic Aeromonas Species in Tropical Seafood, Aquafarms and Mangroves off Cochin Coast in South India. Vet. World 2013, 6, 300–306. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Igumbor, E.U.; Aghdasi, F.; Tom, M.; Okoh, A.I. Emerging Aeromonas Species Infections and Their Significance in Public Health. Sci. World J. 2012, 2012, 625023. [Google Scholar] [CrossRef]
- Pessoa, R.; de Oliveira, W.F.; Correia, M.; Fontes, A.; Coelho, L. Aeromonas and Human Health Disorders: Clinical Approaches. Front. Microbiol. 2022, 13, 868890. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.L.; Shaw, J.G. Aeromonas Spp. Clinical Microbiology and Disease. J. Infect. 2011, 62, 109–118. [Google Scholar]
- McMillan, S.; Verner-Jeffreys, D.; Weeks, J.; Austin, B.; Desbois, A.P. Larva of the Greater Wax Moth, Galleria mellonella, Is a Suitable Alternative Host for Studying Virulence of Fish Pathogenic Vibrio anguillarum. BMC Microbiol. 2015, 15, 127. [Google Scholar] [CrossRef]
- Djainal, W.A.S.; Shahin, K.; Metselaar, M.; Adams, A.; Desbois, A.P. Larva of Greater Wax Moth Galleria mellonella Is a Suitable Alternative Host for the Fish Pathogen Francisella noatunensis Subsp. orientalis. BMC Microbiol. 2020, 20, 8. [Google Scholar]
- Loh, J.M.S.; Adenwalla, N.; Wiles, S.; Proft, T. Galleria mellonella Larvae as an Infection Model for Group A Streptococcus. Virulence 2013, 4, 419–428. [Google Scholar] [CrossRef]
- Pereira, T.C.; De Barros, P.P.; Fugisaki, L.R.d.O.; Rossoni, R.D.; Ribeiro, F.d.C.; De Menezes, R.T.; Junqueira, J.C.; Scorzoni, L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J. Fungi 2018, 4, 128. [Google Scholar] [CrossRef]
- Pintor-Cora, A.; Tapia, O.; Elexpuru-Zabaleta, M.; Ruiz de Alegría, C.; Rodríguez-Calleja, J.M.; Santos, J.A.; Ramos-Vivas, J. Cytotoxicity and Antimicrobial Resistance of Aeromonas Strains Isolated from Fresh Produce and Irrigation Water. Antibiotics 2023, 12, 511. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef]
- CLSI. VET03/VET04-S2; Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated From Aquatic Animals; Second Informational Supplement. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.
- Kwasny, S.M.; Opperman, T.J. Static Biofilm Cultures of Gram-positive Pathogens Grown in a Microtiter Format Used for Anti-biofilm Drug Discovery. Curr. Protoc. Pharmacol. 2010, 50, 13A.8.1–13A.8.23. [Google Scholar]
- El-Hossary, D.; Mahdy, A.; Elariny, E.Y.; Askora, A.; Merwad, A.M.; Saber, T.; Dahshan, H.; Hakami, N.Y.; Ibrahim, R.A. Antibiotic Resistance, Virulence Gene Detection, and Biofilm Formation in Aeromonas Spp. Isolated from Fish and Humans in Egypt. Biology 2023, 12, 421. [Google Scholar] [CrossRef] [PubMed]
- Saticioglu, I.B.; Ay, H.; Altun, S.; Sahin, N.; Duman, M. Flavobacterium Bernardetii Sp. Nov., a Possible Emerging Pathogen of Farmed Rainbow Trout (Oncorhynchus Mykiss) in Cold Water. Aquaculture 2021, 540, 736717. [Google Scholar] [CrossRef]
- Lane, D. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, Better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J. antiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Hitch, T.C.A.; Riedel, T.; Oren, A.; Overmann, J.; Lawley, T.D.; Clavel, T. Automated Analysis of Genomic Sequences Facilitates High-Throughput and Comprehensive Description of Bacteria. ISME Commun. 2021, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Lagkouvardos, I.; Joseph, D.; Kapfhammer, M.; Giritli, S.; Horn, M.; Haller, D.; Clavel, T. IMNGS: A Comprehensive Open Resource of Processed 16S rRNA Microbial Profiles for Ecology and Diversity Studies. Sci. Rep. 2016, 6, 33721. [Google Scholar] [CrossRef] [PubMed]
- Novel and Highly Specific Monoclonal Antibody to Acidovorax Citrulli and Development of ELISA-Based Detection in Cucurbit Leaves and Seed. Available online: https://apsjournals.apsnet.org/doi/epdf/10.1094/PDIS-12-10-0889 (accessed on 20 March 2025).
- Allen, D.A.; Austin, B.; Colwell, R.R. Aeromonas Media, a New Species Isolated from River Water. Int. J. Syst. Evol. Microbiol. 1983, 33, 599–604. [Google Scholar] [CrossRef]
- Samayanpaulraj, V.; Sivaramapillai, M.; Palani, S.N.; Govindaraj, K.; Velu, V.; Ramesh, U. Identification and Characterization of Virulent Aeromonas Hydrophila Ah17 from Infected Channa Striata in River Cauvery and in Vitro Evaluation of Shrimp Chitosan. Food Sci. Nutr. 2020, 8, 1272–1283. [Google Scholar] [CrossRef]
- Reimer, L.C.; Sardà Carbasse, J.; Koblitz, J.; Ebeling, C.; Podstawka, A.; Overmann, J. Bac Dive in 2022: The Knowledge Base for Standardized Bacterial and Archaeal Data. Nucleic Acids Res. 2022, 50, D741–D746. [Google Scholar] [CrossRef]
- Alperi, A.; Figueras, M.; Inza, I.; Martinez-Murcia, A. Analysis of 16S rRNA Gene Mutations in a Subset of Aeromonas Strains and Their Impact in Species Delineation. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2008, 11, 185–194. [Google Scholar] [CrossRef]
- Soler, L.; Yáñez, M.; Chacon, M.; Aguilera-Arreola, M.G.; Catalán, V.; Figueras, M.; Martínez-Murcia, A. Phylogenetic Analysis of the Genus Aeromonas Based on Two Housekeeping Genes. Int. J. Syst. Evol. Microbiol. 2004, 54, 1511–1519. [Google Scholar] [CrossRef]
- Lamy, B.; Laurent, F.; Kodjo, A. Validation of a Partial rpoB Gene Sequence as a Tool for Phylogenetic Identification of Aeromonads Isolated from Environmental Sources. Can. J. Microbiol. 2010, 56, 217–228. [Google Scholar] [CrossRef]
- Figueras, M.; Alperi, A.; Beaz-Hidalgo, R.; Stackebrandt, E.; Brambilla, E.; Monera, A.; Martínez-Murcia, A. Aeromonas Rivuli Sp. Nov., Isolated from the Upstream Region of a Karst Water Rivulet. Int. J. Syst. Evol. Microbiol. 2011, 61, 242–248. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Frederiksen, W.; Garrity, G.M.; Grimont, P.A.; Kämpfer, P.; Maiden, M.C.; Nesme, X.; Rosselló-Mora, R.; Swings, J.; Trüper, H.G. Report of the Ad Hoc Committee for the Re-Evaluation of the Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 2002, 52, 1043–1047. [Google Scholar] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the Genomic Gold Standard for the Prokaryotic Species Definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Murcia, A.; Beaz-Hidalgo, R.; Navarro, A.; Carvalho, M.J.; Aravena-Román, M.; Correia, A.; Figueras, M.J.; Saavedra, M.J. Aeromonas Lusitana Sp. Nov., Isolated from Untreated Water and Vegetables. Curr. Microbiol. 2016, 72, 795–803. [Google Scholar] [PubMed]
- Beaz-Hidalgo, R.; Latif-Eugenín, F.; Hossain, M.; Berg, K.; Niemi, R.; Rapala, J.; Lyra, C.; Liles, M.; Figueras, M. Aeromonas Aquatica Sp. Nov., Aeromonas Finlandiensis Sp. Nov. and Aeromonas Lacus Sp. Nov. Isolated from Finnish Waters Associated with Cyanobacterial Blooms. Syst. Appl. Microbiol. 2015, 38, 161–168. [Google Scholar]
- Marti, E.; Balcázar, J.L. Aeromonas Rivipollensis Sp. Nov., a Novel Species Isolated from Aquatic Samples. J. Basic Microbiol. 2015, 55, 1435–1439. [Google Scholar]
- Alves da Silva, L.C.; Leal-Balbino, T.C.; Toscano de Melo, B.S.; Mendes-Marques, C.L.; Rezende, A.M.; Paiva de Almeida, A.M.; Leal, N.C. Genetic Diversity and Virulence Potential of Clinical and Environmental Aeromonas Spp. Isolates from a Diarrhea Outbreak. BMC Microbiol. 2017, 17, 179. [Google Scholar]
- Korany, S.M.; Mansour, A.N.; El-Hendawy, H.H.; Kobisi, A.N.A.; Aly, H.H. Entomopathogenic Efficacy of the Chitinolytic Bacteria: Aeromonas Hydrophila Isolated from Siwa Oasis, Egypt. Egypt J. Biol. Pest. Control. 2019, 29, 16. [Google Scholar] [CrossRef]
- Charette, S.J. Microbe Profile: Aeromonas Salmonicida: An Opportunistic Pathogen with Multiple Personalities. Microbiology 2021, 167, 001052. [Google Scholar] [CrossRef]
- Aksentijević, K.; Rajewska, A.D.; Wojnarowski, K.; Cholewińska, P.; Korzeniowska, M.; Steinbauer, P.; Palić, D.; Misic, D. Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions. Appl. Sci. 2024, 14, 9365. [Google Scholar] [CrossRef]
- Desbois, A.P.; Cook, K.J.; Buba, E. Antibiotics Modulate Biofilm Formation in Fish Pathogenic Isolates of Atypical Aeromonas Salmonicida. J. Fish Dis. 2020, 43, 1373–1379. [Google Scholar]
- Kondo, K.; Kawano, M.; Sugai, M. Prophage Elements Function as Reservoir for Antibiotic Resistance and Virulence Genes in Nosocomial Pathogens. BioRxiv 2020, 2020–11. [Google Scholar]
- Kondo, K.; Kawano, M.; Sugai, M. Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. Msphere 2021, 6, 10–1128. [Google Scholar]
- Molina-Quiroz, R.C.; Dalia, T.N.; Camilli, A.; Dalia, A.B.; Silva-Valenzuela, C.A. Prophage-Dependent Neighbor Predation Fosters Horizontal Gene Transfer by Natural Transformation. Msphere 2020, 5, 10–1128. [Google Scholar]
- Brown, R.L.; Sanderson, K.; Kirov, S.M. Plasmids and Aeromonas Virulence. FEMS Immunol. Med. Microbiol. 1997, 17, 217–223. [Google Scholar]
- Añorga, M.; Urriza, M.; Ramos, C.; Murillo, J. Multiple Relaxases Contribute to the Horizontal Transfer of the Virulence Plasmids from the Tumorigenic Bacterium Pseudomonas Syringae Pv. Savastanoi NCPPB 3335. Front. Microbiol. 2022, 13, 1076710. [Google Scholar]
- Garcillán-Barcia, M.P.; Cuartas-Lanza, R.; Cuevas, A.; De la Cruz, F. Cis-Acting Relaxases Guarantee Independent Mobilization of MOBQ4 Plasmids. Front. Microbiol. 2019, 10, 2557. [Google Scholar]
- Fernández-López, C.; Pluta, R.; Pérez-Luque, R.; Rodríguez-González, L.; Espinosa, M.; Coll, M.; Lorenzo-Díaz, F.; Boer, D.R. Functional Properties and Structural Requirements of the Plasmid pMV158-Encoded MobM Relaxase Domain. J. Bacteriol. 2013, 195, 3000–3008. [Google Scholar]
- Fernández-López, C.; Bravo, A.; Ruiz-Cruz, S.; Solano-Collado, V.; Garsin, D.A.; Lorenzo-Díaz, F.; Espinosa, M. Mobilizable Rolling-circle Replicating Plasmids from Gram-positive Bacteria: A Low-cost Conjugative Transfer. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Ares-Arroyo, M.; Nucci, A.; Rocha, E.P. Expanding the Diversity of Origin of Transfer-Containing Sequences in Mobilizable Plasmids. Nat. Microbiol. 2024, 9, 3240–3253. [Google Scholar]
- Dalton, K.M.; Crosson, S. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex. Biochemistry 2010, 49, 2205–2215. [Google Scholar]
- Piotrowska, M.; Popowska, M. Insight into the Mobilome of Aeromonas Strains. Front. Microbiol. 2015, 6, 494. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Storesund, J.E.; Lunestad, B.-T.; Hoel, S.; Lerfall, J.; Jakobsen, A.N. Whole Genome Sequence Analysis of Aeromonas Spp. Isolated from Ready-to-Eat Seafood: Antimicrobial Resistance and Virulence Factors. Front. Microbiol. 2023, 14, 1175304. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, L.; Sá, M.; Gordiano, L.; Costa, M. Aeromonas Spp.: Fatores de Virulência e Perfis de Resistência a Antimicrobianos e Metais Pesados. Arq. Inst. Biol. 2012, 79, 453–461. [Google Scholar] [CrossRef]
- Ebmeyer, S.; Kristiansson, E.; Larsson, D.J. CMY-1/MOX-Family AmpC β-Lactamases MOX-1, MOX-2 and MOX-9 Were Mobilized Independently from Three Aeromonas Species. J. Antimicrob. Chemother. 2019, 74, 1202–1206. [Google Scholar] [CrossRef]
- Bogaerts, P.; Naas, T.; Saegeman, V.; Bonnin, R.A.; Schuermans, A.; Evrard, S.; Bouchahrouf, W.; Jove, T.; Tande, D.; De Bolle, X. OXA-427, a New Plasmid-Borne Carbapenem-Hydrolysing Class D β-Lactamase in Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 2469–2477. [Google Scholar] [CrossRef]
- Ebmeyer, S. On the Origins of Mobile Antibiotic Resistance Genes. Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 2021. [Google Scholar]
- Sacha, P.; Ostas, A.; Jaworowska, J.; Wieczorek, P.; Ojdana, D.; Ratajczak, J.; Tryniszewska, E. The KPC Type Beta-Lactamases: New Enzymes That Confer Resistance to Carbapenems in Gram-Negative Bacilli. Folia Histochem. Cytobiol. 2009, 47, 537–543. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 * | 5 ** | 6 *** | |
---|---|---|---|---|---|---|
Hydrolysis of | ||||||
DNA | - | - | W | + | + | ND |
Tween 80 | + | - | + | + | + | ND |
Starch | + | - | + | + | + | ND |
L-Tyrosin | - | + | - | - | ND | ND |
API 20 NE | ||||||
L-Arabinose | + | + | + | - | + | - |
API 20 E | ||||||
Tryptophan Deaminase | + | - | - | - | - | - |
BIOLOG GENIII | ||||||
Dextrin | - | + | + | ND | ND | ND |
α-D-Lactose | - | + | - | + | - | ND |
D-Galacturonic Acid | - | - | + | + | ND | ND |
D-Arabitol | - | - | + | - | ND | ND |
D-Cellobiose | - | + | + | + | - | ND |
Glycerol | - | - | + | + | + | ND |
Sucrose | + | + | + | - | + | + |
Chemical sensitivity assays | ||||||
1% Sodium Lactate | - | + | + | ND | ND | ND |
D-serine | - | - | + | ND | + | ND |
Guiding Code for Nomenclature | ICPN | ICPN | ICPN |
Nature of the type material | Strain | Strain | Strain |
Genus name | Aeromonas | Aeromonas | Aeromonas |
Species name | Aeromonas ichthyocola | Aeromonas mytilicola | Aeromonas mytilicola |
Specific epithet | ichthyocola | mytilicola | mytilicola subsp. aquatica |
Species status | sp. nov. | sp. nov. | subsp. nov |
Species etymology | ich.thy.o’co.la. Gr. masc. n. ichthys, fish; L. masc./fem. n. suff. -cola, dweller; from L. masc./fem. n. incola, dweller; N.L. fem. n. ichthyocola, a dweller of fish | my.ti.li’co.la. L. masc. n. mytilus, a mussel; L. masc./fem. n. suff. -cola, dweller; from L. masc./fem. n. incola, dweller; N.L. fem. n. mytilicola, a dweller of mussels | a.qua’ti.ca. L. fem. n. aquatica, pertaining to water, aquatic |
Description of the new taxon and diagnostic traits | Cells are Gram-stain-negative, non-motile, aerobic, and rod-shaped, 0.9–1.0 µm long and 1.5–1.6 µm wide. Colonies on Tryptic Soy Agar are convex, smooth, and cream-colored. Oxidase and catalase activities are positive, while indole and H₂S production are negative. Growth occurs on Nutrient Agar, R2A Agar, McConkey Agar, Sea Water Agar, Brain Heart Infusion Agar (BHIA), Tryptic Soy Agar (TSA), and Marine Agar. Growth is also observed on 5% Sheep Blood Agar and Thiosulfate-Citrate-Bile Salts-Sucrose Agar (TCBS). However, no growth is observed on Bile Aesculin Agar. Growth occurs in the range of 4–42 °C, with tolerance to 0–6% NaCl. The strain shows negative hydrolysis for DNA but positive hydrolysis for Tween 20, Tween 80, starch, gelatin, and casein. L-tyrosine hydrolysis is negative. In the API 20NE test, the strain was positive for the reduction of nitrate to nitrite, indole production, fermentation of D-glucose, arginine dihydrolase, hydrolysis of aesculin, hydrolysis of gelatin, and β-galactosidase, but negative for urease. The strain assimilates D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-D-glucosamine, potassium gluconate, malic acid, and sucrose but does not assimilate adipic acid, trisodium citrate, or phenylacetic acid. Biolog GEN III system analysis indicates the strain is positive for the utilization of α-D-glucose, D-mannose, D-mannitol, dextrin, trehalose, and β-methyl-D-glucoside but negative for D-raffinose, D-galactose, D-cellobiose, sorbitol, gelatin, pectin, and Tween 40. Chemical sensitivity assays show the strain is resistant to vancomycin, rifamycin SV, tetrazolium violet, tetrazolium blue, and niaproof 4 but sensitive to nalidixic acid, aztreonam, and potassium tellurite. It can tolerate 1% NaCl, 4% NaCl, and pH 6 but is not tolerant to 8% NaCl or pH 5. | Cells are Gram-stain-negative, motile, aerobic, and rod-shaped, 0.7–0.8 µm long and 1.4–1.5 µm wide. Colonies on Tryptic Soy Agar (TSA) are convex, smooth, and cream-colored. Oxidase and catalase activities are positive, while H₂S production is negative. Growth occurs on Nutrient Agar, R2A Agar, McConkey Agar, Sea Water Agar, Brain Heart Infusion Agar (BHIA), TSA, and Marine Agar. Growth is also observed on 5% Sheep Blood Agar with γ-hemolysis and Thiosulfate-Citrate-Bile Salts-Sucrose Agar (TCBS). However, no growth is observed on Bile Aesculin Agar. The growth temperature range is 10–42 °C, with tolerance to 0–4% NaCl. The strain shows weakly positive hydrolysis for Tween 20 and casein but negative hydrolysis for DNA, Tween 80, and starch. Gelatin hydrolysis is positive, while L-tyrosine hydrolysis is also positive. In the API 20NE test, the strain is positive for the reduction of nitrate to nitrite, indole production, fermentation of D-glucose, arginine dihydrolase, hydrolysis of aesculin, hydrolysis of gelatin, and β-galactosidase. It is negative for urease. The strain assimilates D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-D-glucosamine, and D-maltose but does not assimilate adipic acid, trisodium citrate, or phenylacetic acid. Biolog GEN III system analysis indicates the strain utilizes α-D-glucose, D-mannose, D-mannitol, dextrin, α-D-lactose, trehalose, β-methyl-D-glucoside, D-galactose, and D-cellobiose. It does not utilize D-raffinose, gelatin, or Tween 40. Chemical sensitivity assays show the strain is resistant to vancomycin, rifamycin SV, tetrazolium violet, tetrazolium blue, and niaproof 4 but sensitive to nalidixic acid, aztreonam, and potassium tellurite. It can tolerate 1% NaCl, weakly tolerate 4% NaCl, and survive at pH 6. It cannot tolerate 8% NaCl or pH 5 but tolerates guanidine HCl and 1% sodium lactate. | Cells are Gram-stain-negative, motile, aerobic, and rod-shaped, 0.7–0.9 µm long and 1.6–1.7 µm wide. Colonies grown on Tryptic Soy Agar (TSA) are convex, smooth, and cream-colored. Oxidase and catalase activities are positive, while H₂S production is negative. Growth occurs on Nutrient Agar, R2A Agar, McConkey Agar, Sea Water Agar, Brain Heart Infusion Agar (BHIA), TSA, and Marine Agar. Growth is also observed on 5% Sheep Blood Agar with α-hemolysis and the strain shows weak growth on Thiosulfate-Citrate-Bile Salts-Sucrose Agar (TCBS). However, no growth is observed on Bile Aesculin Agar. The growth temperature range is 4–42 °C, with tolerance to 0–4% NaCl. The strain shows weakly positive hydrolysis for DNA and positive hydrolysis for Tween 20, Tween 80, starch, gelatin, and casein. However, L-tyrosine hydrolysis is negative. In the API 20NE test, the strain is positive for the reduction of nitrate to nitrite, indole production, fermentation of D-glucose, arginine dihydrolase, hydrolysis of aesculin, hydrolysis of gelatin, and β-galactosidase. It is negative for urease activity. The strain assimilates D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-D-glucosamine, potassium gluconate, D-maltose, capric acid, and malic acid. However, it does not assimilate adipic acid or phenylacetic acid. Biolog GEN III system analysis indicates the strain utilizes α-D-glucose, D-mannose, D-mannitol, dextrin, D-cellobiose, and L-malic acid. It does not utilize D-raffinose, D-sorbitol, N-acetyl-β-D-mannosamine, or L-fucose. Chemical sensitivity assays show the strain is resistant to vancomycin, rifamycin SV, tetrazolium violet, tetrazolium blue, and niaproof 4 but sensitive to nalidixic acid, aztreonam, and potassium tellurite. It can tolerate 1% NaCl, weakly tolerate 4% NaCl, and survive at pH 6. It is not tolerant to 8% NaCl or pH 5 but can grow in the presence of D-serine and 1% sodium lactate. |
Country of origin | Türkiye | Türkiye | Türkiye |
Region of origin | Adapazari | Istanbul | Duzce |
Date of isolation (dd/mm/yyyy) | 10/01/2015 | 10/05/2023 | 28/10/2022 |
Source of isolation | Rainbow trout (Oncorhynchus mykiss) | Mussels (Mytilus galloprovincialis) | Rainbow trout (Oncorhynchus mykiss) |
Sampling date (dd/mm/yyyy) | 10/01/2015 | 12/05/2023 | 30/10/2022 |
Latitude (xx°xx′xx″ N/S) | 40°40′57.1″ N | 41°01′58.5″ N | 40°46′20.3″ N |
Longitude (xx°xx′xx″ E/W) | 30°42′08.5″ E | 29°01′24.8″ E | 30°58′40.9″ E |
16S rRNA gene accession nr. | PQ549964 | PQ549960 | PQ549963 |
Genome accession number [RefSeq; EMBL; …] | A-5T; JBJSWH000000000 | A-7T; CP174126 | A-8T; CP172298 |
Plasmid accession number [RefSeq; EMBL; …] | - | pA-7: CP174127- CP174129 | - |
Genome status | Incomplete | Complete | Complete |
Genome size | 4,676,890 | 4,736,205 | 4,681,979 |
GC % | 61.2 | 61.1 | 61.4 |
Number of strains in study | 1 | 1 | 1 |
Source of isolation of non-type strains | - | - | - |
Information related to the Nagoya Protocol | Türkiye is not yet Party to the Nagoya-Protocol | Türkiye is not yet Party to the Nagoya-Protocol | Türkiye is not yet Party to the Nagoya-Protocol |
Designation of the Type Strain | A-5T | A-7T | A-8T |
Strain Collection Numbers | LMG 33534; DSM 117488 | LMG 33536; DSM 117490 | LMG 33537; DSM 117493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajmi, N.; Duman, M.; Coskun, B.; Esen, C.; Sonmez, O.; Tasci, G.; Coskuner-Weber, O.; Ay, H.; Yoyen-Ermis, D.; Yibar, A.; et al. Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov. Animals 2025, 15, 948. https://doi.org/10.3390/ani15070948
Ajmi N, Duman M, Coskun B, Esen C, Sonmez O, Tasci G, Coskuner-Weber O, Ay H, Yoyen-Ermis D, Yibar A, et al. Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov. Animals. 2025; 15(7):948. https://doi.org/10.3390/ani15070948
Chicago/Turabian StyleAjmi, Nihed, Muhammed Duman, Batuhan Coskun, Ceren Esen, Oner Sonmez, Gorkem Tasci, Orkide Coskuner-Weber, Hilal Ay, Digdem Yoyen-Ermis, Artun Yibar, and et al. 2025. "Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov." Animals 15, no. 7: 948. https://doi.org/10.3390/ani15070948
APA StyleAjmi, N., Duman, M., Coskun, B., Esen, C., Sonmez, O., Tasci, G., Coskuner-Weber, O., Ay, H., Yoyen-Ermis, D., Yibar, A., Desbois, A. P., & Saticioglu, I. B. (2025). Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov. Animals, 15(7), 948. https://doi.org/10.3390/ani15070948