Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,485)

Search Parameters:
Keywords = Muhammad Ali

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5079 KiB  
Article
Enhancing QoS in Opportunistic Networks Through Direct Communication for Dynamic Routing Challenges
by Ambreen Memon, Aqsa Iftikhar, Muhammad Nadeem Ali and Byung-Seo Kim
Telecom 2025, 6(3), 55; https://doi.org/10.3390/telecom6030055 (registering DOI) - 1 Aug 2025
Abstract
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently [...] Read more.
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently dynamic, requiring the selection of neighboring nodes as intermediate hops to forward data toward the destination. However, frequent node movement can cause considerable delays for senders attempting to identify appropriate next hops, consequently degrading the quality of service (QoS) in OppNets. To mitigate this challenge, this paper proposes an alternative approach for scenarios where senders cannot locate suitable next hops. Specifically, we propose utilizing direct communication via line of sight (LoS) between sender and receiver nodes to satisfy QoS requirements. The proposed scheme is experimented with using the ONE simulator, which is widely used for OppNet experiments and study, and compared against existing schemes such as the history-based routing protocol (HBRP) and AEProphet routing protocol. Full article
Show Figures

Figure 1

17 pages, 2337 KiB  
Systematic Review
Optical Coherence Tomography-Guided vs. Angiography-Guided Percutaneous Coronary Intervention for Complex Coronary Lesions: A Systematic Review and Meta-Analysis
by Muhammad Hamza Shuja, Muhammad Ahmed, Ramish Hannat, Laiba Khurram, Hamza Ali Hasnain Sheikh, Syed Hasan Shuja, Adarsh Raja, Jawad Ahmed, Kriti Soni, Shariq Ahmad Wani, Aman Goyal, Bala Pushparaji, Ali Hasan, Raheel Ahmed and Hritvik Jain
Diagnostics 2025, 15(15), 1907; https://doi.org/10.3390/diagnostics15151907 - 30 Jul 2025
Viewed by 246
Abstract
Background: Despite advances in coronary artery disease (CAD) treatment, challenges persist, particularly in complex lesions. While percutaneous coronary intervention (PCI) is widely used, its outcomes can be affected by complications like restenosis. Optical coherence tomography (OCT), offering higher-resolution imaging than angiography, shows [...] Read more.
Background: Despite advances in coronary artery disease (CAD) treatment, challenges persist, particularly in complex lesions. While percutaneous coronary intervention (PCI) is widely used, its outcomes can be affected by complications like restenosis. Optical coherence tomography (OCT), offering higher-resolution imaging than angiography, shows promise in guiding PCI. However, meta-analytical comparisons between OCT-guided and angiography-guided PCI remain limited. Methods: Databases, including PubMed, Scopus, Cochrane Library, and ClinicalTrials.gov, were queried through May 2025 to identify randomized controlled trials (RCTs) comparing OCT-guided PCI with angiography-guided PCI. Data were pooled using risk ratios (RRs) and mean difference (MD) with 95% confidence intervals (CIs) in a random-effects model. Results: Five RCTs involving 5737 patients (OCT: 2738 and angiography: 2999) were included. On pooled analysis, OCT-guided PCI was associated with a notable reduction in major adverse cardiovascular event (MACE) (RR: 0.71, p = 0.0001), cardiac mortality (RR: 0.43, p = 0.003), target lesion revascularization (TLR) (RR: 0.53, p = 0.007), and stroke (RR: 0.17, p = 0.02), compared to angiography-guided PCI. No significant differences were noted for all-cause mortality and myocardial infarction. Conclusions: In patients with complex coronary lesions, OCT-guided PCI reduces the risk of MACE, cardiac mortality, TLR, and stroke, compared to angiography-guided PCI only. This study supports incorporating advanced imaging techniques like OCT to improve clinical outcomes, especially in complex PCIs. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Cardiovascular Diseases)
Show Figures

Figure 1

30 pages, 1251 KiB  
Article
Large Language Models in Medical Image Analysis: A Systematic Survey and Future Directions
by Bushra Urooj, Muhammad Fayaz, Shafqat Ali, L. Minh Dang and Kyung Won Kim
Bioengineering 2025, 12(8), 818; https://doi.org/10.3390/bioengineering12080818 - 29 Jul 2025
Viewed by 145
Abstract
The integration of vision and language processing into a cohesive system has already shown promise with the application of large language models (LLMs) in medical image analysis. Their capabilities encompass the generation of medical reports, disease classification, visual question answering, and segmentation, providing [...] Read more.
The integration of vision and language processing into a cohesive system has already shown promise with the application of large language models (LLMs) in medical image analysis. Their capabilities encompass the generation of medical reports, disease classification, visual question answering, and segmentation, providing yet another approach to interpreting multimodal data. This survey aims to compile all known applications of LLMs in the medical image analysis field, spotlighting their promises alongside critical challenges and future avenues. We introduce the concept of X-stage tuning which serves as a framework for LLMs fine-tuning across multiple stages: zero stage, one stage, and multi-stage, wherein each stage corresponds to task complexity and available data. The survey describes issues like sparsity of data, hallucination in outputs, privacy issues, and the requirement for dynamic knowledge updating. Alongside these, we cover prospective features including integration of LLMs with decision support systems, multimodal learning, and federated learning for privacy-preserving model training. The goal of this work is to provide structured guidance to the targeted audience, demystifying the prospects of LLMs in medical image analysis. Full article
(This article belongs to the Special Issue Deep Learning in Medical Applications: Challenges and Opportunities)
Show Figures

Figure 1

21 pages, 2926 KiB  
Article
Exact Solutions and Soliton Transmission in Relativistic Wave Phenomena of Klein–Fock–Gordon Equation via Subsequent Sine-Gordon Equation Method
by Muhammad Uzair, Ali H. Tedjani, Irfan Mahmood and Ejaz Hussain
Axioms 2025, 14(8), 590; https://doi.org/10.3390/axioms14080590 - 29 Jul 2025
Viewed by 264
Abstract
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find [...] Read more.
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find the exact solution of the proposed model, for this purpose, we utilized two effective techniques, including the sine-Gordon equation method and a new extended direct algebraic method. The novelty of these approaches lies in the form of different solutions such as hyperbolic, trigonometric, and rational functions, and their graphical representations demonstrate the different form of solitons like kink solitons, bright solitons, dark solitons, and periodic waves. To illustrate the characteristics of these solutions, we provide two-dimensional, three-dimensional, and contour plots that visualize the magnitude of the (1+1)-dimensional Klein–Fock–Gordon equation. By selecting suitable values for physical parameters, we demonstrate the diversity of soliton structures and their behaviors. The results highlighted the effectiveness and versatility of the sine-Gordon equation method and a new extended direct algebraic method, providing analytical solutions that deepen our insight into the dynamics of nonlinear models. These results contribute to the advancement of soliton theory in nonlinear optics and mathematical physics. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 240
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

13 pages, 241 KiB  
Article
A Study on the Behavior of Osculating and Rectifying Curves on Smooth Immersed Surfaces in E3
by Fatemah Mofarreh, Ahmer Ali, Farah Naz and Muhammad Hanif
Axioms 2025, 14(8), 586; https://doi.org/10.3390/axioms14080586 - 28 Jul 2025
Viewed by 143
Abstract
This paper presents a detailed investigation into the isometric properties of osculating and rectifying curves on smooth immersed surfaces in E3. We examine the geometric interactions between these curves, specifically when the osculating curve is associated with one surface and the [...] Read more.
This paper presents a detailed investigation into the isometric properties of osculating and rectifying curves on smooth immersed surfaces in E3. We examine the geometric interactions between these curves, specifically when the osculating curve is associated with one surface and the rectifying curve with another. The main objective of this study is to identify the conditions under which these curves exhibit isometric behavior, preserving their intrinsic geometric properties along their respective Frenet frames. Our findings demonstrate that these curves retain isometric characteristics along the tangent, normal, and binormal directions, offering new insights into their structural invariance. This research makes a significant contribution to the broader field of differential geometry, with potential applications in surface theory. Full article
(This article belongs to the Special Issue Advances in Differential Geometry and Mathematical Physics)
21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 244
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 382
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 11587 KiB  
Article
Robust Sensorless Active Damping of LCL Resonance in EV Battery Grid-Tied Converters Using μ-Synthesis Control
by Nabeel Khan, Wang Cheng, Muhammad Yasir Ali Khan and Danish Khan
World Electr. Veh. J. 2025, 16(8), 422; https://doi.org/10.3390/wevj16080422 - 27 Jul 2025
Viewed by 193
Abstract
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected [...] Read more.
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected to the grid via LCL filters, eliminating the need for additional current sensors while preserving harmonic attenuation. A comprehensive state–space and process noise model enables accurate capacitor current estimation using only grid current and point-of-common-coupling (PCC) voltage measurements. The proposed method maintains robust performance under ±60% LCL parameter variations and integrates a proportional-resonant (PR) current controller for resonance suppression. Hardware-in-the-loop (HIL) validation demonstrates enhanced stability in dynamic grid conditions, with total harmonic distortion (THD) below 5% (IEEE 1547-compliant) and current tracking error < 0.06 A. Full article
Show Figures

Figure 1

8 pages, 3432 KiB  
Proceeding Paper
Enhanced Electrochemical Energy Storage via FeCoS/RGO Composites
by Muhammad Tariq and Mohsin Ali Marwat
Mater. Proc. 2025, 23(1), 2; https://doi.org/10.3390/materproc2025023002 - 25 Jul 2025
Viewed by 21
Abstract
Supercapacitors are considered a bridge between batteries and capacitors due to their significant energy density, as well as power density. Herein, we prepared two novel electrodes of Fe0.8Co0.2S and Fe0.8Co0.2S/rGO composites and analyzed their supercapacitor [...] Read more.
Supercapacitors are considered a bridge between batteries and capacitors due to their significant energy density, as well as power density. Herein, we prepared two novel electrodes of Fe0.8Co0.2S and Fe0.8Co0.2S/rGO composites and analyzed their supercapacitor performance. The results indicated that Fe0.8Co0.2S/rGO, prepared through co-precipitation and annealing, exhibited a higher specific capacitance value and improved electrochemical properties in comparison to Fe0.8Co0.2S due to the synergistic effect of rGO with Fe0.8Co0.2S. X-ray diffraction (XRD) confirmed the desired phases of Fe0.8Co0.2S, while scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) verified the microstructures and desired elements. Cyclic voltammetry (CV) confirmed an enhanced oxidation current from +25 mA to +49 mA at 10 mV/s, while galvanometric charge–discharge (GCD) showed an enhanced discharge time from 78 s to 300 s. As a result, the specific capacitance and energy density were enhanced from 74.3 F/g to 285.7 F/g and 2.84 Wh/kg to 10.9 Wh/kg, respectively. This contributed to a more than 283% increase in specific capacitance, as well as energy density. Overall, Fe0.8Co0.2S/rGO shows great potential for small-scale energy storage devices. Full article
Show Figures

Figure 1

41 pages, 5984 KiB  
Article
Socio-Economic Analysis for Adoption of Smart Metering System in SAARC Region: Current Challenges and Future Perspectives
by Zain Khalid, Syed Ali Abbas Kazmi, Muhammad Hassan, Sayyed Ahmad Ali Shah, Mustafa Anwar, Muhammad Yousif and Abdul Haseeb Tariq
Sustainability 2025, 17(15), 6786; https://doi.org/10.3390/su17156786 - 25 Jul 2025
Viewed by 462
Abstract
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector [...] Read more.
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector efficiency. The implementation of smart metering systems in utility management plays a pivotal role in advancing several Sustainable Development Goals (SDGs), i.e.; SDG (Affordable and Clean Energy), and SDG Climate Action. By enabling real-time monitoring, accurate measurement, and data-driven management of energy resources, smart meters promote efficient consumption, reduce losses, and encourage sustainable behaviors among consumers. The adoption of a smart metering system along with Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis, socio-economic analysis, current challenges, and future prospects was also investigated. Besides the economics of the electrical distribution system, one feeder with non-technical losses of about 16% was selected, and the cost–benefit analysis and cost–benefit ratio was estimated for the SAARC region. The import/export ratio is disturbing in various SAARC grids, and a solution in terms of community microgrids is presented from Pakistan’s perspective as a case study. The proposed work gives a guidelines for SAARC countries to reduce their losses and improve their system functionality. It gives a composite solution across multi-faceted evaluation for the betterment of a large region. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

19 pages, 5484 KiB  
Article
Comprehensive Molecular and Epidemiological Characterization of Staphylococcus aureus Isolated from Bovine Mastitis in Water Buffalo of the Peshawar Division, Khyber Pakhtunkhwa, Pakistan
by Salma Javed, Jo-Ann McClure, Irfan Ullah, Shahzad Ali, Mohammad Ejaz, Sadia Tabassum, Muhammad Ali Syed and Kunyan Zhang
Pathogens 2025, 14(8), 735; https://doi.org/10.3390/pathogens14080735 - 25 Jul 2025
Viewed by 298
Abstract
Water buffalo (Bubalus bubalis) are a primary source of milk in Pakistan, where bovine mastitis is a significant health issue among cattle, leading to substantial economic losses. Staphylococcus aureus is a predominant pathogen associated with mastitis; however, a detailed molecular characterization [...] Read more.
Water buffalo (Bubalus bubalis) are a primary source of milk in Pakistan, where bovine mastitis is a significant health issue among cattle, leading to substantial economic losses. Staphylococcus aureus is a predominant pathogen associated with mastitis; however, a detailed molecular characterization of the strains in the country remains limited. We previously characterized mastitis strains from the Hazara division of Khyber Pakhtunkhwa, Pakistan. In this study, we investigated mastitis cases in the Peshawar division, including samples from both animals and human farm workers for comparison. Higher rates of mastitis (67.27% of animals) and sub-clinical mastitis (91.03% of positive animals) were identified in Peshawar than for those (34.55% and 75.31%, respectively) previously observed in Hazara. Methicillin-susceptible S. aureus (MSSA) belonging to clonal complex 9 (ST2454) were predominant. Methicillin-resistant S. aureus (MRSA) belonging to ST22 and ST8 were also detected in the Nowshera district. While no S. aureus colonization was observed among animal handlers, evidence of hand contamination suggests a potential route for pathogen spread. Low levels of antibiotic resistance were noted amongst isolates, but higher rates were seen in MRSA. This study presents only the second comprehensive molecular investigation of S. aureus isolated from buffalo mastitis in Pakistan and indicates a concerning rise in mastitis within the province. Full article
Show Figures

Figure 1

20 pages, 11438 KiB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 257
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 2567 KiB  
Article
Optimization and Characterization of Bioactive Metabolites from Cave-Derived Rhodococcus jialingiae C1
by Muhammad Rafiq, Umaira Bugti, Muhammad Hayat, Wasim Sajjad, Imran Ali Sani, Nazeer Ahmed, Noor Hassan, Yanyan Wang and Yingqian Kang
Biomolecules 2025, 15(8), 1071; https://doi.org/10.3390/biom15081071 - 24 Jul 2025
Viewed by 220
Abstract
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits [...] Read more.
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits prominent antibacterial activity against multidrug-resistant pathogens (MDR), including Escherichia coli, Staphylococcus aureus, and Micrococcus luteus. It also demonstrates substantial antioxidant activity, with 71% and 58.39% DPPH radical scavenging. Optimization of physicochemical conditions, such as media, pH, temperature, and nitrogen and carbon sources and concentrations substantially enhanced both biomass and metabolite yields. Optimal conditions comprise specialized media, a pH of 7, a temperature of 30 °C, peptone (1.0 g/L) as the nitrogen source, and glucose (0.5 g/L) as the carbon source. HPLC and QTOF-MS analyses uncovered numerous metabolites, including a phenolic compound, 2-[(E)-3-hydroxy-3-(4-methoxyphenyl) prop-2-enoyl]-4-methoxyphenolate, Streptolactam C, Puromycin, and a putative aromatic polyketide highlighting the C1 isolate chemical. Remarkably, one compound (C14H36N7) demonstrated a special molecular profile, signifying structural novelty and warranting further characterization by techniques such as 1H and 13C NMR. These findings highlight the biotechnological capacity of the C1 isolate as a source of novel antimicrobials and antioxidants, linking environmental adaptation to metabolic potential and supporting natural product discovery pipelines against antibiotic resistance. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

24 pages, 3874 KiB  
Article
Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems
by Fabiellen Pereira, Sagara Kumara, Muhammad Ahsin, Lamis Ali, Ying Xi, Stephan van Vliet, Simon Kelly, Anita Fleming and Pablo Gregorini
Dairy 2025, 6(4), 39; https://doi.org/10.3390/dairy6040039 - 23 Jul 2025
Viewed by 225
Abstract
This on-farm study evaluated the effects of a regenerative (plant polyculture) as compared to conventional (monoculture) pasture-based New Zealand dairy production system on milk and yoghurt nutraceutical properties and environmental impact. Milk and yoghurt produced by two adjacent regenerative and conventional farms were [...] Read more.
This on-farm study evaluated the effects of a regenerative (plant polyculture) as compared to conventional (monoculture) pasture-based New Zealand dairy production system on milk and yoghurt nutraceutical properties and environmental impact. Milk and yoghurt produced by two adjacent regenerative and conventional farms were sampled throughout the year and analyzed for chemical composition, metabolomics, and microbiome. Milk samples were also collected over four consecutive days (one day after herbage sampling) on four occasions throughout lactation: early lactation (October), peak lactation (December/January), mid-lactation (March), and late lactation (May). Overall, the regenerative system had a lower environmental impact while maintaining a similar yield and the same milk composition compared to conventional systems. Furthermore, milk and yoghurt from the regenerative system had a more favourable profile of phytochemical antioxidants with potential positive benefits to human health (anti-inflammatory and antioxidant). Full article
(This article belongs to the Section Milk and Human Health)
Show Figures

Figure 1

Back to TopTop