Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Site, Pastures, and Animals
2.2. Herbage and Soil Sampling and Chemical Composition
2.3. Milk and Yoghurt Sampling and Composition
2.3.1. Metabolomics Profiling
2.3.2. Microbiome Analyses
2.4. Statistical Analyses
3. Results
3.1. Herbage, Milk, and Yoghurt Chemical Composition and Metabolomics
3.2. Soil, Milk, and Yoghurt Microbiomes
4. Discussion
4.1. Human Health
4.2. Soil, Milk and Yoghurt Microbiomes
4.3. Environmental Impact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CON, CONV | Conventional NZ pastoral systems |
REG, REGEN | Regenerative system |
References
- Van Vliet, S.; Provenza, F.; Kronberg, S. Health-promoting phytonutrients are higher in grass-fed meat and milk. Front. Sustain. Food Syst. 2021, 4, 555426. [Google Scholar] [CrossRef]
- Scherer, P.E.; Hill, J.A. Obesity, Diabetes, and Cardiovascular Diseases: A Compendium. Circ. Res. 2016, 118, 1703–1705. [Google Scholar] [CrossRef] [PubMed]
- Swarup, S.; Ahmed, I.; Grigorova, Y.; Zeltser, R. Metabolic Syndrome. [Updated 2024 Mar 7]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459248/ (accessed on 20 September 2024).
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Provenza, F.; Meuret, M.; Gregorini, P. Our landscapes, our livestock, ourselves: Restoring broken linkages among plants, herbivores, and humans with diets that nourish and satiate. Appetite 2015, 95, 500–519. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, P.; Villalba, J.J.; Chilibroste, P.; Provenza, F. Grazing management: Setting the table, designing the menu and influencing the diner. Anim. Prod. Sci. 2017, 57, 1248–1268. [Google Scholar] [CrossRef]
- Gregorini, P.; Fleming, A.; Gordon, I.J.; Provenza, F. Grazing management for integral Health Ivencontro Panamericano Sobre Manejo Agroecológico de Pastagensflorianópolis—Brasil, 24a 26 de Outubro de 2024. Anais do Agroecologia—IV Encontro Panamericano sobre Manejo Agroecológico de Pastagens -PRV nas Américas—Florianópolis, SC -v. 19, no 3, 2024. Available online: https://cadernos.aba-agroecologia.org.br/cadernos/issue/view/17 (accessed on 24 April 2025).
- FAO. Family Farming Knowledge Platform. Available online: https://www.fao.org/family-farming/detail/en/c/1512632/ (accessed on 24 April 2025).
- California Department of Food and Agriculture. Available online: https://www.cdfa.ca.gov/RegenerativeAg/ (accessed on 24 April 2025).
- Das, A.B.; Goud, V.V.; Das, C. 9—Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Volume 14: The Science of Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 285–323. [Google Scholar]
- Tao, K.; Jensen, I.T.; Zhang, S.; Villa-Rodríguez, E.; Blahovska, Z.; Salomonsen, C.L.; Martyn, A.; Björgvinsdóttir, Þ.N.; Kelly, S.; Janss, L.; et al. Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly. Nat. Commun. 2024, 15, 3436. [Google Scholar] [CrossRef] [PubMed]
- Wippel, K.; Tao, K.; Niu, Y.; Zgadzaj, R.; Kiel, N.; Guan, R.; Dahms, E.; Zhang, P.; Jensen, D.B.; Logemann, E.; et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nat. Microbiol. 2021, 6, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Andersen, K.S.; Kirkegaard, R.H.; Karst, S.M.; Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv 2018. [Google Scholar] [CrossRef]
- Clarke, E.D.; Rollo, M.E.; Collins, C.E.; Wood, L.; Callister, R.; Philo, M.; Kroon, P.A.; Haslam, R.L. The Relationship between Dietary Polyphenol Intakes and Urinary Polyphenol Concentrations in Adults Prescribed a High Vegetable and Fruit Diet. Nutrients 2020, 12, 3431. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Guerra, A.; Nouvenne, A.; Meschi, T.; Maggi, S. Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023, 15, 1138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foods Standards Australia and New Zealand. 2016. Available online: https://www.foodstandards.gov.au/sites/default/files/consumer/labelling/nutrition/Documents/ALA%20LA.pdf (accessed on 24 April 2025).
- Baker, E.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ (accessed on 24 April 2025).
- Bertoni, C.; Abodi, M.; D’Oria, V.; Milani, G.P.; Agostoni, C.; Mazzocchi, A. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 14319. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Klaus, W.; Lange, K.W. Omega-3 fatty acids and mental health. Glob. Health J. 2020, 4, 18–30. [Google Scholar]
- Chowdhury, R.; Steur, M.; Patel, P.; Franco, O.H. Individual Fatty Acids in Cardiometabolic Disease. In Handbook of Lipids in Human Function Fatty Acids; AOCS Press: Champaign, IL, USA, 2016; pp. 207–318. [Google Scholar]
- Zhu, X.; Chen, L.; Lin, J.; Ba, M.; Liao, J.; Zhang, P.; Zhao, C. Association between fatty acids and the risk of impaired glucose tolerance and type 2 diabetes mellitus in American adults: NHANES 2005−2016. Nutr. Diabetes 2023, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Boaru, D.L.; Fraile-Martinez, O.; De Leon-Oliva, D.; Garcia-Montero, C.; De Castro-Martinez, P.; Miranda-Gonzalez, A.; Saez, M.A.; Muñon-Zamarron, L.; Castillo-Ruiz, E.; Barrena-Blázquez, S.; et al. Harnessing the Anti-Inflammatory Properties of Polyphenols in the Treatment of Inflammatory Bowel Disease. Int. J. Biol. Sci. 2024, 20, 5608–5672. [Google Scholar] [CrossRef] [PubMed]
- Allemailem, K.S.; Almatroudi, A.; Alharbi, H.O.A.; AlSuhaymi, N.; Alsugoor, M.H.; Aldakheel, F.M.; Khan, A.A.; Rahmani, A.H. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Batarfi, W.A.; Yunus, M.H.M.; Hamid, A.A.; Lee, Y.T.; Maarof, M. Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics 2024, 16, 1504. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Borrás, C.; Viña, J. Genistein, a tool for geroscience. Mech. Ageing Dev. 2022, 204, 111665. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, F.; Cho, H.W. Natural Salicylates and Their Roles in Human Health. Int. J. Mol. Sci. 2020, 21, 9049. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, A.; Caporali, S.; Di Daniele, N.; Rovella, V.; Cardillo, C.; Schinzari, F.; Minieri, M.; Pieri, M.; Candi, E.; Bernardini, S.; et al. AntiInflammatory and Proliferative Properties of Luteolin-7-O-Glucoside. Int. J. Mol. Sci. 2021, 22, 1321. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119 Pt A, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, M.; Gołębiewska, E.; Świderski, G.; Męczyńska-Wielgosz, S.; Lewandowska, H.; Pietryczuk, A.; Cudowski, A.; Astel, A.; Świsłocka, R.; Samsonowicz, M.; et al. Plant-Derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021, 13, 3107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fanai, A.; Bohia, B.; Lalremruati, F.; Lalhriatpuii, N.; Lalrokimi; Lalmuanpuii, R.; Singh, P.K.; Zothanpui. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: An updated review. PeerJ 2024, 12, e17882. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.; Glick, B. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Zhang, C.; Tayyab, M.; Abubakar, A.Y.; Yang, Z.; Pang, Z.; Islam, W.; Lin, Z.; Li, S.; Luo, J.; Fan, X.; et al. Bacteria with Different Assemblages in the Soil Profile Drive the Diverse Nutrient Cycles in the Sugarcane Straw Retention Ecosystem. Diversity 2019, 11, 194. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Musto, G.A.; Swanepoel, P.A.; Strauss, J.A. Regenerative agriculture v. conservation agriculture: Potential effects on soil quality, crop productivity and whole-farm economics in Mediterranean-climate regions. J. Agric. Sci. 2023, 161, 328–338. [Google Scholar] [CrossRef]
- Arqués, J.L.; Rodríguez, E.; Langa, S.; Landete, J.M.; Medina, M. Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. Biomed. Res. Int. 2015, 2015, 584183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffiths, M.W.; Walkling-Ribeiro, M. 7—Microbial decontamination of milk and dairy products. In Microbial Decontamination in the Food Industry; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing Series in Food Science; Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2012; pp. 190–238. ISBN 9780857090850. [Google Scholar] [CrossRef]
- Beck, M.; Marshall, C.; Garrett, K.; Campbell, T.; Foote, A.; Vibart, R.; Pacheco, D.; Gregorini, P. Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows. Animals 2023, 13, 620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamann, W.; Marth, E.H. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in Commercial and Experimental Yogurts. J. Food Prot. 1984, 47, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, P.; Beukes, P.C.; Dalley, D.; Romera, A.J. Screening for diets that reduce urinary nitrogen excretion and methane emissions while maintaining or increasing production by dairy cows. Sci. Total Environ. 2016, 551, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.F. Methemoglobinemia: Infants at risk. Curr. Probl. Pediatr. Adolesc. Health Care 2019, 49, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Schullehner, J.; Hansen, B.; Thygesen, M.; Pedersen, C.B.; Sigsgaard, T. Nitrate in drinking water and colorectal cancer risk: Anationwide population-based cohort study. Int. J. Cancer 2018, 143, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking wate nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Olive, J.M.; Felkner, M.; Suarez, L.; Marckwardt, W.; Hendricks, K.A. Dietary nitrites and nitrates, nitrosatabledrugs, and neural tube defects. Epidemiology 2004, 15, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. Food Prod. Process. Nutr. 2022, 4, 21. [Google Scholar] [CrossRef]
- Georgakouli, K.; Mpesios, A.; Kouretas, D.; Petrotos, K.; Mitsagga, C.; Giavasis, I.; Jamurtas, A.Z. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora. Nutrients 2016, 8, 344. [Google Scholar] [CrossRef] [PubMed]
- Uriot, O.; Denis, S.; Junjua, M.; Roussel, Y.; Dary-Mourot, A.; Blanquet-Diot, S. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? J. Funct. Foods 2017, 37, 74–89. [Google Scholar] [CrossRef]
- Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 2018, 76 (Suppl. 1), 4–15. [Google Scholar] [CrossRef] [PubMed]
Plant Species (% of Total DM) | Early Lactation | Peak Lactation | Mid-Lactation | Late Lactation | ||||
---|---|---|---|---|---|---|---|---|
CON | REG | CON | REG | CON | REG | CON | REG | |
Italian ryegrass (Lolium multiflorum) | 63.10 | 23.75 | 6.16 | 2.69 | 4.13 | 3.41 | 78.19 | 25.49 |
Perennial ryegrass (Lolium perenne) | 19.69 | 19.09 | 55.48 | 9.29 | 64.10 | 11.77 | ||
White clover (Trifolium repens) | 2.93 | 10.93 | 8.73 | 15.73 | 5.73 | 23.37 | 3.13 | 7.53 |
Red clover (Trifolium pratensis) | 1.94 | 1.61 | 4.77 | 1.07 | ||||
Persian Clover (Trifolium resupinatum) | 3.33 | |||||||
Chicory (Cichorium intybus) | 0.39 | 8.71 | 2.80 | 3.88 | 1.15 | 1.35 | 0.58 | 21.87 |
Plantain (Plantago lanceolata) | 2.18 | 9.90 | 5.22 | 19.48 | 12.45 | 10.80 | 3.68 | 13.61 |
Cocksfoot (Dactylis glomerata) | 7.50 | 14.59 | 0.48 | 25.55 | 0.02 | 10.65 | ||
Fescue (Festuca arundinacea) | 5.37 | 2.59 | 1.28 | 0.05 | 0.70 | |||
Timothy (Phleum pratense) | 0.40 | 0.85 | 0.03 | |||||
Subterranean clover (Trifolium subterraneum) | 0.01 | |||||||
Crimson clover (Trifolium incarnatum) | 0.06 | 1.44 | ||||||
Dandelion (Taraxacum officinale) | 6.85 | 4.96 | 9.07 | 4.50 | 4.47 | 8.62 | 5.75 | 6.73 |
Dock (Rumex obtusifolius) | 2.60 | 6.11 | 6.01 | 15.65 | 2.48 | 1.65 | 3.14 | 9.21 |
Weeds * | 2.22 | 0.8 | 3.16 | 1.29 | 0.71 | 2.92 | 0.45 | 0.12 |
Dead plant material | 0.47 | 3.15 | 4.44 | 4.26 | 4.44 | 4.75 | 2.06 |
Variables ** | Early | Mid | Late | End | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | REG | CON | REG | CON | REG | CON | REG | Treat | Stage | Inter | SD | |
DM% | 24.08 b | 24.73 b | 24.18 b | 25.58 b | 21.73 b | 20.98 b | 30.52 a | 29.01 a | 0.98 | <0.001 | 0.85 | 2.66 |
CP% | 21.21 a | 20.89 a | 18.51 b | 15.45 b | 20.84 a | 19.73 a | 21.97 a | 20.69 a | 0.05 | <0.001 | 0.65 | 1.79 |
OM% | 90.01 A | 89.18 B | 90.15 B | 91.02 A | 89.67 B | 89.96 A | 90.34 A | 89.82 B | 0.57 | <0.001 | 0.001 | 0.40 |
NDF% | 35.91 A | 30.63 B | 32.73 B | 39.10 A | 29.06 AB | 30.71 AB | 29.20 AB | 24.65 AB | 0.61 | <0.001 | 0.02 | 3.61 |
ADF% | 21.02 B | 20.04 B | 22.18 A | 25.36 A | 19.17 AB | 20.23 AB | 18.01 AB | 16.79 AB | 0.49 | <0.001 | 0.02 | 1.27 |
WSC% | 19.48 b | 18.72 b | 15.94 c | 15.14 c | 20.49 b | 19.02 b | 23.17 a | 24.04 a | 0.62 | <0.001 | 0.82 | 2.29 |
DMD% | 82.02 A | 82.21 A | 78.62 B | 74.92 B | 82.68 AB | 79.65 AB | 84.64 AB | 84.86 AB | 0.02 | <0.001 | 0.04 | 1.55 |
ME (MJ/kgDM) | 12.24 b | 12.16 b | 11.77 c | 11.34 c | 12.29 b | 11.89 b | 12.67 a | 12.62 a | 0.01 | <0.001 | 0.27 | 0.22 |
System | Early | Mid | Late | End | p-Value | SD | ||
---|---|---|---|---|---|---|---|---|
Treat | Stage | Inter | ||||||
CON | 24.35 b | 19.40 d | 36.35 a | 22.06 c | <0.01 | <0.001 | 0.08 | 0.94 |
REG | 23.59 b | 18.32 d | 31.30 a | 21.47 c | 2.13 |
Variable| Systems | Early | Mid | Late | End | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | REG | CON | REG | CON | REG | CON | REG | Treat | Stage | Inter | SD | |
MUN mg/dL | 28.55 a | 25.65 a | 24.85 b | 21.82 b | 26.22 ab | 26.45 ab | 26.07 b | 25.30 b | <0.001 | <0.001 | 0.17 | 2.26 |
Protein % | 3.81 d | 3.86 d | 3.91 c | 3.94 c | 4.47 b | 4.45 b | 5.04 a | 4.95 a | 0.50 | <0.001 | 0.10 | 0.48 |
Fat % | 4.74 | 4.69 | 4.58 | 4.85 | 5.25 | 5.51 | 6.07 | 6.13 | 0.24 | <0.001 | 0.70 | 0.66 |
Lactose % | 5.11 a | 5.11 a | 4.83 b | 4.92 b | 4.71 b | 4.74 b | 4.63 b | 4.65 b | 0.11 | <0.001 | 0.51 | 0.18 |
Fatty Acids | Early | Mid | Late | End | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | REG | CON | REG | CON | REG | CON | REG | Treat | Stage | Inter | SD | |
C4:0 | 5.49 b | 5.28 b | 5.36 ab | 5.65 ab | 5.42 ab | 5.55 ab | 6.02 a | 6.09 a | 0.48 | <0.001 | 0.33 | 0.25 |
C6:0 | 5.27 b | 5.23 b | 5.06 ab | 5.40 ab | 5.31 ab | 5.48 ab | 5.77 a | 5.88 a | 0.12 | <0.001 | 0.56 | 0.22 |
C7:0 | 0.08 a | 0.08 a | 0.02 b | 0.03 b | 0.07 a | 0.06 a | 0.07 a | 0.07 a | 0.56 | <0.001 | 0.58 | 0.05 |
C8:0 | 3.80 a | 3.83 a | 3.45 b | 3.67 b | 3.74 ab | 3.86 ab | 4.05 ab | 4.14 ab | 0.09 | <0.001 | 0.79 | 0.14 |
C9:0 | 0.11 A | 0.12 A | 0.06 AB | 0.07 AB | 0.10 B | 0.09 B | 0.10 AB | 0.10 AB | 0.48 | <0.001 | 0.06 | 0.008 |
C10:0 | 10.46 a | 10.94 a | 8.96 b | 9.63 b | 9.96 a | 10.36 a | 10.97 a | 11.28 a | 0.01 | <0.001 | 0.92 | 0.42 |
C10:1 | 0.73 d | 0.72 d | 0.83 c | 0.86 c | 1.02 b | 1.00 b | 1.17 a | 1.19 a | 0.83 | <0.001 | 0.80 | 0.04 |
C11:0 | 0.23 a | 0.26 a | 0.13 c | 0.14 c | 0.21 b | 0.19 b | 0.21 b | 0.22 b | 0.30 | <0001 | 0.08 | 0.01 |
C12:0 | 12.38 b | 13.03 b | 10.79 c | 11.66 c | 12.52 b | 13.06 b | 14.07 a | 14.56 a | 0.04 | <0.001 | 0.93 | 0.51 |
C13:0 iso | 0.18 d | 0.19 d | 0.21 c | 0.22 c | 0.29 b | 0.28 b | 0.36 a | 0.37 a | 0.50 | <0.001 | 0.81 | 0.014 |
C12:1 | 0.09 b | 0.08 b | 0.12 a | 0.12 a | 0.11 a | 0.10 a | 0.11 a | 0.11 a | 0.57 | <0.001 | 0.66 | 0.006 |
C13:0 anteiso | 0.27 c | 0.25 c | 0.27 c | 0.27 c | 0.36 b | 0.34 b | 0.43 a | 0.44 a | 0.74 | <0.001 | 0.56 | 0.01 |
C13:0 | 0.35 a | 0.37 a | 0.24 c | 0.24 c | 0.32 b | 0.29 b | 0.32 a | 0.33 a | 0.71 | <0.001 | 0.13 | 0.01 |
C14:0 iso | 0.24 b | 0.23 b | 0.31 a | 0.28 a | 0.29 a | 0.28 a | 0.28 a | 0.30 a | 0.30 | <0.001 | 0.18 | 0.01 |
C14:0 | 39.79 c | 41.13 c | 40.80 c | 42.96 c | 43.94 b | 46.07 b | 48.96 a | 49.35 a | 0.03 | <0.001 | 0.79 | 1.79 |
C15:0 iso | 0.86 b | 0.82 b | 1.00 a | 0.96 a | 0.97 a | 0.94 a | 0.99 a | 1.00 | 0.38 | <0.001 | 0.85 | 0.05 |
C14:1 c9 | 2.15 d | 2.15 d | 2.73 c | 2.76 c | 3.54 b | 3.49 b | 4.40 a | 4.45 a | 0.92 | <0.001 | 0.90 | 0.13 |
C15:0 anteiso | 2.05 A | 1.98 B | 2.04 A | 1.82 B | 1.97 A | 1.72 B | 1.88 | 1.88 | <0.001 | <0.001 | 0.05 | 0.08 |
C15:0 | 4.02 b | 4.07 b | 4.08 b | 3.95 b | 4.42 a | 4.27 a | 4.40 a | 4.43 a | 0.44 | <0.001 | 0.54 | 0.14 |
C16:0 iso | 0.72 | 0.69 | 0.79 | 0.72 | 0.75 | 0.70 | 0.73 | 0.76 | 0.06 | 0.18 | 0.25 | 0.03 |
C16:0 | 108.2 | 112.1 | 126.6 | 139.8 | 140.6 | 152.6 | 150.5 | 152.3 | <0.001 | <0.001 | 0.04 | 4.46 |
C16:1 t9 | 0.59 | 0.52 | 0.52 | 0.39 | 0.50 | 0.35 | 0.45 | 0.42 | <0.001 | <0.001 | <0.01 | 0.03 |
C16:1 c7 | 0.79 a | 0.73 a | 0.66 b | 0.66 b | 0.67 b | 0.62 b | 0.74 a | 0.70 a | <0.01 | <0.001 | 0.47 | 0.03 |
C16:1 c9 | 3.60 c | 3.44 c | 3.75 c | 3.98 c | 4.95 b | 4.88 b | 5.85 a | 5.86 a | 0.96 | <0.001 | 0.17 | 0.17 |
C17:0 iso | 1.47 | 1.41 | 1.44 | 1.45 | 1.36 | 1.36 | 1.36 | 1.43 | 0.93 | 0.34 | 0.68 | 0.08 |
C17:0 anteiso | 2.07 a | 2.03 a | 1.80 b | 1.70 b | 1.43 c | 1.36 c | 1.38 c | 1.40 c | 0.38 | <0.001 | 0.86 | 0.13 |
C17:0 | 1.92 a | 1.78 a | 1.70 b | 1.81 b | 1.70 b | 1.83 b | 1.63 b | 1.78 b | 0.03 | <0.01 | 0.27 | 0.10 |
C17:1 | 0.90 A | 0.82 A | 0.71 B | 0.74 B | 0.76 B | 0.78 B | 0.80 B | 0.86 B | 0.57 | <0.001 | 0.02 | 0.043 |
C18:0 | 40.51 a | 38.44 a | 34.89 b | 36.13 b | 32.10 b | 33.71 b | 32.95 b | 34.52 b | 0.62 | <0.01 | 0.71 | 3.06 |
C18:1 t5-8 | 0.57 a | 0.48 a | 047 b | 0.40 b | 0.46 b | 0.42 b | 0.53 a | 0.49 a | <0.001 | <0.001 | 0.60 | 0.03 |
C18:1 t9 | 0.53 a | 0.48 a | 0.45 b | 0.40 b | 0.47 b | 0.41 b | 0.55 a | 0.52 a | <0.001 | <0.001 | 0.78 | 0.02 |
C18:1 t10 | 0.78 a | 0.68 a | 0.59 d | 0.51 d | 0.60 c | 0.54 c | 0.71 b | 0.69 b | <0.001 | <0.001 | 0.28 | 0.03 |
C18: t11 | 15.84 A | 12.80 A | 11.56 A | 7.93 AB | 10.32 A | 6.75 AB | 8.4 B | 7.53 B | <0.001 | <0.001 | <0.001 | 0.62 |
C18:1 c6 | 1.21 a | 1.08 a | 1.01 c | 0.93 c | 1.11 abc | 1.06 abc | 1.33 b | 1.22 b | 0.001 | <0.001 | 0.78 | 0.06 |
C18:1 c9 | 66.92 a | 60.45 a | 56.40 b | 55.98 b | 58.73 b | 56.93 b | 64.83 ab | 65.11 ab | 0.22 | <0.001 | 0.51 | 4.23 |
C18:1 t15/c10 | 0.95 a | 0.85 a | 0.75 b | 0.73 b | 0.78 ab | 0.84 ab | 0.97 ab | 0.89 ab | 0.16 | <0.001 | 0.14 | 0.05 |
C18:1 c11 | 1.57 A | 1.41 A | 1.04 B | 1.07 B | 0.99 AB | 0.99 AB | 0.97 B | 1.09 B | 0.87 | <0.001 | 0.02 | 0.008 |
C18:1 c12 | 0.25 b | 0.26 b | 0.26 b | 0.30 b | 0.28 ab | 0.33 ab | 0.34 a | 0.40 a | <0.001 | <0.001 | 0.17 | 0.01 |
C18:1 c13 | 0.40 a | 0.35 a | 0.25 b | 0.21 b | 0.26 b | 0.21 b | 0.30 b | 0.27 b | <0.001 | <0.001 | 0.95 | 0.02 |
C18:1 c14/t16 | 1.65 ab | 1.50 ab | 1.43 b | 1.31 b | 1.48 ab | 1.42 ab | 1.70 a | 1.55 a | <0.01 | <0.001 | 0.84 | 0.08 |
C18:2 t9/12 | 0.57 a | 0.50 a | 0.47 b | 0.38 b | 0.49 b | 0.37 b | 0.47 b | 0.43 b | <0.001 | <0.001 | 0.16 | 0.04 |
C18:2 c9/t13 | 0.41 B | 0.39 B | 0.40 B | 0.39 B | 0.46 B | 0.45 B | 0.61 A | 0.52 A | <0.01 | <0.001 | 0.03 | 0.03 |
C18:2 c9 t12 | 1.10 b | 0.95 b | 0.88 c | 0.78 c | 1.06 b | 0.94 b | 1.28 a | 1.14 a | <0.001 | <0.001 | 0.77 | 0.05 |
C18:2 t9 c12 | 0.36 b | 0.32 b | 0.31 b | 0.30 b | 0.38 a | 0.37 a | 0.50 a | 0.44 a | <0.001 | <0.001 | 0.13 | 0.01 |
C19:0 | 3.02 a | 2.75 a | 2.82 b | 2.40 b | 2.97 b | 2.47 b | 3.32 a | 2.96 a | <0.001 | <0.001 | 0.60 | 0.15 |
C18:2 c9:12 | 2.85 B | 2.90 A | 2.72 A | 3.47 B | 2.86 A | 3.30 B | 2.75 A | 3.27 B | <0.001 | 0.02 | <0.001 | 0.14 |
C19:1 | 0.23 b | 0.22 b | 0.26 a | 0.26 a | 0.26 a | 0.28 a | 0.26 a | 0.29 a | 0.09 | <0.001 | 0.44 | 0.015 |
C18:3 c6:9:12 | 0.07 b | 0.07 b | 0.08 b | 0.08 b | 0.09 a | 0.08 a | 0.10 a | 0.10 a | 0.82 | <0.001 | 0.75 | 0.009 |
C18:3 c9:12:15 | 2.47 B | 2.60 B | 2.54 A | 3.16 A | 2.66 B | 2.90 A | 3.17 A | 2.74 A | <0.001 | <0.001 | 0.01 | 0.13 |
C20:0 | 0.2 | 0.32 | 0.30 | 0.37 | 0.29 | 0.35 | 0.28 | 0.34 | <0.001 | 0.40 | 0.20 | 0.02 |
CLA:c9 t11 | 5.17 A | 4.26 A | 5.03 B | 3.36 B | 5.28 B | 3.29 B | 4.72 A | 4.15 A | <0.001 | <0.001 | <0.001 | 0.21 |
C20:1 c8 | 0.25 | 0.22 A | 0.25 | 0.18 B | 0.25 | 0.18 B | 0.25 | 0.23 A | <0.001 | 0.01 | <0.01 | 0.01 |
C20:1 c9 | 0.21 B | 0.21 B | 0.24 A | 0.27 A | 0.26 AB | 0.29 AB | 0.27 A | 0.32 A | <0.001 | <0.001 | 0.01 | 0.014 |
C20:1 c11 | 0.10 A | 0.09 A | 0.06 A | 0.06 AB | 0.04 B | 0.05 B | 0.06 B | 0.08 B | 0.30 | <0.001 | 0.04 | 0.01 |
C20:2 c11,14 | 0.08 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | <0.001 | <0.001 | |
C20:3 c8:11,14 | 0.12 | 0.13 | 0.12 | 0.15 | 0.14 | 0.16 | 0.12 | 0.14 | <0.001 | <0.01 | 0.47 | 0.01 |
C20:4 c5:8,11,14 | 0.17 A | 0.16 B | 0.16 B | 0.18 A | 0.17 A | 0.18 AB | 0.18 A | 0.19 AB | <0.01 | <0.01 | 0.06 | 0.009 |
C20:3 c11,14,17 | 0.04 | 0.04 | 0.06 | 0.07 | 0.04 | 0.06 | 0.06 | 0.07 | 0.15 | 0.06 | 0.58 | 0.014 |
C22:0 | 0.18 b | 0.18 b | 0.19 a | 0.21 a | 0.18 a | 0.21 a | 0.15 ab | 0.19 ab | <0.001 | <0.001 | 0.16 | 0.01 |
C22:1 c13 | 0.18 b | 0.18 b | 0.20 a | 0.22 a | 0.19 a | 0.21 a | 0.21 a | 0.23 a | 0.04 | <0.001 | 0.62 | 0.01 |
C20:4 c8,11,14,17 | 0.13 b | 0.09 b | 0.10 c | 0.08 c | 0.11 c | 0.10 c | 0.16 a | 0.13 a | <0.001 | <0.001 | 0.10 | 0.009 |
C20:5 c8,11,14,17 | 0.23 b | 0.25 b | 0.24 b | 0.26 b | 0.24 b | 0.24 b | 0.28 a | 0.29 a | 0.01 | <0.001 | 0.71 | 0.01 |
C23:0 | 0.10 b | 0.10 b | 0.12 b | 0.13 b | 0.13 a | 0.14 a | 0.10 b | 0.13 b | <0.001 | <0.001 | 0.33 | 0.01 |
C24:0 | 0.15 | 0.16 | 0.16 | 0.18 | 0.16 | 0.18 | 0.13 | 0.17 | <0.01 | 0.09 | 0.43 | 0.01 |
C22:5 c7,10,13,16,19 | 0.35 b | 0.35 b | 0.36 b | 0.40 b | 0.41 a | 0.46 a | 0.45 a | 0.48 a | <0.01 | <0.001 | 0.44 | 0.02 |
C26:0 | 0.20 A | 0.18 B | 0.16 B | 0.23 A | 0.18 B | 0.22 A | 0.16 A | 0.16 B | <0.01 | 0.01 | <0.01 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, F.; Kumara, S.; Ahsin, M.; Ali, L.; Xi, Y.; van Vliet, S.; Kelly, S.; Fleming, A.; Gregorini, P. Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems. Dairy 2025, 6, 39. https://doi.org/10.3390/dairy6040039
Pereira F, Kumara S, Ahsin M, Ali L, Xi Y, van Vliet S, Kelly S, Fleming A, Gregorini P. Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems. Dairy. 2025; 6(4):39. https://doi.org/10.3390/dairy6040039
Chicago/Turabian StylePereira, Fabiellen, Sagara Kumara, Muhammad Ahsin, Lamis Ali, Ying Xi, Stephan van Vliet, Simon Kelly, Anita Fleming, and Pablo Gregorini. 2025. "Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems" Dairy 6, no. 4: 39. https://doi.org/10.3390/dairy6040039
APA StylePereira, F., Kumara, S., Ahsin, M., Ali, L., Xi, Y., van Vliet, S., Kelly, S., Fleming, A., & Gregorini, P. (2025). Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems. Dairy, 6(4), 39. https://doi.org/10.3390/dairy6040039