Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,262)

Search Parameters:
Keywords = Mg2+/Ca2+ ratios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6513 KB  
Article
Comparative Analysis of Industrial Fused Magnesia from Natural and Flotation-Processed Magnesite: Associations Among CaO/SiO2 Ratio, Silicate Phase Formation, and Microcracking
by Chunyan Wang, Jian Luan, Zhitao Yang, Qigang Ma, Gang Wang and Ximin Zang
Materials 2026, 19(3), 463; https://doi.org/10.3390/ma19030463 - 23 Jan 2026
Abstract
In view of the depletion of high-grade magnesite resources in China, this study presents a comparative analysis of two industrial fused magnesia products produced via a flotation–fusion route. A low-grade magnesite (DSQLM-3, MgO 41.48 wt.%) was upgraded by reverse flotation to a concentrate [...] Read more.
In view of the depletion of high-grade magnesite resources in China, this study presents a comparative analysis of two industrial fused magnesia products produced via a flotation–fusion route. A low-grade magnesite (DSQLM-3, MgO 41.48 wt.%) was upgraded by reverse flotation to a concentrate (FDSQLM-3, MgO 47.55 wt.%) with >97% SiO2 removal. Two fused magnesia samples (FM-1 from natural high-grade ore DSQLM-1; FFM-3 from concentrate FDSQLM-3) were produced under identical arc-furnace melting (2800 °C, 4 h), followed by natural cooling. Although FFM-3 showed higher MgO (97.61 vs. 97.25 wt.%), its bulk density was comparable to FM-1 (3.45 vs. 3.46 g/cm3). XRD/Rietveld refinement and SEM-EDS indicated that CMS dominated the Ca–silicate assemblage in FM-1, whereas β/γ-C2S was observed in FFM-3, coinciding with a higher CaO/SiO2 (C/S) ratio (2.85 vs. 0.68). Image analysis further showed higher grain boundary microcrack metrics in FFM-3. These observations are consistent with reports in the literature stating that the β → γ transformation of C2S during cooling involves ~12% volume expansion that can contribute to cracking; however, cooling history and composition were not independently controlled in this industrial comparison, so the relationships are interpreted as data-supported associations rather than isolated causality. The results suggest that beneficiation strategies may benefit from managing residual oxide balance (especially C/S ratio) in addition to reducing total impurities. Mechanical and thermomechanical properties were not measured and should be evaluated in future work. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

24 pages, 1973 KB  
Article
Assessing the Impact of Dietary Calcium–Magnesium Ratio on Calciotrophic Hormones and Body Composition Using Validated Food Frequency Questionnaires
by Emad Aldeen Alsayed, Patricia A. Shewokis, Jennifer Nasser and Deeptha Sukumar
Dietetics 2026, 5(1), 7; https://doi.org/10.3390/dietetics5010007 (registering DOI) - 23 Jan 2026
Abstract
Background: Calcium (Ca) and magnesium (Mg) are essential micronutrients integral to metabolic processes and cardiovascular health. Emerging evidence suggests that the dietary Ca:Mg ratio may influence chronic disease risk, yet variability in this ratio across diverse demographic groups and its relationship to body [...] Read more.
Background: Calcium (Ca) and magnesium (Mg) are essential micronutrients integral to metabolic processes and cardiovascular health. Emerging evidence suggests that the dietary Ca:Mg ratio may influence chronic disease risk, yet variability in this ratio across diverse demographic groups and its relationship to body composition and vitamin D status remain unclear. Methods: Dietary intakes of Ca and Mg were assessed using validated Food Frequency Questionnaires (FFQs) and body composition was quantified via Dual-energy X-ray Absorptiometry (DXA) scans. Relationships between dietary Ca:Mg ratios and demographics, body composition parameters (lean and fat mass), and vitamin D and parathyroid hormone (PTH) levels were examined statistically using SPSS ver. 29.0 and R ver. 4.5.1 (2025) employing Kruskal–Wallis, regression, and moderated mediation analyses. Results: We examined 155 healthy adults with a mean age of 36.6 ± 12.5 years. Only 16.8% had adequate intakes of Mg compared with 45.8% who had adequate dietary Ca intakes. Significant differences in the Ca:Mg ratio were observed across racial groups (p = 0.023) and age groups (p = 0.017). South Asian Indians exhibited the highest median Ca:Mg ratio (4.83), whereas African Americans exhibited the lowest (2.67). Interestingly, our moderated mediation analysis indicated that African Americans were the most sensitive to the impact of PTH changes on the balance of Ca:Mg (indirect effect = −0.762, 95% CI [−1.298, −0.234]), indicating that even slight shifts in their Ca:Mg balances cause significant elevation in the PTH, which, in turn, leads to lowering of their vitamin D levels. Young adults (ages 18–29) had the highest median Ca:Mg ratio (4.73). No statistically significant differences were detected based on Gender (p = 0.425 and BMI (p = 0.744) on Ca:Mg ratios. Additionally, dietary Ca:Mg ratios were positively associated with sPTH in males (r = 0.203, p < 0.05), but not with body composition. Conclusion: Important variations in dietary Ca:Mg ratios exist across racial and age demographics, notably among young adults, and specific ethnic groups exhibited elevated ratios. Tailored nutritional interventions may be necessary for these populations to optimize Ca:Mg balance and support metabolic and cardiovascular health outcomes in these populations. Full article
Show Figures

Figure 1

24 pages, 9651 KB  
Article
H2/CH4 Competitive Adsorption of LTA Zeolite: Effects of Cations, Si/Al Ratio, Adsorption Temperature, and Pressure
by Xue Zhang, Jianfeng Tang and Hui Liu
Processes 2026, 14(2), 387; https://doi.org/10.3390/pr14020387 - 22 Jan 2026
Viewed by 15
Abstract
The efficient separation of H2 from CH4 is crucial for hydrogen purification from industrial off-gases using pressure swing adsorption (PSA). In this study, the competitive adsorption behavior of H2/CH4 on LTA zeolites was systematically investigated via grand canonical [...] Read more.
The efficient separation of H2 from CH4 is crucial for hydrogen purification from industrial off-gases using pressure swing adsorption (PSA). In this study, the competitive adsorption behavior of H2/CH4 on LTA zeolites was systematically investigated via grand canonical Monte Carlo (GCMC) simulations, with a focus on the effects of cation type (Na+, Li+, Ca2+, Mg2+), Si/Al ratio (1–1.5), temperature (298–318 K), and pressure (0.2–2 MPa). The results reveal that CH4 favors β-cages as excellent adsorption sites with high population density, followed by the regions adjacent to the cations or framework oxygen atoms of the eight-membered rings. In contrast, H2 is uniformly distributed throughout all the channels. Cations with higher valence and smaller ionic radii (e.g., Mg2+) enhance CH4 adsorption capacity and diffusion more effectively than monovalent or larger cations. Increasing the Si/Al ratio reduces cation content and exposes more framework oxygen atoms, particularly those in Si–O–Si environments, which improve CH4 adsorption. Elevated temperature weakens CH4 adsorption while promoting H2 diffusion and pore occupancy. Although higher pressure increases the uptake of both gases, H2 adsorption rises more substantially and distributes more widely, leading to a decrease in CH4/H2 selectivity. Full article
(This article belongs to the Special Issue Advanced Research on Marine and Deep Oil & Gas Development)
Show Figures

Graphical abstract

44 pages, 5917 KB  
Article
Post-Collisional Cu-Au Porphyry and Associated Epithermal Mineralisation in the Eastern Mount Isa Block: A New Exploration Paradigm for NW Queensland
by Kenneth D. Collerson and David Wilson
Geosciences 2026, 16(1), 46; https://doi.org/10.3390/geosciences16010046 - 20 Jan 2026
Viewed by 81
Abstract
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host [...] Read more.
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host rock lithologies show widespread potassic and/or propylitic to phyllic alteration. Paragenesis of porphyry sulphides indicates early crystallisation of pyrite, followed by chalcopyrite, with bornite forming by hydrothermal alteration of chalcopyrite. Cu sulphides also show the effect of supergene oxidation alteration with rims of covellite, digenite and chalcocite. Redox conditions deduced from the V/Sc systematics indicate that the DCPS contains both highly oxidised (typical of porphyries) and reduced lithologies, typical of plume-generated tholeiitic and alkaline suites. Ni/Te and Cu/Te systematics plot within the fields defined by epithermal and porphyry deposits. Duck Creek chalcophile and highly siderophile element (Cu, MgO and Pd) systematics resemble data from porphyry mineral systems, at Cadia, Bingham Canyon, Grasberg, Skouries, Kalmakyr, Elaisite, Assarel and Medet. SAM geophysical inversion models suggest the presence of an extensive porphyry system below the HES. A progressive increase in molar Cu/Au ratios with depth from the HES to the DCPS supports this conclusion. Three metal sources contributed to the linked DCPS-HES viz., tholeiitic ferrogabbro, potassic ultramafic to mafic system and an Fe and Ca-rich alkaline system. The latter two imparted non-crustal superchondritic Nb/Ta ratios that are characteristic of many deposits in the eastern Mount Isa Block. The associated tholeiite and alkaline magmatism reflect mantle plume upwelling through a palaeo-slab window that had accreted below the eastern flank of the North Australian craton following west-verging collision by the Numil Terrane. Discovery of this linked mineral system provides a new paradigm for mineral exploration in the region. Full article
(This article belongs to the Section Structural Geology and Tectonics)
12 pages, 3500 KB  
Article
Hydrogeochemical Characteristics and Formation Mechanism of Metasilicic Acid Mineral Water at Taoping Water Source Area
by Dian Liu, Ximin Bai, Xuegang Wang, Shengpin Yu, Tian Li and Fei Deng
Water 2026, 18(2), 249; https://doi.org/10.3390/w18020249 - 17 Jan 2026
Viewed by 168
Abstract
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. [...] Read more.
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. Taking the Taoping water source area in northwestern Jiangxi as a case study, 11 sets of groundwater and surface water samples were systematically collected. By comprehensively applying mathematical statistics, ionic ratios, and isotopic analyses, the hydrogeochemical characteristics and formation processes of metasilicic acid-type mineral water were examined. The results indicate that: (1) The mineral waters in the area are weakly alkaline and belong to the metasilicic acid type, with concentrations ranging from 22.0 to 67.0 mg/L, of which 75% exceed 30 mg/L. (2) The primary hydrochemical types are HCO3–Ca·Na, HCO3–Ca·Mg, and HCO3–Ca. Analysis of stable isotopes (δ18O and δ2H) and tritium (3H) indicates that metasilicic acid mineral water is primarily recharged by atmospheric precipitation, with an apparent groundwater age of approximately 60 years. (3) The enrichment of metasilicic acid primarily results from the weathering and leaching of silicate minerals, coupled with cation exchange. K+ and Na+ are mainly derived from silicate minerals such as feldspars and halite, whereas Ca2+ and Mg2+ originate primarily from carbonate minerals like calcite and dolomite. During recharge, atmospheric precipitation infiltrates the aquifer, dissolving aluminosilicate and siliceous minerals in the surrounding rocks, thereby releasing metasilicic acid into the groundwater and ultimately forming the metasilicic acid-type mineral water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 12332 KB  
Article
NH4+-N Promotes Fluoride Transport and NO3-N Increases Fluoride Fixation in Roots of Camellia sinensis
by Anqi Xing, Chunju Peng, Yan Tang, Renyong Cao, Shifu Ma, Xuefeng Xu, Zichen Wu, Yi Sun, Chunyan Wang, Shujing Liu, Jing Zhuang, Xuan Chen, Xinghui Li and Yuhua Wang
Horticulturae 2026, 12(1), 94; https://doi.org/10.3390/horticulturae12010094 - 16 Jan 2026
Viewed by 172
Abstract
Tea plants (Camellia sinensis) uniquely hyperaccumulate fluoride (F) and concurrently exhibit a preference for ammonium nitrogen (NH4+-N) over nitrate nitrogen (NO3-N). However, the mechanistic basis for co-existence of NH4+-N preference and F [...] Read more.
Tea plants (Camellia sinensis) uniquely hyperaccumulate fluoride (F) and concurrently exhibit a preference for ammonium nitrogen (NH4+-N) over nitrate nitrogen (NO3-N). However, the mechanistic basis for co-existence of NH4+-N preference and F hyperaccumulation in C. sinensis remains unexplored. Here, we investigated F accumulation and translocation with varying N supplies (0 mM and 2.854 mM N with NH4+-N:NO3-N ratios of 3:1, 4:0 and 0:4) and F concentrations (0, 8 and 16 mg·L−1 NaF) to reveal the mechanism driving NH4+-N preference and F hyperaccumulation in C. sinensis. Results show that NH4+-N supply enhanced H+ efflux, mobilizing aluminum (Al) to form mobile Al-F complexes for translocation to shoots, thereby alleviating F toxicity in roots. This process was facilitated by transporters including CsCLCd, CsCLCe, CsCLCf2 and CsFEX. In contrast, NO3-N promoted root sequestration of F as immobile calcium (Ca)-F complexes, exacerbating damage. Under NO3-N supply, CsCLCb primarily mediated NO3 transport, while CsCLCc, CsCLCe, CsCLCf1, CsCLCf2 and CsFEX were involved in F transport. In leaves, CsCLCd, CsCLCe, CsCLCf1, CsCLCf2, CsCLCg and CsFEX mediated vacuolar sequestration under both N conditions. These findings elucidate that NH4+-N preference is mechanistically linked to F hyperaccumulation through an Al-assisted translocation pathway, which confers tolerance by exporting F from roots. Full article
(This article belongs to the Special Issue Sustainable Soil Management for Tea Plantations)
Show Figures

Figure 1

24 pages, 4562 KB  
Article
Hydrochemical Appraisal of Groundwater Quality for Managed Aquifer Recharge (MAR) in Southern Punjab, Pakistan
by Ghulam Zakir-Hassan, Lee Baumgartner, Catherine Allan and Jehangir F. Punthakey
Geosciences 2026, 16(1), 43; https://doi.org/10.3390/geosciences16010043 - 14 Jan 2026
Viewed by 227
Abstract
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were [...] Read more.
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were collected in June 2021 from an area of 1522 km2 and analysed for major physicochemical parameters including electrical conductivity (EC), total dissolved solids (TDS), pH, turbidity, calcium (Ca), magnesium (Mg), chloride (Cl), alkalinity (Alk), bicarbonate (HCO3), hardness, potassium (K), sulphate (SO42−), sodium (Na), and nitrate (NO3). Water quality was assessed using WHO and PID standards, alongside derived hydrochemical indices such as sodium percentage (%Na), Kelly’s ratio (KR), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and the water quality index (WQI). The dataset was interpreted using geo-statistical, geospatial, multivariate, and correlation analyses. Cations and anion dominance followed the order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > SO42− > Cl > NO3. According to the WQI analysis, 35% of the water samples are classified as “poor,” half (50%) as “very poor,” and the remaining 15% as “unsuitable” for drinking purposes. However, irrigation suitability indices confirmed that groundwater is generally acceptable for agricultural use, though unfit for drinking. The outcomes of this study provide essential insights for groundwater management in the region, where the Punjab Irrigation Department (PID) has initiated a MAR project. Considering that the irrigation sector is the major groundwater consumer in the area, the compatibility of groundwater and surface water quality supports the implementation of MAR to enhance agricultural sustainability. Full article
Show Figures

Figure 1

17 pages, 3839 KB  
Article
Characteristics of Steel Slag and Properties of High-Temperature Reconstructed Steel Slag
by Zhiqiang Xu and Xiaojun Hu
Metals 2026, 16(1), 85; https://doi.org/10.3390/met16010085 - 13 Jan 2026
Viewed by 128
Abstract
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden [...] Read more.
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden calculation, the chemical composition ratio of this reconstructed steel slag approximated the silicate phase region. The high-temperature reconstruction process outside the furnace was simulated through reheating. The composition, structure, and cementitious characteristics of the reconstructed steel slag were investigated through X-ray diffraction (XRD), FactSage software (FactSage version 7.0 (GTT-Technologies, Aachen, Germany, 2015))analysis, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis, setting time determination, compressive strength measurement, and thermodynamic computation. The findings indicated that the primary mineral compositions of the reconstructed steel slag were predominantly silicates, such as Ca3Al2O6, Ca2SiO4, Ca2MgSi2O7, Ca2Al(AlSiO7), Ca2(SiO4), and FeAlMgO4. In comparison with the original steel slag, these compositions underwent substantial alterations. The α′-C2S phase appears at 1100 K and gradually transforms into α-C2S at 1650 K. The liquid phase begins to precipitate at approximately 1550 K. Spinel exists in the temperature range from 1300 to 1700 K, and Ca3MgSi2O8 melts into the liquid phase at 1400 K. As the temperature increases to 1600 K, the minerals C2AF, Ca2Fe2O5, and Ca2Al2O5 gradually melt into the liquid phase. Melilite melts into the liquid phase at 1700 K. It was observed that the initial and final setting times of the reconstructed steel slag exhibited reductions of 7 and 43 min, respectively, in comparison to those of the original steel slag. In comparison with steel slag, the compressive strength of the reconstructed steel slag exhibited an increase of 0.6 MPa at the 3-day strength stage, 1.6 MPa at the 7-day strength stage, and 3.4 MPa at the 28-day strength stage. The reduction in setting time and the enhancement in compressive strength verified the improved cementitious activity of the reconstructed steel slag. Thermodynamic calculations of the principal reactions of the reconstructed steel slag at elevated temperatures verified that the primary reaction at 1748 K is thermodynamically favorable. Full article
Show Figures

Graphical abstract

28 pages, 4741 KB  
Article
Hydrochemistry and Environmental Isotopes for the Investigation of Water Quality in the Upper Olifants River Catchment in the Mpumalanga Province, South Africa
by Manare Marweshi, Abera Tessema, Kingsley Kwabena Ayisi and Mike Butler
Water 2026, 18(2), 201; https://doi.org/10.3390/w18020201 - 13 Jan 2026
Viewed by 173
Abstract
The Upper Olifants River Catchment in the Mpumalanga Province has experienced water contamination in the past few decades due to existing land use and land cover. This study employed hydrochemical and environmental isotopes to investigate the water quality and understand the sources of [...] Read more.
The Upper Olifants River Catchment in the Mpumalanga Province has experienced water contamination in the past few decades due to existing land use and land cover. This study employed hydrochemical and environmental isotopes to investigate the water quality and understand the sources of contaminants within tertiary catchments B11F and B11G of the Upper Olifants River Catchment. The hydrochemistry results indicate that the shallow weathered aquifers are more susceptible to contamination with major pollutants being TDS, SO4, Ca, Mg, Fe, and Mn, which can be associated with the geology and coal mining activities in the area. Additionally, the environmental isotopes suggest that the climate, fractionation, and elevation play a major role in the evolution of the water. The correlation of major ion ratios suggests that processes such as silicate and carbonate weathering and cation exchange reactions play a significant role in making the water vulnerable to pollution. In general, the overall water quality index of the study area indicates poor water quality falling within the range of 0 < WQI ≤ 44, making it undesirable for domestic use. Furthermore, approximately 35% of the samples are not suitable for irrigation purposes based on the SAR and PI. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 913 KB  
Article
Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo
by Afi Amen Christèle Attiogbé, Udo Nehren, Sampson K. Agodzo, Emmanuel Quansah, Enoch Bessah, Seyni Salack, Essi Nadège Parkoo and Jean Mianikpo Sogbedji
Land 2026, 15(1), 127; https://doi.org/10.3390/land15010127 - 9 Jan 2026
Viewed by 361
Abstract
Soil fertility plays a crucial role in crop productivity, particularly in cocoa cultivation, which is highly dependent on soil quality that directly influences both productivity and sustainability. Understanding how to achieve and maintain soil fertility on cocoa farms is fundamental to sustaining higher [...] Read more.
Soil fertility plays a crucial role in crop productivity, particularly in cocoa cultivation, which is highly dependent on soil quality that directly influences both productivity and sustainability. Understanding how to achieve and maintain soil fertility on cocoa farms is fundamental to sustaining higher yields. Cocoa production in Ghana and Togo remains low, at 350–600 kg/ha, compared to the potential yield of over 1–3 tons per hectare. Given the growing demand for cocoa and limited arable land, adequate soil nutrients are essential to optimise productivity. Soil fertility indices (SFIs) have been widely used as soil metrics by integrating multiple physical, chemical, and biological soil properties. In this study, standard analytical methods were employed to evaluate the SFI through laboratory analyses of 49 surface soil samples collected at a depth of 0–30 cm with an auger. Eleven soil chemical indicators were analysed: pH (water), organic matter (OM), potassium (K), calcium (Ca), magnesium (Mg), available phosphorus (P), total nitrogen (N), cation exchange capacity (CEC), electrical conductivity (EC), and carbon-to-nitrogen ratio (C/N). Principal component analysis, followed by normalisation, was used to select a minimum dataset, which was then integrated into an additive SFI. Results indicated that N, Ca, Mg, CEC, and pH were within the optimal range for most surveyed locations (96%, 94%, 92%, 73%, and 63%, respectively), while OM and C/N were within the optimal range in approximately half of the study area. Available P, K, and C/N were highly deficient in 100%, 67%, and 96% of surveyed locations, respectively. Soil fertility varied significantly among locations (p = 0.007) and was generally low, ranging from 0.15 to 0.66. Only 20% of the soils in the study area were classified as adequately fertile for cocoa cultivation. Therefore, it is necessary to restore soil nutrient balance, especially the critically low levels of K and P, through appropriate management practices that improve fertility over time and help close the yield gap. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

21 pages, 7915 KB  
Article
Analysis of Wind Erosion Resistance Enhancement of Aeolian Sand by Microbially Induced Carbonate Precipitation Technology
by Fangcan Ji, Junhui Zhang, Weiming Guan, Hui Chen, Xin Wang, Meng Xie, Haosen Wang and Defeng Hou
Symmetry 2026, 18(1), 106; https://doi.org/10.3390/sym18010106 - 7 Jan 2026
Viewed by 147
Abstract
Aeolian sand in arid mining regions is highly susceptible to wind erosion, posing serious threats to ecological stability and surface engineering safety. To enhance its resistance, this study applied the microbially induced carbonate precipitation (MICP) technique and conducted wind tunnel experiments combined with [...] Read more.
Aeolian sand in arid mining regions is highly susceptible to wind erosion, posing serious threats to ecological stability and surface engineering safety. To enhance its resistance, this study applied the microbially induced carbonate precipitation (MICP) technique and conducted wind tunnel experiments combined with SEM and XRD analyses to examine the effects of cementing solution type and concentration, bacteria-to-cementation-solution ratio (B/C ratio), and spraying volume on the wind erosion behavior of MICP-treated aeolian sand. Results show that the cementing solution type and concentration jointly control erosion resistance. The MgO-based system exhibited the best performance at a B/C ratio of 1:2, reducing erosion loss by 47.2% compared with the CaCl2 system, while a 1.0 mol/L concentration further decreased loss by 97.4% relative to 0.5 mol/L. Increasing the spraying volume from 0.6 to 1.2 L/m2 reduced erosion loss by 70–99%, and a moderate B/C ratio (1:2) ensured balanced microbial activity and uniform CaCO3 deposition. Microstructural observations confirmed that MICP strengthened the sand through CaCO3 crystal attachment, pore filling, and interparticle bridging, forming a dense surface crust with enhanced integrity. From a symmetry perspective, the microbially induced mineralization process promotes a more symmetric and spatially uniform distribution of carbonate precipitates at particle contacts and within pore networks. This symmetry-enhanced microstructural organization plays a key role in improving the macroscopic stability and wind erosion resistance of aeolian sand. Overall, MICP improved wind erosion resistance through a coupled biological induction–chemical precipitation–structural reconstruction mechanism, providing a sustainable approach for eco-friendly sand stabilization and wind erosion control in arid mining regions. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 632 KB  
Article
CLR (CRP to Lymphocytes) Score for Differentiating Simple and Complicated Appendicitis in Pediatric Patients
by Adir Alper, Ariel Galor, Mathias Lerner, Omer Levy and Osnat Zmora
J. Clin. Med. 2026, 15(1), 393; https://doi.org/10.3390/jcm15010393 - 5 Jan 2026
Viewed by 360
Abstract
Background: Acute appendicitis, a frequent pediatric surgical emergency, requires distinguishing simple from complicated cases for treatment decisions. Current tools, such as clinical scores and ultrasound, are sometimes ineffective. This study evaluates the biomarkers: neutrophils to lymphocytes ratio (NLR), monocytes to lymphocytes ratio [...] Read more.
Background: Acute appendicitis, a frequent pediatric surgical emergency, requires distinguishing simple from complicated cases for treatment decisions. Current tools, such as clinical scores and ultrasound, are sometimes ineffective. This study evaluates the biomarkers: neutrophils to lymphocytes ratio (NLR), monocytes to lymphocytes ratio (MLR), platelet-to-lymphocyte ratio (PLR), neutrophils to monocytes ratio (NMR), neutrophils to platelet ratio (NPR), pan-immune-inflammation value (PIV) ratio, and C-Reactive Protein (CRP) to lymphocytes ratio (CLR) for differentiation between simple and complicated appendicitis. Methods: A retrospective study of 878 pediatric patients (<18 years) who underwent appendectomy (2018–2024) at a tertiary medical center, with appendicitis classified as simple (SA, n = 696) or complicated (CA, n = 182) using intraoperative findings. Biomarkers were calculated from preoperative blood counts and CRP. Diagnostic accuracy was assessed using Mann–Whitney U tests, ROC curves, and logarithmic regression. Results: Patients with CA had higher neutrophils counts (13.61 ± 4.92 vs. 11.39 ± 4.29 K/μL), monocytes counts (1.23 ± 1.41 vs. 0.95 ± 0.48 K/μL), platelet counts (294.31 ± 72.73 vs. 270.15 ± 72.08 K/μL), CRP levels (88.55 ± 97.75 vs. 27.15 ± 44.74 mg/L), and elevated biomarker ratios as compared to those with SA: NLR (≥10.15, OR = 2.45), MLR (≥0.645, OR = 2.78), PLR (≥224.38, OR = 2.502), NMR (≥6.38, OR = 2.34), NPR (≥0.0405, OR = 1.876), PIV (≥2433.85, OR = 3.348), and CLR (≥11.77, OR = 5.935), all at p < 0.01. CLR demonstrated the highest accuracy (AUC = 0.772, sensitivity 78%, specificity 62.6%), outperforming established biomarkers, followed by PIV (AUC = 0.679). NPR was the least effective marker (AUC = 0.569). Conclusions: CLR, a promising biomarker, can aid in distinguishing complicated from simple appendicitis in children, and may offer accessible tools for resource-limited settings. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

41 pages, 1152 KB  
Article
Incoherent Processes in Dilepton Production in Proton–Nucleus Scattering at High Energies
by Sergei P. Maydanyuk and Gyorgy Wolf
Universe 2026, 12(1), 12; https://doi.org/10.3390/universe12010012 - 1 Jan 2026
Viewed by 209
Abstract
(1) Purpose: Incoherent processes in production of lepton pairs (dileptons) are studied for the scattering of protons on nuclei. Methods: New quantum mechanical model is constructed on the basis (1) generalization of the nuclear model of emission of photons in the proton-nucleus reactions [...] Read more.
(1) Purpose: Incoherent processes in production of lepton pairs (dileptons) are studied for the scattering of protons on nuclei. Methods: New quantum mechanical model is constructed on the basis (1) generalization of the nuclear model of emission of photons in the proton-nucleus reactions from low to intermediate energies, (2) formalism of dilepton production. Results: (1) The coherent cross sections of dilepton production in p+Be at proton beam energy Ep of 2.1 GeV calculated by model are in good agreement with experimental data of DLS Collaboration. (2) Dilepton production for 9Be, 12C, 16O, 24Mg, 44Ca, 197Au at Ep=2.1 GeV are studied. Coherent cross sections of dilepton production are monotonously decreased with increasing mass of nuclei. (3) At larger Ep dileptons are produced more intensively. (4) Incoherent processes in production of dileptons are studied for p + 9Be at Ep = 2.1 GeV. Agreement between experimental data and calculated cross sections is better, in to include incoherent processes to the model. A new phenomenon of suppression of production of dileptons at low energies due to incoherent processes is observed. This is explained by dominant coherent contribution at very low energies. (5) Longitudinal amplitude of virtual photon suppresses the cross section of dilepton production a little (effect is observed for p + 9Be at Ep = 2.1 GeV). (6) The contribution from incoherent processes plays a leading role in the dilepton production ((the ratio between the incoherent and coherent terms is 10–100). Also our model provides the tendencies of the full spectrum for p + 93Nb at Ep = 3.5 GeV in good agreement with experimental data obtained by HADES collaboration, and shows large role of incoherent processes. Conclusions: Incoherent processes are much more important than coherent ones in study of dilepton production in this reaction. Full article
Show Figures

Figure 1

16 pages, 7106 KB  
Article
Optimization of Synergistic Reduction of Copper Smelting Slag and Chromite for Production of Cu-Cr-Fe Master Alloys
by Yaoan Xi, Yi Qu, Sui Xie, Jinfa Liao and Baojun Zhao
Metals 2026, 16(1), 52; https://doi.org/10.3390/met16010052 - 31 Dec 2025
Viewed by 240
Abstract
Cu and Cr are the essential alloying elements for low-Ni stainless steels. An effective and economical method has been developed for the direct production of Cu-Cr-Fe master alloys through the synergistic reduction of chromite and copper smelting slag. The smelting conditions for synergy [...] Read more.
Cu and Cr are the essential alloying elements for low-Ni stainless steels. An effective and economical method has been developed for the direct production of Cu-Cr-Fe master alloys through the synergistic reduction of chromite and copper smelting slag. The smelting conditions for synergy reduction were systematically investigated by combining thermodynamic calculations and high-temperature experiments. The results indicate that synergistic reduction drives the reactions of Cr2O3, FeO, and Cu2O with carbon in a positive direction, which can increase their recovery and decrease the flux and fuel costs. The optimum slag composition was identified to control the (CaO + MgO)/(SiO2 + Al2O3) ratio between 0.62 and 0.72, where the slag is fully liquid, resulting in an efficient separation of the alloy from the slag. At 1550 °C, with 50 wt% chromite and 50 wt% copper smelting slag as raw materials, a Cu-Cr-Fe alloy containing 5.2 wt% Cu, 28.6 wt% Cr and 57.9 wt% Fe was produced, while the contents of FeO, Cu2O, and Cr2O3 in the final slag were 0.057 wt%, 0.059 wt%, and 0.23 wt%, respectively. Full article
Show Figures

Figure 1

22 pages, 12500 KB  
Article
Shrinkage Characteristics of Bentonite–Sand Mixtures Considering the Influence of Sand Content and Pore Water Chemistry
by Dongyue Pan, Chongxi Zhao, Bowen Hu, Pengyu Ren and Ping Liu
Processes 2026, 14(1), 137; https://doi.org/10.3390/pr14010137 - 31 Dec 2025
Viewed by 352
Abstract
The safe disposal of high-level radioactive waste (HLW) is a significant challenge in the nuclear industry. As the buffer backfill material for deep geological disposal engineering barriers, the shrinkage characteristics of bentonite–sand mixtures are critical to the long-term stability of repositories. This study [...] Read more.
The safe disposal of high-level radioactive waste (HLW) is a significant challenge in the nuclear industry. As the buffer backfill material for deep geological disposal engineering barriers, the shrinkage characteristics of bentonite–sand mixtures are critical to the long-term stability of repositories. This study systematically conducted drying shrinkage tests using an improved thin-film technique under varying sand contents Rs (0–50%), salt solution concentrations (0–1.5 mol/L), and ion types (Na+, Mg2+, Ca2+, Cl, SO42−). The mechanisms of the effects of sand content and salt solutions on the shrinkage behavior of bentonite were revealed based on the results. In addition, the rationality of the MCG-B model in simulating the shrinkage characteristics of mixtures was also discussed. The results show that a sand content of 30% is the minimum sand content for inhibiting the shrinkage behavior of bentonite–sand mixtures observed in this work: below this ratio, bentonite dominates the shrinkage process, and samples are prone to cracking due to uneven matrix suction; above this ratio, quartz sand forms a rigid skeleton that significantly inhibits volume shrinkage and accelerates water evaporation. Salt solutions suppress shrinkage by compressing the thickness of the diffuse double layer and inducing ion crystallization. Higher cation concentrations and valences (Mg2+ > Na+ > Ca2+) enhance the inhibitory effect. Crystalline salts such as Na2SO4 cause measurement deviations in water content due to hydration and delay the shrinkage process. However, NaCl solutions effectively inhibit shrinkage with minimal impact on shrinkage time. Fitting results with the MCG-B model (Coefficient of determination > 0.97) demonstrate that the MCG-B model can empirically describe the results of thin-film technique experiment, though the model’s prediction accuracy decreases for the residual shrinkage stage at high sand contents (>40%). This study provides a theoretical basis for optimizing buffer material proportions and curing processes, with significant implications for the long-term safety of HLW repositories. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

Back to TopTop