Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo
Abstract
1. Introduction
2. Methodology
2.1. Study Area Description
2.2. Data Collection
2.2.1. Soil Sampling and Analysis
2.2.2. Soil Properties Analysis
2.2.3. Soil Fertility Index (SFI) Estimation
2.2.4. Geospatial and Statistical Analysis
3. Results
3.1. Descriptive Statistics of Measured Soil Chemical Properties
3.2. Soil Fertility Index Map
4. Discussion
4.1. Soil Fertility Index Assessment for Cocoa Growth
4.2. Applications of SFI in Cocoa Farming
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food Balance. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 November 2024).
- Okoffo, E.D.; Denkyirah, E.K.; Adu, D.T.; Fosu-Mensah, B.Y. A Double-Hurdle Model Estimation of Cocoa Farmers’ Willingness to Pay for Crop Insurance in Ghana. SpringerPlus 2016, 5, 873. [Google Scholar] [CrossRef]
- Jayne, T.S.; Sanchez, P.A. Agricultural Productivity Must Improve in Sub-Saharan Africa. Science 2021, 372, 1045–1047. [Google Scholar] [CrossRef]
- Ritchie, H. Increasing Agricultural Productivity across Sub-Saharan Africa Is One of the Most Important Problems This Century. Our World Data. 2022. Available online: https://ourworldindata.org/africa-yields-problem (accessed on 1 November 2025).
- Tian, X.; Yu, X. Crop Yield Gap and Yield Convergence in African Countries. Food Secur. 2019, 11, 1305–1319. [Google Scholar] [CrossRef]
- Bermudez, S.; Voora, V.; Larrea, C.; Luna, E. Cocoa Prices and Sustainability. 2022. Available online: https://www.iisd.org/system/files/2022-11/2022-global-market-report-cocoa.pdf (accessed on 6 September 2024).
- Kalischek, N.; Lang, N.; Renier, C.; Daudt, R.C.; Addoah, T.; Thompson, W.; Blaser-Hart, W.J.; Garrett, R.; Schindler, K.; Wegner, J.D. Satellite-Based High-Resolution Maps of Cocoa Planted Area for Côte d’Ivoire and Ghana 2023. arXiv 2022, arXiv:2206.06119. [Google Scholar] [CrossRef]
- Ruf, F.; Schroth, G.; Doffangui, K. Climate Change, Cocoa Migrations and Deforestation in West Africa: What Does the Past Tell Us about the Future? Sustain. Sci. 2015, 10, 101–111. [Google Scholar] [CrossRef]
- Beg, M.S.; Ahmad, S.; Jan, K.; Bashir, K. Status, Supply Chain and Processing of Cocoa-A Review. Trends Food Sci. Technol. 2017, 66, 108–116. [Google Scholar] [CrossRef]
- Wessel, M.; Quist-Wessel, P.M.F. Cocoa Production in West Africa, a Review and Analysis of Recent Developments. NJAS Wagening. J. Life Sci. 2015, 74–75, 1–7. [Google Scholar] [CrossRef]
- Jagoret, P.; Michel, I.; Ngnogué, H.T.; Lachenaud, P.; Snoeck, D.; Malézieux, E. Structural Characteristics Determine Productivity in Complex Cocoa Agroforestry Systems. Agron. Sustain. Dev. 2017, 37, 1–12. [Google Scholar] [CrossRef]
- Aneani, F.; Ofori-Frimpong, K. An Analysis of Yield Gap and Some Factors of Cocoa (Theobroma cacao) Yields in Ghana. Sustain. Agric. Res. 2013, 2, 117. [Google Scholar] [CrossRef]
- Asante, P.A.; Rahn, E.; Zuidema, P.A.; Rozendaal, D.M.A.; van der Baan, M.E.G.; Läderach, P.; Asare, R.; Cryer, N.C.; Anten, N.P.R. The Cocoa Yield Gap in Ghana: A Quantification and an Analysis of Factors That Could Narrow the Gap. Agric. Syst. 2022, 201, 103473. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma cacao) Bean Flavour Profile—A Review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Rubiyo, R.; Siswanto, S. Peningkatan Produksi Dan Pengembangan Kakao (Theobroma cacao L.) Di Indonesia. J. Ind. Beverage Crops 2012, 3, 33–48. [Google Scholar]
- Utomo, B.; Prawoto, A.A.; Bonnet, S.; Bangviwat, A.; Gheewala, S.H. Environmental Performance of Cocoa Production from Monoculture and Agroforestry Systems in Indonesia. J. Clean. Prod. 2016, 134, 583–591. [Google Scholar] [CrossRef]
- Harni, R.; Amaría, W.; Ferry, Y.; Marhaeni, L.S. Effect of Trichoderma Spp. and Potassium Fertilizer on Phytophthora Palmivora Infection in Cacao Seedlings. IOP Conf. Ser. Earth Environ. Sci. 2020, 418, 012015. [Google Scholar] [CrossRef]
- Marrocos, P.C.L.; Loureiro, G.A.H.D.A.; Araujo, Q.R.D.; Sodré, G.A.; Ahnert, D.; Escalona-Valdez, R.A.; Baligar, V.C. Mineral Nutrition of Cacao (Theobroma cacao L.): Relationships between Foliar Concentrations of Mineral Nutrients and Crop Productivity. J. Plant Nutr. 2020, 43, 1498–1509. [Google Scholar] [CrossRef]
- Santos, R.O.D.; Franco, L.B.; Silva, S.A.; Sodré, G.A.; Menezes, A.A. Spatial Variability of Soil Fertility and Its Relation with Cocoa Yield. Rev. Bras. Eng. Agríc. E Ambient. 2017, 21, 88–93. [Google Scholar] [CrossRef]
- Baah, F.; Anchirinah, V.; Amon-Armah, F. Soil Fertility Management Practices of Cocoa Farmers in the Eastern Region of Ghana. Agric. Biol. J. N. Am. 2011, 2, 173–181. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Tools for Characterizing the Spatial Variability of Microbiological and Physico-Chemical Soil Properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef]
- Nguemezi, C.; Tematio, P.; Yemefack, M.; Tsozue, D.; Silatsa, T.B.F. Soil Quality and Soil Fertility Status in Major Soil Groups at the Tombel Area, South-West Cameroon. Heliyon 2020, 6, e03432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of Soil Amendments on Soil Acidity and Crop Yields in Acidic Soils: A World-Wide Meta-Analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Chen, Y.; Wang, Y.; Zhou, C.; Yang, H.; Zhang, W. Heterogeneous Impact of Soil Acidification on Crop Yield Reduction and Its Regulatory Variables: A Global Meta-Analysis. Field Crops Res. 2024, 319, 109643. [Google Scholar] [CrossRef]
- de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The Molecular–Physiological Functions of Mineral Macronutrients and Their Consequences for Deficiency Symptoms in Plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Nazir, F.; Maheshwari, C.; Chopra, P.; Chhillar, H.; Sreenivasulu, N. Mineral Nutrients in Plants under Changing Environments: A Road to Future Food and Nutrition Security. Plant Genome 2023, 16, e20362. [Google Scholar] [CrossRef]
- Ferry, Y.; Herman, M.; Tarigan, E.B.; Pranowo, D. Improvements of Soil Quality and Cocoa Productivity with Agricultural Waste Biochar. IOP Conf. Ser. Earth Environ. Sci. 2022, 974, 012045. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Quantitative Soil Quality Indexing of Temperate Arable Management Systems. Soil Tillage Res. 2015, 150, 57–67. [Google Scholar] [CrossRef]
- Ern, H. Die Vegetation Togos. Gliederung, Gefährdung, Erhaltung. Willdenowia 1979, 295–312. [Google Scholar]
- Dawoe, E.K.; Quashie-Sam, J.S.; Oppong, S.K. Effect of Land-Use Conversion from Forest to Cocoa Agroforest on Soil Characteristics and Quality of a Ferric Lixisol in Lowland Humid Ghana. Agrofor. Syst. 2014, 88, 87–99. [Google Scholar] [CrossRef]
- Kongor, J.E.; Boeckx, P.; Vermeir, P.; Van De Walle, D.; Baert, G.; Afoakwa, E.O.; Dewettinck, K. Assessment of Soil Fertility and Quality for Improved Cocoa Production in Six Cocoa Growing Regions in Ghana. Agrofor. Syst. 2019, 93, 1455–1467. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated Soil Fertility Management in Sub-Saharan Africa: Unravelling Local Adaptation. Soil 2015, 1, 491–508. [Google Scholar]
- Gautam, V.; Mishra, S.; Ahmed, H. Comparison of Total Nitrogen Estimation by Kjeldahl Method and CHNS Analyzer in Dry Tropical Grassland. Int. J. Plant Environ. 2023, 9, 180–182. [Google Scholar] [CrossRef]
- Soulaimani, A.; Gharous, M.E.; Mejahed, K.E.; Oulfakir, R.; Fathallah, S.; Gmouh, S. Validation of Continuous Flow Analysis for Determining Total Nitrogen in Plants Compared to the Kjeldahl Method. Discov. Plants 2025, 2, 339. [Google Scholar] [CrossRef]
- Gessesse, T.A.; Khamzina, A. How Reliable Is the Walkley-Black Method for Analyzing Carbon-Poor, Semi-Arid Soils in Ethiopia? J. Arid Environ. 2018, 153, 98–101. [Google Scholar]
- Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining Soil Organic Carbon for Agricultural Soils: A Comparison between the Walkley & Black and the Dry Combustion Methods (North Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Wadoux, A.M.-C.; Akoeb, E.N.; Sabrina, T. Precocious 19th Century Soil Carbon Science. Geoderma Reg. 2020, 22, e00306. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil Quality Index (SQI) as a Tool to Evaluate Crop Productivity in Semi-Arid Deccan Plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Comparison of Soil Quality Index Using Three Methods. PLoS ONE 2014, 9, e105981. [Google Scholar] [CrossRef] [PubMed]
- Abdulai, I.; Hoffmann, M.P.; Jassogne, L.; Asare, R.; Graefe, S.; Tao, H.-H.; Muilerman, S.; Vaast, P.; Van Asten, P.; Läderach, P. Variations in Yield Gaps of Smallholder Cocoa Systems and the Main Determining Factors along a Climate Gradient in Ghana. Agric. Syst. 2020, 181, 102812. [Google Scholar] [CrossRef]
- Ahenkorah, Y.; Akrofi, G.S.; Adri, A.K. The End of the First Cocoa Shade and Manurial Experiment at the Cocoa Research Institute of Ghana. J. Hortic. Sci. 1974, 49, 43–51. [Google Scholar] [CrossRef]
- Asare, R.; Asare, R.A.; Asante, W.A.; Markussen, B.; Ræbild, A. Influences of shading and fertilization on on-farm yields of cocoa in ghana. Exp. Agric. 2017, 53, 416–431. [Google Scholar] [CrossRef]
- Isong, I.A.; John, K.; Okon, P.B.; Ogban, P.I.; Afu, S.M. Soil Quality Estimation Using Environmental Covariates and Predictive Models: An Example from Tropical Soils of Nigeria. Ecol. Process. 2022, 11, 66. [Google Scholar] [CrossRef]
- Ariza-Salamanca, A.J.; Navarro-Cerrillo, R.M.; Quero-Pérez, J.L.; Gallardo-Armas, B.; Crozier, J.; Stirling, C.; de Sousa, K.; González-Moreno, P. Vulnerability of Cocoa-Based Agroforestry Systems to Climate Change in West Africa. Sci. Rep. 2023, 13, 10033. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The Physiological Responses of Cacao to the Environment and the Implications for Climate Change Resilience. A Review. Agron. Sustain. Dev. 2019, 39, 1–22. [Google Scholar] [CrossRef]
- Araujo, Q.; Ahnert, D.; Loureiro, G.; Faria, J.; Fernandes, C.; Baligar, V. Soil Quality Index for Cacao Cropping Systems. Arch. Agron. Soil Sci. 2018, 64, 1892–1909. [Google Scholar] [CrossRef]
- Parra-González, S.D.; Rodriguez-Valenzuela, J. Determination of the Soil Quality Index by Principal Component Analysis in Cocoa Agroforestry System in the Orinoco Region, Colombia. J. Agric. Ecol. Res. Int. 2017, 10, 1–8. [Google Scholar] [CrossRef]
- Manrique, A.D.; Medina, A.M.; Ortiz, L.E.V. Soil Quality Index in Cocoa Crops. TEM J. 2024, 13, 286–292. [Google Scholar] [CrossRef]
- Adeniyi, S.A.; de Clercq, W.P.; van Niekerk, A. Assessing the Relationship between Soil Quality Parameters of Nigerian Alfisols and Cocoa Yield. Agrofor. Syst. 2019, 93, 1235–1250. [Google Scholar] [CrossRef]
- Eduah, J.O.; Arthur, A.; Amoako-Attah, I.; Manso, E.F.; Quaye, A.K.; Dogbatse, J.A.; Padi, F.K. Differential Impacts of Organic and Chemical Fertilization on Soil Organic Carbon Pools and Stability, and Soil Quality in Cacao Agroforestry. Soil Environ. Health 2025, 3, 100147. [Google Scholar]
- Adeyolanu, O.D.; Ogunkunle, A.O.; Oluwatosin, G.A.; Adelana, A.O. Land Use and Soil Type Influence on Soil Quality: A Comparison between Tree and Arable Crops in Basement Complex Soils. Afr. J. Agric. Res. 2015, 10, 3348–3357. [Google Scholar] [CrossRef]
- Schmidt, J.; Addo-Danso, S.D.; Asare, R.; Tettey, A.; Isaac, M.E. Soil Quality Reflects Microbial Resource Availability and Drives Rhizosphere Microbiome Variation in Ghanaian Cocoa Farms. Appl. Soil Ecol. 2024, 198, 105378. [Google Scholar] [CrossRef]
- Hartemink, A.E. Nutrient Stocks, Nutrient Cycling, and Soil Changes in Cocoa Ecosystems: A Review. Adv. Agron. 2005, 86, 227–253. [Google Scholar]
- Dossa, E.L.; Arthur, A.; Dogbe, W.; Mando, A.; Afrifa, A.A.; Acquaye, S. An Assessment of Inherent Chemical Properties of Soils for Balanced Fertilizer Recommendations for Cocoa in Ghana. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 325–336. ISBN 978-3-319-58788-2. [Google Scholar]
- Amponsah-Doku, B.; Daymond, A.; Robinson, S.; Atuah, L.; Sizmur, T. Improving Soil Health and Closing the Yield Gap of Cocoa Production in Ghana—A Review. Sci. Afr. 2022, 15, e01075. [Google Scholar] [CrossRef]
- Dossa, E.L.; Arthur, A.; Dogbe, W.; Mando, A.; Snoeck, D.; Afrifa, A.A.; Acquaye, S. Improving Fertilizer Recommendations for Cocoa in Ghana Based on Inherent Soil Fertility Characteristics. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 287–299. ISBN 978-3-319-58788-2. [Google Scholar]
- Snoeck, D.; Koko, L.; Joffre, J.; Bastide, P.; Jagoret, P. Cacao Nutrition and Fertilization. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2016; pp. 155–202. [Google Scholar]
- Agbotui, D.K.; Ingold, M.; Buerkert, A. Carbon and Nutrient Cycling in Cocoa Agroforests under Organic and Conventional Management. Nutr. Cycl. Agroecosystems 2024, 129, 7–20. [Google Scholar] [CrossRef]
- Asigbaase, M.; Dawoe, E.; Lomax, B.H.; Sjogersten, S. Biomass and Carbon Stocks of Organic and Conventional Cocoa Agroforests, Ghana. Agric. Ecosyst. Environ. 2021, 306, 107192. [Google Scholar] [CrossRef]
- Andoh-Mensah, E.; Anthonio, C.K.; Sossah, F.L.; Fianko, D.A.; Yankey, E.N. Integrated Soil Fertility Management Using Cocoa Bean Shells Improves Soil Chemical Properties, Coconut Yield and Mitigates Environmental Pollution. J. Clean. Prod. 2023, 428, 139418. [Google Scholar] [CrossRef]
- Quaye, A.K.; Doe, E.K.; Amon-Armah, F.; Arthur, A.; Dogbatse, J.A.; Konlan, S. Predictors of Integrated Soil Fertility Management Practice among Cocoa Farmers in Ghana. J. Agric. Food Res. 2021, 5, 100174. [Google Scholar] [CrossRef]
- Bationo, A.; Fening, J.O.; Kwaw, A. Assessment of Soil Fertility Status and Integrated Soil Fertility Management in Ghana. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 93–138. ISBN 978-3-319-58788-2. [Google Scholar]
- Essougong, U.P.; Slingerland, M.; Mathé, S.; Vanhove, W.; Tata Ngome, P.I.; Boudes, P.; Giller, K.E.; Woittiez, L.S.; Leeuwis, C. Farmers’ Perceptions as a Driver of Agricultural Practices: Understanding Soil Fertility Management Practices in Cocoa Agroforestry Systems in Cameroon. Hum. Ecol. 2020, 48, 709–720. [Google Scholar] [CrossRef]
- Klutse, A.R.; Bationo, A.; Mando, A. Socio-Economic Determinants and Trends on Fertilizer Use in West Africa. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 253–274. [Google Scholar]
- Bayala, J.; Kalinganire, A.; Sileshi, G.W.; Tondoh, J.E. Soil Organic Carbon and Nitrogen in Agroforestry Systems in Sub-Saharan Africa: A Review. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–61. ISBN 978-3-319-58788-2. [Google Scholar]
- Morales-Belpaire, I.; Alfaro-Flores, A.; Losantos-Ramos, K.; Palabral-Velarde, O.; Amurrio-Ordoñez, P.; Armengot, L. Soil Quality Indicators under Five Different Cacao Production Systems and Fallow in Alto Beni, Bolivia. Agrofor. Syst. 2024, 98, 2517–2532. [Google Scholar] [CrossRef]


| Variable | Min | Max | Mean | SD | CV |
|---|---|---|---|---|---|
| N | 0.03 | 0.29 | 0.15 | 0.04 | 30.25 |
| OM | 1.62 | 5.50 | 3.29 | 0.77 | 23.51 |
| TOC | 0.94 | 3.19 | 1.91 | 0.45 | 23.51 |
| C:N | 10.32 | 81.59 | 14.42 | 10.09 | 69.96 |
| P | 0.72 | 15.10 | 2.88 | 2.77 | 96.13 |
| Ca | 5.55 | 16.69 | 11.19 | 2.36 | 21.11 |
| Mg | 0.00 | 46.39 | 11.79 | 8.46 | 71.79 |
| K | 0.09 | 0.74 | 0.22 | 0.11 | 48.17 |
| CEC | 2.52 | 45.48 | 18.26 | 8.68 | 47.55 |
| pH | 4.62 | 7.24 | 5.83 | 0.63 | 10.79 |
| EC | 39.01 | 212.10 | 81.23 | 37.21 | 45.81 |
| Soil Chemicals | N | OM | TOC | C:N | P | Ca | Mg | K | CEC | pH | EC |
|---|---|---|---|---|---|---|---|---|---|---|---|
| (Unit) | (%) | (%) | (%) | (ppm) | (cmol kg−1) | (µS/cm) | |||||
| TOGO | |||||||||||
| AFIADENYIGBA | 0.17 | 3.71 | 2.15 | 12.47 | 3.66 | 10.51 | 12.60 | 0.35 | 20.05 | 5.08 | 84.50 |
| AGADJI | 0.09 | 2.09 | 1.21 | 13.02 | 2.09 | 9.41 | 7.10 | 0.13 | 15.56 | 5.53 | 44.20 |
| AGOME_TOMEGBE | 0.14 | 2.83 | 1.64 | 12.10 | 3.24 | 6.70 | 12.42 | 0.21 | 11.51 | 5.28 | 49.60 |
| AGOU_AVEDZE | 0.29 | 5.50 | 3.19 | 11.17 | 2.81 | 13.91 | 21.61 | 0.28 | 45.48 | 7.12 | 165.10 |
| AGOU_KLONOU | 0.15 | 3.43 | 1.99 | 12.97 | 3.44 | 8.97 | 38.59 | 0.35 | 27.78 | 6.96 | 112.30 |
| AGOU_NYONGBO | 0.03 | 4.57 | 2.65 | 81.59 | 8.48 | 12.99 | 22.48 | 0.74 | 18.68 | 7.19 | 212.10 |
| ASSOUKOKO | 0.17 | 3.88 | 2.25 | 13.13 | 3.48 | 14.41 | 12.57 | 0.23 | 11.95 | 6.04 | 70.60 |
| AVENOCOPE | 0.15 | 2.95 | 1.71 | 11.74 | 1.25 | 9.07 | 24.06 | 0.23 | 16.00 | 5.89 | 49.60 |
| BADOU_TOMEGBE | 0.09 | 2.67 | 1.55 | 16.77 | 1.22 | 11.15 | 1.76 | 0.14 | 21.92 | 5.33 | 61.90 |
| BENALI | 0.19 | 4.19 | 2.43 | 12.76 | 0.72 | 13.08 | 9.44 | 0.20 | 22.47 | 5.88 | 69.10 |
| BOGO | 0.13 | 2.57 | 1.49 | 11.47 | 1.38 | 10.62 | 7.57 | 0.18 | 14.52 | 5.36 | 72.80 |
| DEDOME | 0.11 | 2.31 | 1.34 | 12.59 | 1.71 | 10.24 | 7.43 | 0.18 | 11.19 | 5.87 | 54.50 |
| DEME | 0.14 | 3.38 | 1.96 | 13.78 | 1.26 | 11.41 | 8.20 | 0.15 | 14.30 | 6.05 | 64.50 |
| DIKPELEOU | 0.17 | 3.10 | 1.80 | 10.71 | 1.10 | 12.78 | 11.19 | 0.17 | 2.52 | 5.08 | 52.60 |
| DJITRIAME | 0.15 | 3.02 | 1.75 | 11.93 | 1.30 | 9.92 | 8.05 | 0.13 | 5.16 | 4.96 | 56.01 |
| DJON ELAVAGNON | 0.20 | 4.28 | 2.48 | 12.65 | 0.97 | 11.90 | 9.52 | 0.26 | 15.31 | 5.22 | 62.70 |
| EFOUKPA | 0.19 | 4.09 | 2.37 | 12.30 | 0.77 | 10.47 | 13.35 | 0.21 | 14.41 | 4.84 | 80.10 |
| ENYILAVASSE | 0.15 | 3.52 | 2.04 | 13.90 | 1.30 | 12.25 | 12.35 | 0.26 | 12.34 | 5.69 | 70.20 |
| EVOU_APEGAME | 0.14 | 2.93 | 1.70 | 12.54 | 1.38 | 11.16 | 4.48 | 0.13 | 17.26 | 6.14 | 70.40 |
| GBENDE | 0.17 | 3.88 | 2.25 | 13.39 | 1.68 | 13.42 | 5.95 | 0.22 | 15.20 | 6.14 | 75.10 |
| HANYIGBA DUGA | 0.14 | 2.93 | 1.70 | 11.86 | 1.51 | 6.95 | 11.74 | 0.13 | 8.57 | 6.11 | 66.30 |
| KEKEWU | 0.17 | 4.03 | 2.34 | 13.75 | 1.18 | 10.96 | 46.39 | 0.39 | 20.81 | 5.22 | 64.30 |
| KESSIBO | 0.19 | 4.34 | 2.52 | 12.93 | 1.92 | 10.12 | 15.37 | 0.14 | 21.38 | 4.62 | 74.60 |
| KPALAVE | 0.15 | 2.69 | 1.56 | 10.32 | 1.10 | 10.79 | 10.51 | 0.22 | 24.47 | 5.62 | 59.80 |
| AKATA_ADAME | 0.14 | 3.00 | 1.74 | 12.04 | 0.75 | 8.23 | 9.18 | 0.09 | 26.53 | 5.25 | 78.60 |
| KPELE_AGBANON | 0.13 | 2.98 | 1.73 | 13.09 | 2.36 | 10.41 | 14.44 | 0.12 | 9.19 | 5.99 | 99.60 |
| KPELE_AVEHO | 0.11 | 2.47 | 1.43 | 13.30 | 2.85 | 9.15 | 4.58 | 0.13 | 31.86 | 5.76 | 65.20 |
| KPELE_KPONVIE | 0.13 | 2.90 | 1.68 | 12.88 | 0.84 | 8.66 | 10.81 | 0.12 | 22.18 | 5.66 | 45.01 |
| KPELE_TUTU | 0.14 | 3.09 | 1.79 | 12.99 | 6.65 | 8.57 | 0.16 | 0.21 | 15.06 | 5.64 | 59.60 |
| KPETE_BENA | 0.23 | 4.74 | 2.75 | 11.78 | 15.10 | 16.69 | 5.35 | 0.26 | 10.19 | 6.72 | 91.20 |
| SAKOUNDE | 0.11 | 3.78 | 2.19 | 20.80 | 2.30 | 11.97 | 12.11 | 0.32 | 9.41 | 5.83 | 93.50 |
| SEREGBENE | 0.16 | 3.52 | 2.04 | 12.78 | 0.92 | 11.67 | 8.68 | 0.13 | 12.90 | 5.41 | 75.20 |
| SEVENECOPE | 0.16 | 3.03 | 1.76 | 11.07 | 2.41 | 9.19 | 14.01 | 0.18 | 7.80 | 6.50 | 92.20 |
| SODO | 0.12 | 2.74 | 1.59 | 13.27 | 2.48 | 9.37 | 14.85 | 0.20 | 11.39 | 5.64 | 76.90 |
| OTADI | 0.16 | 3.50 | 2.03 | 12.95 | 2.08 | 9.08 | 0.00 | 0.16 | 17.15 | 4.97 | 52.20 |
| TCHIFAMA | 0.21 | 4.55 | 2.64 | 12.34 | 2.07 | 14.91 | 8.87 | 0.28 | 10.48 | 6.46 | 82.00 |
| TOVE_DZIGBE | 0.16 | 3.69 | 2.14 | 13.46 | 4.50 | 5.55 | 4.11 | 0.36 | 19.03 | 6.58 | 97.90 |
| YEVIEPE | 0.15 | 3.00 | 1.74 | 11.90 | 3.00 | 8.47 | 8.85 | 0.20 | 6.16 | 6.48 | 83.70 |
| YIKPA_DZIGBE | 0.07 | 3.05 | 1.77 | 25.49 | 6.69 | 10.67 | 0.80 | 0.25 | 13.18 | 5.90 | 79.30 |
| LONTO_DZOGBE | 0.18 | 3.50 | 2.03 | 11.19 | 3.18 | 11.08 | 11.84 | 0.25 | 22.02 | 7.24 | 193.60 |
| GHANA | |||||||||||
| MATSE | 0.13 | 2.83 | 1.64 | 12.20 | 3.96 | 14.43 | 8.11 | 0.16 | 18.46 | 6.79 | 108.10 |
| ODOMI | 0.09 | 2.33 | 1.35 | 14.79 | 2.37 | 11.97 | 24.44 | 0.17 | 23.19 | 5.34 | 39.01 |
| GBELEDI | 0.20 | 3.97 | 2.30 | 11.60 | 4.41 | 14.26 | 6.39 | 0.29 | 26.83 | 5.68 | 180.30 |
| PAMPAWIE | 0.16 | 3.21 | 1.86 | 11.82 | 10.60 | 14.14 | 13.82 | 0.32 | 37.52 | 5.85 | 127.20 |
| PAPASE | 0.11 | 2.60 | 1.51 | 13.48 | 7.22 | 13.94 | 9.86 | 0.20 | 24.83 | 5.29 | 74.80 |
| BREWANIASE | 0.12 | 2.65 | 1.54 | 13.35 | 1.03 | 13.65 | 9.88 | 0.26 | 24.62 | 6.34 | 62.30 |
| BOWIRI | 0.07 | 1.62 | 0.94 | 12.91 | 0.93 | 12.10 | 12.85 | 0.14 | 20.73 | 5.60 | 44.40 |
| ATTAKROM | 0.10 | 2.00 | 1.16 | 12.18 | 0.87 | 12.82 | 17.88 | 0.10 | 36.41 | 5.57 | 73.20 |
| KUTE | 0.18 | 3.50 | 2.03 | 11.15 | 2.56 | 14.14 | 10.93 | 0.22 | 28.83 | 5.81 | 62.30 |
| Threshold Value | 0.090 | >3 | 2.03 | 22.55 | 20 | 7.5 | 2 | 0.25 | 3–15 | 5.6–7.2 | NA |
| Var. Contribution | PC1 | PC2 | PC3 |
|---|---|---|---|
| N | 4.50 | 36.96 | 0.06 |
| OM | 17.12 | 9.21 | 0.54 |
| TOC | 17.12 | 9.21 | 0.54 |
| C:N | 6.04 | 25.82 | 0.74 |
| P | 6.98 | 2.96 | 14.66 |
| Ca | 5.52 | 1.19 | 1.21 |
| Mg | 2.03 | 0.54 | 50.96 |
| K | 15.22 | 8.57 | 0.53 |
| CEC | 1.48 | 0.01 | 30.43 |
| pH | 8.36 | 3.20 | 0.15 |
| EC | 15.64 | 2.34 | 0.19 |
| Eigenvalue | 4.10 | 2.07 | 1.24 |
| Cumulative Variance | 37.23 | 18.78 | 11.23 |
| Variables | N | OM | TOC | C:N | P | Ca | Mg | K | CEC | pH | EC |
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | 1 | 0.71 *** | 0.71 *** | −0.47 *** | 0.04 | 0.25 | 0.06 | −0.02 | 0.12 | 0.09 | 0.19 |
| OM | 1 | 1 *** | 0.22 | 0.27 | 0.34 * | 0.16 | 0.53 *** | 0.06 | 0.27 | 0.5 *** | |
| TOC | 1 | 0.22 | 0.27 | 0.34 * | 0.16 | 0.53 *** | 0.06 | 0.27 | 0.5 *** | ||
| C:N | 1 | 0.31 * | 0.1 | 0.15 | 0.72 *** | −0.02 | 0.29 * | 0.48 *** | |||
| P | 1 | 0.33 * | −0.1 | 0.45 ** | 0.08 | 0.35 * | 0.41 ** | ||||
| Ca | 1 | 0.01 | 0.2 | 0.23 | 0.21 | 0.28 | |||||
| Mg | 1 | 0.39 ** | 0.24 | 0.12 | 0.16 | ||||||
| K | 1 | 0.11 | 0.42 ** | 0.61 *** | |||||||
| CEC | 1 | 0.13 | 0.31 * | ||||||||
| pH | 1 | 0.62 *** | |||||||||
| EC | 1 |
| SFI Values | SFI Classes | Area (km2) | Percentage (%) |
|---|---|---|---|
| ≤0.38 | Very Low | 8110.51 | 69.14 |
| 0.38–0.48 | Low | 3300.31 | 28.14 |
| 0.48–0.58 | Medium | 285.12 | 2.43 |
| 0.58–0.68 | High | 34.30 | 0.29 |
| ≥0.68 | Very High | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Attiogbé, A.A.C.; Nehren, U.; Agodzo, S.K.; Quansah, E.; Bessah, E.; Salack, S.; Parkoo, E.N.; Sogbedji, J.M. Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo. Land 2026, 15, 127. https://doi.org/10.3390/land15010127
Attiogbé AAC, Nehren U, Agodzo SK, Quansah E, Bessah E, Salack S, Parkoo EN, Sogbedji JM. Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo. Land. 2026; 15(1):127. https://doi.org/10.3390/land15010127
Chicago/Turabian StyleAttiogbé, Afi Amen Christèle, Udo Nehren, Sampson K. Agodzo, Emmanuel Quansah, Enoch Bessah, Seyni Salack, Essi Nadège Parkoo, and Jean Mianikpo Sogbedji. 2026. "Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo" Land 15, no. 1: 127. https://doi.org/10.3390/land15010127
APA StyleAttiogbé, A. A. C., Nehren, U., Agodzo, S. K., Quansah, E., Bessah, E., Salack, S., Parkoo, E. N., & Sogbedji, J. M. (2026). Soil Fertility Status and Its Implications for Sustainable Cocoa Cultivation in Ghana and Togo. Land, 15(1), 127. https://doi.org/10.3390/land15010127

