Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = Mesorhizobium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4216 KiB  
Article
Screening and Application of Highly Efficient Rhizobia for Leguminous Green Manure Astragalus sinicus in Lyophilized Inoculants and Seed Coating
by Ding-Yuan Xue, Wen-Feng Chen, Guo-Ping Yang, You-Guo Li and Jun-Jie Zhang
Plants 2025, 14(15), 2431; https://doi.org/10.3390/plants14152431 - 6 Aug 2025
Abstract
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus [...] Read more.
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus and its matching rhizobia is fundamental to its agronomic value; however, suboptimal inoculant efficiency and field application methodologies constrain its full potential. To address these limitations, we conducted a multi-phase study involving (1) rhizobial strain screening under controlled greenhouse conditions, (2) an optimized lyophilization protocol evaluating cryoprotectant (trehalose, skimmed milk powder and others), and (3) seed pelleting trails with rhizobial viability and nodulation assessments over different storage periods. Our results demonstrate that Mesorhizobium huakuii CCBAU 33470 exhibits a superior nitrogen-fixing efficacy, significantly enhancing key traits in A. sinicus, including leaf chlorophyll content, tiller number, and aboveground biomass. Lyophilized inoculants prepared with cryoprotectants (20% trehalose or 20% skimmed milk powder) maintained >90% bacterial viability for 60 days and markedly improved nodulation capacity relative to unprotected formulations. The optimized seed pellets sustained high rhizobial loads (5.5 × 103 cells/seed) with an undiminished viability after 15 days of storage and nodulation ability after 40 days of storage. This integrated approach of rhizobial selection, inoculant formulation, and seed coating overcomes cultivation bottlenecks, boosting symbiotic nitrogen fixation for A. sinicus cultivation. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

22 pages, 2490 KiB  
Article
Endophytic Bacterial Consortia Isolated from Disease-Resistant Pinus pinea L. Increase Germination and Plant Quality in Susceptible Pine Species (Pinus radiata D. Don)
by Frederico Leitão, Marta Alves, Isabel Henriques and Glória Pinto
Forests 2025, 16(7), 1161; https://doi.org/10.3390/f16071161 - 14 Jul 2025
Viewed by 285
Abstract
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in [...] Read more.
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in susceptible Pinus radiata D. Don. Root endophytes were isolated, screened for PGP traits, and identified via 16S rRNA gene sequencing. Bacterial formulations were applied to P. radiata seeds to determine their impact on germination and plant quality indicators (photosynthetic pigments and other metabolites). Paenibacillaceae (19%) and Bacillaceae (13%) were predominant among 68 isolates, with 94% producing indole-3-acetic acid, and Burkholderiaceae showing the broadest PGP trait diversity. Seedlings inoculated with formulation C3 (Caballeronia R.M3R3, Rhodococcus T.M4R4, and Mesorhizobium R.M1R2) displayed an improved germination rate (89% compared to 71% from the uninoculated control), while those inoculated with formulation P4 (Paenibacillus T.M5R4, Bacillus R.M2R7, Acinetobacter T.M2R22, and Paraburkholderia R.M1R3) showed an improved germination rate (81%), increased amount of starch (0.4-fold), and free amino acids (1.5-fold). This study presents a comprehensive approach, from endophyte isolation to in vivo tests, highlighting two bacterial formulations as candidates for further proof-of-concept nursery trials. Ultimately, these bioinoculants represent eco-friendly strategies to enhance forest seedling establishment and support sustainable forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Different Ribotypes of Akashiwo sanguinea Harbor Distinct Bacterial Communities in Their Phycospheres
by Hanying Zou, Fengting Li, Jiaqi Lu, Zhangxi Hu, Lixia Shang, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(6), 400; https://doi.org/10.3390/d17060400 - 5 Jun 2025
Viewed by 466
Abstract
The unarmored dinoflagellate Akashiwo sanguinea is a cosmopolitan harmful algal species known for forming intense blooms leading to mass mortality of fish, shellfish, and seabirds. Globally distributed populations of A. sanguinea have been classified into four ribotypes based on their characteristic sequences in [...] Read more.
The unarmored dinoflagellate Akashiwo sanguinea is a cosmopolitan harmful algal species known for forming intense blooms leading to mass mortality of fish, shellfish, and seabirds. Globally distributed populations of A. sanguinea have been classified into four ribotypes based on their characteristic sequences in LSU rRNA gene and primary geographic distributions. In this study, we compared the bacterial communities co-existing with the six strains of A. sanguinea from China and the USA (belonging to two ribotypes) using high-throughput sequencing of 16S rRNA gene amplicons. Generally, a bacterial microbiome with high diversity was found to be associated with laboratory-cultured A. sanguinea strains from different geographic origins. Based on ribotype classification, the six samples were divided into two groups (ribotype A: AsCHINA; ribotype C: AsUSA) for subsequent comparative analyses of their bacterial communities. Beta diversity analysis revealed a clear separation between the two groups, reflecting significant differences in bacterial community composition between the two ribotypes. Significantly higher abundance of nitrogen-fixing bacteria was found in the AsUSA group, suggesting that ribotype C may benefit from external nitrogen sources provided by their bacterial associates. If this also holds true in natural environments, this nitrogen-fixing partnership likely confers a competitive advantage to ribotype C in oligotrophic offshore waters, and potentially extends bloom duration when environmental nitrogen is depleted. Our study raised the possibility that different ribotypes of A. sanguinea may harbor distinct prokaryotic microbiomes in their phycospheres under stable cultivation conditions. Further comprehensive comparison among more isolates across all four ribotypes is highly necessary to validate this hypothesis. Full article
Show Figures

Figure 1

18 pages, 5042 KiB  
Article
The Overexpression of an EnvZ-like Protein Improves the Symbiotic Performance of Mesorhizobia
by José Rodrigo da-Silva, Esther Menéndez, Solange Oliveira and Ana Alexandre
Agronomy 2025, 15(5), 1235; https://doi.org/10.3390/agronomy15051235 - 19 May 2025
Viewed by 490
Abstract
The two-component signal transduction system EnvZ/OmpR is described to mediate response to osmotic stress, although it regulates genes involved in other processes such as virulence, fatty acid uptake, exopolysaccharide production, peptide transportation, and flagella production. Considering that some of these processes [...] Read more.
The two-component signal transduction system EnvZ/OmpR is described to mediate response to osmotic stress, although it regulates genes involved in other processes such as virulence, fatty acid uptake, exopolysaccharide production, peptide transportation, and flagella production. Considering that some of these processes are known to be important for a successful symbiosis, the present study addresses the effects of extra envZ-like gene copies in the Mesorhizobium–chickpea symbiosis. Five Mesorhizobium-transformed strains, expressing the envZ-like gene from M. mediterraneum UPM-Ca36T, were evaluated in terms of symbiotic performance. Chickpea plants inoculated with envZ-transformed strains (PMI6envZ+ and EE7envZ+) showed a significantly higher symbiotic effectiveness as compared to the corresponding control. In plants inoculated with PMI6envZ+, a higher number of infection threads was observed, and nodules were visible 4 days earlier. Overall, our results showed that the overexpression of Env-like protein may influence the symbiotic process at different stages, leading to strain-dependent effects. This study contributes to elucidating the role of an EnvZ-like protein in the rhizobia–legume symbioses. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 1049 KiB  
Article
Genetic Diversity and Plant Growth-Promoting Activities of Root-Nodulating Bacteria in Guar Plants Across Jazan Province
by Mosbah Mahdhi, Boshra Yami, Mohamed Al Abboud, Emad Abada and Habib Khemira
Soil Syst. 2025, 9(2), 39; https://doi.org/10.3390/soilsystems9020039 - 24 Apr 2025
Viewed by 735
Abstract
Guar (Cyamopsis tetragonoloba L. Taub.) is a significant summer legume used as food for both humans and livestock. In Saudi Arabia, the root nodule bacteria of guar have not been studied. The present work investigated the phenotypic and genetic diversity of guar [...] Read more.
Guar (Cyamopsis tetragonoloba L. Taub.) is a significant summer legume used as food for both humans and livestock. In Saudi Arabia, the root nodule bacteria of guar have not been studied. The present work investigated the phenotypic and genetic diversity of guar microsymbionts. Eighty-eight bacterial strains were isolated from the root nodules of guar grown in different locations of Jazan region of Saudi Arabia. The strains were analyzed based on their phenotypic characteristics and variations in their 16S rRNA gene sequences. A significant proportion of the isolates (90%) were fast-growing rhizobia, with 77% showing tolerance to 3–4% NaCl and 91% capable of thriving at temperatures reaching 40 °C. Several isolates exhibited strong plant growth-promoting traits, particularly in IAA production and phosphate solubilization. Genetic analysis indicated considerable diversity, with isolates classified under the genera Rhizobium, Ensifer, Mesorhizobium, Bradyrhizobium, and Agrobacterium. To the best of our knowledge, this study is the first to report on the phenotypic and genetic diversity of guar microsymbionts in Saudi Arabia. Full article
Show Figures

Figure 1

16 pages, 7735 KiB  
Article
Diversity of nifH Gene in Culturable Rhizobia from Black Locust (Robinia pseudoacacia L.) Grown in Cadmium-Contaminated Soils
by Xiaomeng Wang, Xia Jia, Yonghua Zhao, Yuan Xie, Xiuxin Meng and Fang Wang
Biology 2025, 14(4), 362; https://doi.org/10.3390/biology14040362 - 31 Mar 2025
Viewed by 490
Abstract
(1) Background: Rhizobia can promote plant growth by providing essential nutrients such as NH4+ and PO43−; thus, rhizobia that can tolerate the stress of heavy metals will be conducive to the phytoremediation of heavy-metal-contaminated soils. Therefore, understanding the [...] Read more.
(1) Background: Rhizobia can promote plant growth by providing essential nutrients such as NH4+ and PO43−; thus, rhizobia that can tolerate the stress of heavy metals will be conducive to the phytoremediation of heavy-metal-contaminated soils. Therefore, understanding the dominant heavy-metal-tolerant rhizobia that can be cultured is important for the establishment of an indigenous legume–rhizobia symbiotic remediation system; (2) Methods: Here, we investigated nifH gene diversity in culturable rhizobia from black locust (Robinia pseudoacacia L.) grown in cadmium (Cd)-contaminated soils using high-throughput sequencing.; (3) Results: A total of 16 genera and 26 species were identified from the cultures of root nodules of black locust exposed to five Cd levels. Cadmium did not show a significant effect on the abundance, diversity, and evenness of the culturable rhizobia community. However, Cd significantly affected the community structure of culturable rhizobia containing nifH. Mesorhizobium, Sinorhizobium, and Rhizobium were the absolute dominant genera present in the cultures under five Cd treatments. Additionally, Cd significantly affected the relative abundance of Azohydromonas, Xanthobacter, Skermanella, Bradyrhizobium, Paenibacillus, and Pseudacidovorax in the cultures. Soil pH, total Cd, DTPA-Cd, and C/H ratio were the significant factors on culturable rhizobia community.; (4) Conclusions: Cd showed a negative effect on nifH gene community of culturable rhizobia from black locust, which will provide insight into the selection of excellent strains that can promote phytoremediation of heavy-metal-contaminated soils. Full article
Show Figures

Figure 1

21 pages, 2517 KiB  
Article
Symbiotic Effectiveness, Rhizosphere Competence and Nodule Occupancy of Chickpea Root Nodule Bacteria from Soils in Kununurra Western Australia and Narrabri New South Wales Australia
by Irene Adu Oparah, Rosalind Deaker, Jade Christopher Hartley, Greg Gemell, Elizabeth Hartley, Muhammad Nouman Sohail and Brent Norman Kaiser
Plants 2025, 14(5), 809; https://doi.org/10.3390/plants14050809 - 5 Mar 2025
Viewed by 1013
Abstract
Root nodule bacterial isolates from field-grown chickpea were evaluated in glasshouse and field experiments based on infectivity, relative symbiotic effectiveness, nodule occupancy, plant yield and survivability in the soil rhizosphere for their use as inoculants to enhance chickpea production in Western Australia. Compared [...] Read more.
Root nodule bacterial isolates from field-grown chickpea were evaluated in glasshouse and field experiments based on infectivity, relative symbiotic effectiveness, nodule occupancy, plant yield and survivability in the soil rhizosphere for their use as inoculants to enhance chickpea production in Western Australia. Compared to the Australian commercial chickpea inoculant strain Mesorhizobium ciceri sv. ciceri CC1192, 10 new strains were ‘fast’ growers, averaging 72 h to grow in culture at 28 °C. The relative symbiotic effectiveness (RSE%) of the new strains in field experiments determined by shoot weight ranged from 77 to 111% in the Desi genotype (var. Kyabra) and 83 to 102% in Kabuli (var. Kimberley Large). Kyabra yielded greater output (2.4–3 t/ha) than Kimberley Large (1.2–1.8 t/ha), with mean 100 seed weights of 23 and 59 g, respectively. The rhizobial strains living in the rhizosphere presented a higher competitive ability for nodule occupancy than those in the bulk soil. Tukey’s multiple comparisons test showed no significant differences between the nodule occupancy ability of the introduced strains (i.e., 3/4, 6/7, N5, N300, K66, K188 and CC1192) in either Kyabra or Kimberley Large (p = 0.7321), but the strain competitiveness with each cultivar differed (p < 0.0001) for some of the test strains. Strains N5, N300, K72 and 6/7 were the top contenders that matched or beat CC1192 in nitrogen fixation traits. These findings show that new rhizobial strains derived from naturalized soil populations exhibited better adaptability to local soil conditions than CC1192. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

17 pages, 1529 KiB  
Article
Phycospheric Bacteria Alleviate the Stress of Erythromycin on Auxenochlorella pyrenoidosa by Regulating Nitrogen Metabolism
by Jiping Li, Ying Wang, Yuan Fang, Xingsheng Lyu, Zixin Zhu, Chenyang Wu, Zijie Xu, Wei Li, Naisen Liu, Chenggong Du and Yan Wang
Plants 2025, 14(1), 121; https://doi.org/10.3390/plants14010121 - 3 Jan 2025
Viewed by 1023
Abstract
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of [...] Read more.
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of Auxenochlorella pyrenoidosa; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.1, 1.0, and 10 mg/L ERY inhibited the growth and chlorophyll of microalgae, but the microalgae gradually showed enhanced growth abilities over the course of 21 days. As the exposure time progressed, the nitrate reductase activities of the microalgae gradually increased, but remained significantly lower than that of the control group at 21 d. NO3 concentrations in all treatment groups decreased gradually and were consistent with microalgae growth. NO2 concentrations in the three treatment groups were lower than those in the control group during ERY exposure over 21 d. ERY changed the community composition and diversity of phycospheric bacteria. The relative abundance of bacteria, such as unclassified-f-Rhizobiaceae, Mesorhizobium, Sphingopyxis, Aquimonas, and Blastomonas, varied to different degrees. Metabolic functions, such ABC transporters, the microbial metabolism in diverse environments, and the biosynthesis of amino acids, were significantly upregulated in the treatments of higher concentrations (1.0 and 10 mg/L). Higher concentrations of ERY significantly inhibited nitrate denitrification, nitrous oxide denitrification, nitrite denitrification, and nitrite and nitrate respiration. The findings of this study suggest that phycospheric bacteria alleviate antibiotic stress and restore the growth of microalgae by regulating nitrogen metabolism in the exposure system. Full article
Show Figures

Figure 1

25 pages, 4689 KiB  
Article
Influence Mechanism of Vermicompost with Different Maturity on Atrazine Catabolism and Bacterial Community
by Luwen Zhang, Lixin Xu, Zunhao Zhang, Jiaolin Li, Limeng Ren, Zhichen Liu, Yan Zhang and Yuxiang Chen
Toxics 2025, 13(1), 30; https://doi.org/10.3390/toxics13010030 - 1 Jan 2025
Viewed by 1145
Abstract
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil [...] Read more.
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil amended with 45 (SnV1), 60 (SnV2), 75 (SnV3) days of vermicompost on atrazine catabolism. The atrazine degradation experiment lasted for 40 days. The results showed that the atrazine degradation rates for CKs, CKn, SsV1, SsV2, SsV3, SnV1, SnV2, and SnV3 were 24%, 56.9%, 62.8%, 66.1%, 65.9%, 87.5%, 92.9%, and 92.3%, respectively. Indigenous microorganisms capable of degrading atrazine were present in unsterilized soil, and the addition of vermicompost enhanced atrazine degradation. The humic acid content of SnV2 was the highest, at 4.11 g/kg, which was 71.97% higher than that of CKn. The addition of the vermicompost enhanced the production of hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Vermicompost increased the abundance of atrazine-degrading bacteria (Mycobacterium, Devosia, etc.), and introduced new atrazine-degrading bacteria (Mesorhizobium, Demequina). The above results showed that the best degradation of atrazine was achieved with 60 days of vermicompost addition. This study provides a new, efficient, economical, and environmentally friendly strategy for the remediation of atrazine-contaminated soil. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

14 pages, 1316 KiB  
Article
Genomic Insights and Plant Growth-Promoting Potential of Rhizobial Strains from Agave americana
by Luis Galdino García-Pérez, Clara Ivette Rincón-Molina, Esperanza Martínez-Romero, Marco Antonio Rogel, Yunuen Tapia-Torres, Luis Alberto Manzano-Gómez, Julio César Maldonado-Gómez, Francisco Alexander Rincón-Molina and Reiner Rincón-Rosales
Horticulturae 2024, 10(12), 1370; https://doi.org/10.3390/horticulturae10121370 - 20 Dec 2024
Viewed by 1256
Abstract
Symbiotic relationships between plants and bacteria play a pivotal role in both natural and agricultural ecosystems, particularly through endophytic colonization or rhizospheric interactions. This study evaluated the plant growth-promoting potential (PGP) of native rhizobial strains Rhizobium sp. ACO-34A and Mesorhizobium sp. 28A (now [...] Read more.
Symbiotic relationships between plants and bacteria play a pivotal role in both natural and agricultural ecosystems, particularly through endophytic colonization or rhizospheric interactions. This study evaluated the plant growth-promoting potential (PGP) of native rhizobial strains Rhizobium sp. ACO-34A and Mesorhizobium sp. 28A (now reclassified within the genus Kumtagia), isolated from Agave americana. Through phenotypic characterization, PGP evaluation, and comparative genomic analysis, both strains demonstrated the ability to thrive under diverse salinity levels and pH conditions, reflecting their adaptability to challenging environments. Rhizobium sp. ACO-34A exhibited superior resistance to antibiotics and heavy metals, coupled with robust PGP traits, such as phosphate solubilization and indole-3-acetic acid (IAA) production, which are crucial for enhancing nutrient availability and root development. Similarly, Mesorhizobium sp. 28A showed exceptional phosphate solubilization efficiency and contributed to improved seedling performance. These findings highlight the capacity of rhizobia associated with agave species to improve plant growth, reduce dependence on chemical fertilizers, and support sustainable agriculture, particularly in nutrient-depleted or semi-arid soils. Genomic analyses revealed the presence of genes linked to stress resilience and nutrient acquisition, underlining the functional versatility of these strains. By leveraging these native rhizobial strains, agricultural practices can achieve higher productivity and sustainability, making them valuable tools for enhancing the agronomic yield and ecological resilience of agave crops for agro-industries. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

32 pages, 1338 KiB  
Article
Cyclic Isothiocyanate Goitrin Impairs Lotus japonicus Nodulation, Affects the Proteomes of Nodules and Free Mesorhizobium loti, and Induces the Formation of Caffeic Acid Derivatives in Bacterial Cultures
by Seungwoo Jeong, Vadim Schütz, Fatih Demir, Matthias Preusche, Pitter Huesgen, Laurent Bigler, Filip Kovacic, Katharina Gutbrod, Peter Dörmann and Margot Schulz
Plants 2024, 13(20), 2897; https://doi.org/10.3390/plants13202897 - 16 Oct 2024
Cited by 2 | Viewed by 1867
Abstract
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining [...] Read more.
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission. Full article
Show Figures

Figure 1

18 pages, 2293 KiB  
Article
Nodules of Medicago spp. Host a Diverse Community of Rhizobial Species in Natural Ecosystems
by Andrei Stefan, Jannick Van Cauwenberghe, Craita Maria Rosu, Catalina Stedel, Crystal Chan, Ellen L. Simms, Catalina Iticescu, Daniela Tsikou, Emmanouil Flemetakis and Rodica Catalina Efrose
Agronomy 2024, 14(9), 2156; https://doi.org/10.3390/agronomy14092156 - 21 Sep 2024
Cited by 3 | Viewed by 1838
Abstract
Biological nitrogen fixation by rhizobia-nodulated legumes reduces the dependence on synthetic nitrogen fertilizers. Identification of locally adapted rhizobia may uncover economically valuable strains for sustainable agriculture. This study investigated the diversity and symbiotic potential of rhizobia associated with three Medicago species from Eastern [...] Read more.
Biological nitrogen fixation by rhizobia-nodulated legumes reduces the dependence on synthetic nitrogen fertilizers. Identification of locally adapted rhizobia may uncover economically valuable strains for sustainable agriculture. This study investigated the diversity and symbiotic potential of rhizobia associated with three Medicago species from Eastern Romania’s ecosystems. Phenotypic screening ensured that only rhizobial species were retained for molecular characterization. 16S rDNA sequencing clustered the isolates into four distinct groups: Sinorhizobium meliloti, Sinorhizobium medicae, Rhizobium leguminosarum, and Mesorhizobium spp. The chromosomal genes (atpD, glnII, recA) and nifH phylogenies were congruent, while the nodA phylogeny grouped the Mesorhizobium spp. isolates with R. leguminosarum. Medicago sativa was the most sampled plant species, and only S. meliloti and R. leguminosarum were found in its nodules, while Medicago falcata nodules hosted S. meliloti and Mesorhizobium spp. Medicago lupulina was the only species that hosted all four identified rhizobial groups, including S. medicae. This study provides the first report on the Mesorhizobium spp. associated with M. falcata nodules. Additionally, R. leguminosarum and two Mesorhizobium genospecies were identified as novel symbionts for Medicago spp. Comparative analysis of Medicago-associated rhizobia from other studies revealed that differences in 16S rDNA sequence type composition were influenced by Medicago species identity rather than geographic region. Full article
Show Figures

Figure 1

18 pages, 11696 KiB  
Article
Exploring the Impact of Tea (Camellia sinensis (L.) O. Ktze.)/Trachelospermum jasminoides (Lindl.) Lem. Intercropping on Soil Health and Microbial Communities
by Yulin Xiong, Shuaibo Shao, Dongliang Li, He Liu, Wei Xie, Wei Huang, Jing Li, Chuanpeng Nie, Jianming Zhang, Yongcong Hong, Qiuling Wang, Pumo Cai and Yanyan Li
Agronomy 2024, 14(6), 1261; https://doi.org/10.3390/agronomy14061261 - 11 Jun 2024
Cited by 4 | Viewed by 1762
Abstract
Intercropping, a well-established agroecological technique designed to bolster ecological stability, has been shown to have a significant impact on soil health. However, the specific effects of tea/Trachelospermum jasminoides intercropping on the physicochemical properties and functional microbial community structure in practical cultivation have [...] Read more.
Intercropping, a well-established agroecological technique designed to bolster ecological stability, has been shown to have a significant impact on soil health. However, the specific effects of tea/Trachelospermum jasminoides intercropping on the physicochemical properties and functional microbial community structure in practical cultivation have not been thoroughly investigated. In this study, we utilized high-throughput sequencing technology on the 16S/ITS rDNA genes to assess the impact of tea intercropping with T. jasminoides on the composition, diversity, and potential functions of the soil microbial community in tea gardens. The results indicated that the tea/T. jasminoides intercropping system significantly increased pH levels, soil organic matter, available nitrogen, phosphorus, potassium, and enzyme activity, ultimately augmenting soil nutrient levels. Furthermore, an in-depth analysis of the bacterial co-occurrence network and topological structure portrayed a more intricate and interconnected soil bacterial community in tea gardens. Remarkably, the abundance of beneficial genera, including Burkholderia, Mesorhizobium, Penicillium, and Trichoderma, underwent a substantial increase, whereas the relative abundance of pathogenic fungi such as Aspergillus, Fusarium, and Curvularia experienced a marked decline. Functional predictions also indicated a notable enhancement in the abundance of microorganisms associated with nitrogen and carbon cycling processes. In summary, the intercropping of tea and T. jasminoides holds the potential to enrich soil nutrient content, reshape the microbial community structure, bolster the abundance of functional microorganisms, and mitigate the prevalence of pathogenic fungi. Consequently, this intercropping system offers a promising solution for sustainable tea garden management, overcoming the limitations of traditional cultivation methods and providing valuable insights for sustainable agriculture practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 4659 KiB  
Article
Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation
by Yinting Ding, Lin Wang, Hua Wang and Hua Li
Foods 2024, 13(10), 1580; https://doi.org/10.3390/foods13101580 - 18 May 2024
Cited by 3 | Viewed by 1768
Abstract
The composition and continuous succession of natural microbial communities during grape growth play important roles in grape health and flavor quality as well as in characterizing the regional wine terroir. This study explored the diversity and dynamics of fruit epidermal microbes at each [...] Read more.
The composition and continuous succession of natural microbial communities during grape growth play important roles in grape health and flavor quality as well as in characterizing the regional wine terroir. This study explored the diversity and dynamics of fruit epidermal microbes at each growth and developmental stage of Ecolly grapes under an extremely simplified eco-cultivation model, analyzed microbial interactions and associations of weather parameters to specific communities, and emphasized metabolic functional characteristics of microecology. The results indicated that the natural microbial community changed significantly during the grape growth phase. The dominant fungal genera mainly included Gibberella, Alternaria, Filobasidium, Naganishia, Ascochyta, Apiotrichum, Comoclathris, and Aureobasidium, and the dominant bacterial genera mainly contained Sediminibacterium, Ralstonia, Pantoea, Bradyrhizobium, Brevundimonas, Mesorhizobium, Planococcus, and Planomicrobium. In summary, filamentous fungi gradually shifted to basidiomycetous yeasts along with fruit ripening, with a decline in the number of Gram-negative bacteria and a relative increase in Gram-positive bacteria. The community assembly process reflects the fact that microbial ecology may be influenced by a variety of factors, but the fungal community was more stable, and the bacterial community fluctuated more from year to year, which may reflect their response to weather conditions over the years. Overall, our study helps to comprehensively profile the ecological characteristics of the grape microbial system, highlights the natural ecological viticulture concept, and promotes the sustainable development of the grape and wine industry. Full article
Show Figures

Figure 1

Back to TopTop