Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = MRI radiomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 885 KiB  
Article
MRI-Based Radiomics for Outcome Stratification in Pediatric Osteosarcoma
by Esther Ngan, Dolores Mullikin, Ashok J. Theruvath, Ananth V. Annapragada, Ketan B. Ghaghada, Andras A. Heczey and Zbigniew A. Starosolski
Cancers 2025, 17(15), 2586; https://doi.org/10.3390/cancers17152586 - 6 Aug 2025
Abstract
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study [...] Read more.
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study aims to improve predictions of progressive disease, therapy response, relapse, and survival in pediatric OS using MRI-based radiomics and machine learning methods. Methods: Pre-treatment contrast-enhanced coronal T1-weighted MR scans were collected from 63 pediatric OS patients, with an additional nine external cases used for validation. Three strategies were considered for target region segmentation (whole-tumor, tumor sampling, and bone/soft tissue) and used for MRI-based radiomics. These were then combined with clinical features to predict OS clinical outcomes. Results: The mean age of OS patients was 11.8 ± 3.5 years. Most tumors were located in the femur (65%). Osteoblastic subtype was the most common histological classification (79%). The majority of OS patients (79%) did not have evidence of metastasis at diagnosis. Progressive disease occurred in 27% of patients, 59% of patients showed adequate therapy response, 25% experienced relapse after therapy, and 30% died from OS. Classification models based on bone/soft tissue segmentation generally performed the best, with certain clinical features improving performance, especially for therapy response and mortality. The top performing classifier in each outcome achieved 0.94–1.0 validation ROC AUC and 0.63–1.0 testing ROC AUC, while those without radiomic features (RFs) generally performed suboptimally. Conclusions: This study demonstrates the strong predictive capabilities of MRI-based radiomics and multi-region segmentations for predicting clinical outcomes in pediatric OS. Full article
(This article belongs to the Special Issue The Roles of Deep Learning in Cancer Radiotherapy)
Show Figures

Figure 1

14 pages, 1848 KiB  
Article
RadiomiX for Radiomics Analysis: Automated Approaches to Overcome Challenges in Replicability
by Harel Kotler, Luca Bergamin, Fabio Aiolli, Elena Scagliori, Angela Grassi, Giulia Pasello, Alessandra Ferro, Francesca Caumo and Gisella Gennaro
Diagnostics 2025, 15(15), 1968; https://doi.org/10.3390/diagnostics15151968 - 5 Aug 2025
Abstract
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature [...] Read more.
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature selection method combinations known to be suitable for radiomic datasets to determine the best-performing configuration across multiple train–test splits and K-fold cross-validation. The framework was validated on four public retrospective radiomics datasets including lung nodules, metastatic breast cancer, and hepatic encephalopathy using CT, PET/CT, and MRI modalities. Model performance was assessed using the area under the receiver-operating-characteristic curve (AUC) and accuracy metrics. Results: RadiomiX achieved superior performance across four datasets: LLN (AUC = 0.850 and accuracy = 0.785), SLN (AUC = 0.845 and accuracy = 0.754), MBC (AUC = 0.889 and accuracy = 0.833), and CHE (AUC = 0.837 and accuracy = 0.730), significantly outperforming original published models (p < 0.001 for LLN/SLN and p = 0.023 for MBC accuracy). When original published models were re-evaluated using ten-fold cross-validation, their performance decreased substantially: LLN (AUC = 0.783 and accuracy = 0.731), SLN (AUC = 0.748 and accuracy = 0.714), MBC (AUC = 0.764 and accuracy = 0.711), and CHE (AUC = 0.755 and accuracy = 0.677), further highlighting RadiomiX’s methodological advantages. Conclusions: Systematically testing model combinations using RadiomiX has led to significant improvements in performance. This emphasizes the potential of automated ML as a step towards better-performing and more reliable radiomic models. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 165
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

19 pages, 1282 KiB  
Article
The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis
by Eleni Bekou, Ioannis Seimenis, Athanasios Tsochatzis, Karafyllia Tziagkana, Nikolaos Kelekis, Savas Deftereos, Nikolaos Courcoutsakis, Michael I. Koukourakis and Efstratios Karavasilis
J. Imaging 2025, 11(8), 250; https://doi.org/10.3390/jimaging11080250 - 23 Jul 2025
Viewed by 327
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated [...] Read more.
Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models’ performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models’ efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

19 pages, 2931 KiB  
Article
Prediction of Breast Cancer Response to Neoadjuvant Therapy with Machine Learning: A Clinical, MRI-Qualitative, and Radiomics Approach
by Rami Hajri, Charles Aboudaram, Nathalie Lassau, Tarek Assi, Leony Antoun, Joana Mourato Ribeiro, Magali Lacroix-Triki, Samy Ammari and Corinne Balleyguier
Life 2025, 15(8), 1165; https://doi.org/10.3390/life15081165 - 23 Jul 2025
Viewed by 376
Abstract
Background: Pathological complete response (pCR) serves as a prognostic surrogate endpoint for long-term clinical outcomes in breast cancer patients receiving neoadjuvant systemic therapy (NAST). This study aims to develop and evaluate machine learning-based biomarkers for predicting pCR and recurrence-free survival (RFS). Methods: This [...] Read more.
Background: Pathological complete response (pCR) serves as a prognostic surrogate endpoint for long-term clinical outcomes in breast cancer patients receiving neoadjuvant systemic therapy (NAST). This study aims to develop and evaluate machine learning-based biomarkers for predicting pCR and recurrence-free survival (RFS). Methods: This retrospective monocentric study included 235 women (mean age 46 ± 11 years) with non-metastatic breast cancer treated with NAST. We developed various machine learning models using clinical features (age, genetic mutations, TNM stage, hormonal receptor expression, HER2 status, and histological grade), along with morphological features (size, T2 signal, and surrounding edema) and radiomics data extracted from pre-treatment MRI. Patients were divided into training and test groups with different MRI models. A customized machine learning pipeline was implemented to handle these diverse data types, consisting of feature selection and classification components. Results: The models demonstrated superior prediction ability using radiomics features, with the best model achieving an AUC of 0.72. Subgroup analysis revealed optimal performance in triple-negative breast cancer (AUC of 0.80) and HER2-positive subgroups (AUC of 0.65). Conclusion: Machine learning models incorporating clinical, qualitative, and radiomics data from pre-treatment MRI can effectively predict pCR in breast cancer patients receiving NAST, particularly among triple-negative and HER2-positive breast cancer subgroups. Full article
(This article belongs to the Special Issue New Insights Into Artificial Intelligence in Medical Imaging)
Show Figures

Figure 1

23 pages, 3725 KiB  
Systematic Review
The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
by David Luengo Gómez, Marta García Cerezo, David López Cornejo, Ángela Salmerón Ruiz, Encarnación González-Flores, Consolación Melguizo Alonso, Antonio Jesús Láinez Ramos-Bossini, José Prados and Francisco Gabriel Ortega Sánchez
Bioengineering 2025, 12(7), 786; https://doi.org/10.3390/bioengineering12070786 - 21 Jul 2025
Viewed by 338
Abstract
Background: MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis [...] Read more.
Background: MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis to synthesize the diagnostic performance of MRI-based radiomics models for predicting pathological nodal status (pN) in RC. Methods: A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published until 31 December 2024. Eligible studies applied MRI-based radiomics for pN prediction in RC patients. We excluded other imaging sources and models combining radiomics and other data (e.g., clinical). All models with available outcome metrics were included in data analysis. Data extraction and quality assessment (QUADAS-2) were performed independently by two reviewers. Random-effects meta-analyses including hierarchical summary receiver operating characteristic (HSROC) and restricted maximum likelihood estimator (REML) analyses were conducted to pool sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratios (DORs). Sensitivity analyses and publication bias evaluation were also performed. Results: Sixteen studies (n = 3157 patients) were included. The HSROC showed pooled sensitivity, specificity, and AUC values of 0.68 (95% CI, 0.63–0.72), 0.73 (95% CI, 0.68–0.78), and 0.70 (95% CI, 0.65–0.75), respectively. The mean pooled AUC and DOR obtained by REML were 0.78 (95% CI, 0.75–0.80) and 6.03 (95% CI, 4.65–7.82). Funnel plot asymmetry and Egger’s test (p = 0.025) indicated potential publication bias. Conclusions: Overall, MRI-based radiomics models demonstrated moderate accuracy in predicting pN status in RC, with some studies reporting outstanding results. However, heterogeneity in relevant methodological approaches such as the source of MRI sequences or machine learning methods applied along with possible publication bias call for further standardization and preclude their translation to clinical practice. Full article
Show Figures

Figure 1

19 pages, 507 KiB  
Review
Radiomics and Radiogenomics in Differentiating Progression, Pseudoprogression, and Radiation Necrosis in Gliomas
by Sohil Reddy, Tyler Lung, Shashank Muniyappa, Christine Hadley, Benjamin Templeton, Joel Fritz, Daniel Boulter, Keshav Shah, Raj Singh, Simeng Zhu, Jennifer K. Matsui and Joshua D. Palmer
Biomedicines 2025, 13(7), 1778; https://doi.org/10.3390/biomedicines13071778 - 21 Jul 2025
Viewed by 449
Abstract
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis [...] Read more.
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis (RN) versus true progression (TP). Emerging fields like radiomics and radiogenomics are addressing these challenges by extracting quantitative features from medical images and correlating them with genomic data, respectively. This article will discuss several studies that show how radiomic features (RFs) can aid in better patient stratification and prognosis. Radiogenomics, particularly in predicting biomarkers such as MGMT promoter methylation and 1p/19q codeletion, shows potential in non-invasive diagnostics. Radiomics also offers tools for predicting tumor recurrence (rBT), essential for treatment management. Further research is needed to standardize these methods and integrate them into clinical practice. This review underscores radiomics and radiogenomics’ potential to revolutionize glioma management, marking a significant shift towards precision neuro-oncology. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

15 pages, 3326 KiB  
Article
Radiomics and Machine Learning Approaches for the Preoperative Classification of In Situ vs. Invasive Breast Cancer Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE–MRI)
by Luana Conte, Rocco Rizzo, Alessandra Sallustio, Eleonora Maggiulli, Mariangela Capodieci, Francesco Tramacere, Alessandra Castelluccia, Giuseppe Raso, Ugo De Giorgi, Raffaella Massafra, Maurizio Portaluri, Donato Cascio and Giorgio De Nunzio
Appl. Sci. 2025, 15(14), 7999; https://doi.org/10.3390/app15147999 - 18 Jul 2025
Viewed by 316
Abstract
Accurate preoperative distinction between in situ and invasive Breast Cancer (BC) is critical for clinical decision-making and treatment planning. Radiomics and Machine Learning (ML) have shown promise in enhancing diagnostic performance from breast MRI, yet their application to this specific task remains underexplored. [...] Read more.
Accurate preoperative distinction between in situ and invasive Breast Cancer (BC) is critical for clinical decision-making and treatment planning. Radiomics and Machine Learning (ML) have shown promise in enhancing diagnostic performance from breast MRI, yet their application to this specific task remains underexplored. The aim of this study was to evaluate the performance of several ML classifiers, trained on radiomic features extracted from DCE–MRI and supported by basic clinical information, for the classification of in situ versus invasive BC lesions. In this study, we retrospectively analysed 71 post-contrast DCE–MRI scans (24 in situ, 47 invasive cases). Radiomic features were extracted from manually segmented tumour regions using the PyRadiomics library, and a limited set of basic clinical variables was also included. Several ML classifiers were evaluated in a Leave-One-Out Cross-Validation (LOOCV) scheme. Feature selection was performed using two different strategies: Minimum Redundancy Maximum Relevance (MRMR), mutual information. Axial 3D rotation was used for data augmentation. Support Vector Machine (SVM), K Nearest Neighbors (KNN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) were the best-performing models, with an Area Under the Curve (AUC) ranging from 0.77 to 0.81. Notably, KNN achieved the best balance between sensitivity and specificity without the need for data augmentation. Our findings confirm that radiomic features extracted from DCE–MRI, combined with well-validated ML models, can effectively support the differentiation of in situ vs. invasive breast cancer. This approach is quite robust even in small datasets and may aid in improving preoperative planning. Further validation on larger cohorts and integration with additional imaging or clinical data are recommended. Full article
Show Figures

Figure 1

22 pages, 368 KiB  
Review
Early Detection of Pancreatic Cancer: Current Advances and Future Opportunities
by Zijin Lin, Esther A. Adeniran, Yanna Cai, Touseef Ahmad Qureshi, Debiao Li, Jun Gong, Jianing Li, Stephen J. Pandol and Yi Jiang
Biomedicines 2025, 13(7), 1733; https://doi.org/10.3390/biomedicines13071733 - 15 Jul 2025
Viewed by 681
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains among the most lethal malignancies, with a five-year survival rate below 12%, largely attributable to its asymptomatic onset, late-stage diagnosis, and limited curative treatment options. Although PDAC accounts for approximately 3% of all cancers, it is projected to [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains among the most lethal malignancies, with a five-year survival rate below 12%, largely attributable to its asymptomatic onset, late-stage diagnosis, and limited curative treatment options. Although PDAC accounts for approximately 3% of all cancers, it is projected to become the second leading cause of cancer-related mortality in the United States by 2030. A major contributor to its dismal prognosis is the lack of validated early detection strategies for asymptomatic individuals. In this review, we present a comprehensive synthesis of current advances in the early detection of PDAC, with a focus on the identification of high-risk populations, novel biomarker platforms, advanced imaging modalities, and artificial intelligence (AI)-driven tools. We highlight high-risk groups—such as those with new-onset diabetes after age 50, pancreatic steatosis, chronic pancreatitis, cystic precursor lesions, and hereditary cancer syndromes—as priority populations for targeted surveillance. Novel biomarker panels, including circulating tumor DNA (ctDNA), miRNAs, and exosomes, have demonstrated improved diagnostic accuracy in early-stage disease. Recent developments in imaging, such as multiparametric MRI, contrast-enhanced endoscopic ultrasound, and molecular imaging, offer improved sensitivity in detecting small or precursor lesions. AI-enhanced radiomics and machine learning models applied to prediagnostic CT scans and electronic health records are emerging as valuable tools for risk prediction prior to clinical presentation. We further refine the Define–Enrich–Find (DEF) framework to propose a clinically actionable strategy that integrates these innovations. Collectively, these advances pave the way for personalized, multimodal surveillance strategies with the potential to improve outcomes in this historically challenging malignancy. Full article
Show Figures

Graphical abstract

22 pages, 2320 KiB  
Review
Use of Radiomics in Characterizing Tumor Hypoxia
by Mohan Huang, Helen K. W. Law and Shing Yau Tam
Int. J. Mol. Sci. 2025, 26(14), 6679; https://doi.org/10.3390/ijms26146679 - 11 Jul 2025
Viewed by 491
Abstract
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical [...] Read more.
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical biomarkers, are generally not very suitable for routine clinical applications. Radiomics provides a non-invasive approach to hypoxia assessment by extracting quantitative features from medical images. Thus, radiomics is important in diagnosis and the formulation of a treatment strategy for tumor hypoxia. This article discusses the various imaging techniques used for the assessment of tumor hypoxia including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). It introduces the use of radiomics with machine learning and deep learning for extracting quantitative features, along with its possible clinical use in hypoxic tumors. This article further summarizes the key challenges hindering the clinical translation of radiomics, including the lack of imaging standardization and the limited availability of hypoxia-labeled datasets. It also highlights the potential of integrating radiomics with multi-omics to enhance hypoxia visualization and guide personalized cancer treatment. Full article
Show Figures

Figure 1

28 pages, 1727 KiB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 641
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

18 pages, 1231 KiB  
Review
Narrative Review: Predictive Biomarkers of Tumor Response to Neoadjuvant Radiotherapy or Total Neoadjuvant Therapy of Locally Advanced Rectal Cancer Patients
by Joao Victor Machado Carvalho, Jeremy Meyer, Frederic Ris, André Durham, Aurélie Bornand, Alexis Ricoeur, Claudia Corrò and Thibaud Koessler
Cancers 2025, 17(13), 2229; https://doi.org/10.3390/cancers17132229 - 3 Jul 2025
Viewed by 816
Abstract
Background/Objectives: Treatment of locally advanced rectal cancer (LARC) very often requires a neoadjuvant multimodal approach. Neoadjuvant treatment (NAT) encompasses treatments like chemoradiotherapy (CRT), short-course radiotherapy (SCRT), radiotherapy (RT) or a combination of either of these two with additional induction or consolidation chemotherapy, namely [...] Read more.
Background/Objectives: Treatment of locally advanced rectal cancer (LARC) very often requires a neoadjuvant multimodal approach. Neoadjuvant treatment (NAT) encompasses treatments like chemoradiotherapy (CRT), short-course radiotherapy (SCRT), radiotherapy (RT) or a combination of either of these two with additional induction or consolidation chemotherapy, namely total neoadjuvant treatment (TNT). In case of complete radiological and clinical response, the non-operative watch-and-wait strategy can be adopted in selected patients. This strategy is impacted by a regrowth rate of approximately 30%. Predicting biomarkers of tumor response to NAT could improve guidance of clinicians during clinical decision making, improving treatment outcomes and decreasing unnecessary treatment exposure. To this day, there is no validated biomarker to predict tumor response to any NAT strategies in clinical use. Most research focused on CRT neglects the study of other regimens. Methods: We conducted a narrative literature review which aimed at summarizing the status of biomarkers predicting tumor response to NAT other than CRT in LARC. Results: Two hundred and fourteen articles were identified. After screening, twenty-one full-text articles were included. Statistically significant markers associated with improved tumor response pre-treatment were as follows: low circulating CEA levels; BCL-2 expression; high cellular expression of Ku70, MIB-1(Ki-67) and EGFR; low cellular expression of VEGF, hPEBP4 and nuclear β-catenin; the absence of TP53, SMAD4, KRAS and LRP1B mutations; the presence of the G-allel of LCS-6; and MRI features such as the conventional biexponential fitting pseudodiffusion (Dp) mean value and standard deviation (SD), the variable projection Dp mean value and lymph node characteristics (short axis, smooth contour, homogeneity and Zhang et al. radiomic score). In the interval post-treatment and before surgery, significant markers were as follows: a reduction in the median value of circulating free DNA, higher presence of monocytic myeloid-derived suppressor cells, lower presence of CTLA4+ or PD1+ regulatory T cells and standardized index of shape changes on MRI. Conclusions: Responders to neoadjuvant SCRT and RT tended to have a tumor microenvironment with an immune–active phenotype, whereas responders to TNT tended to have a less active tumor profile. Although some biomarkers hold great promise, scarce publications, inconsistent results, low statistical power, and low reproducibility prevent them from reliably predicting tumor response following NAT. Full article
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Toward New Assessment in Sarcoma Identification and Grading Using Artificial Intelligence Techniques
by Arnar Evgení Gunnarsson, Simona Correra, Carol Teixidó Sánchez, Marco Recenti, Halldór Jónsson and Paolo Gargiulo
Diagnostics 2025, 15(13), 1694; https://doi.org/10.3390/diagnostics15131694 - 2 Jul 2025
Viewed by 489
Abstract
Background/Objectives: Sarcomas are a rare and heterogeneous group of malignant tumors, which makes early detection and grading particularly challenging. Diagnosis traditionally relies on expert visual interpretation of histopathological biopsies and radiological imaging, processes that can be time-consuming, subjective and susceptible to inter-observer variability. [...] Read more.
Background/Objectives: Sarcomas are a rare and heterogeneous group of malignant tumors, which makes early detection and grading particularly challenging. Diagnosis traditionally relies on expert visual interpretation of histopathological biopsies and radiological imaging, processes that can be time-consuming, subjective and susceptible to inter-observer variability. Methods: In this study, we aim to explore the potential of artificial intelligence (AI), specifically radiomics and machine learning (ML), to support sarcoma diagnosis and grading based on MRI scans. We extracted quantitative features from both raw and wavelet-transformed images, including first-order statistics and texture descriptors such as the gray-level co-occurrence matrix (GLCM), gray-level size-zone matrix (GLSZM), gray-level run-length matrix (GLRLM), and neighboring gray tone difference matrix (NGTDM). These features were used to train ML models for two tasks: binary classification of healthy vs. pathological tissue and prognostic grading of sarcomas based on the French FNCLCC system. Results: The binary classification achieved an accuracy of 76.02% using a combination of features from both raw and transformed images. FNCLCC grade classification reached an accuracy of 57.6% under the same conditions. Specifically, wavelet transforms of raw images boosted classification accuracy, hinting at the large potential that image transforms can add to these tasks. Conclusions: Our findings highlight the value of combining multiple radiomic features and demonstrate that wavelet transforms significantly enhance classification performance. By outlining the potential of AI-based approaches in sarcoma diagnostics, this work seeks to promote the development of decision support systems that could assist clinicians. Full article
(This article belongs to the Special Issue Artificial Intelligence in Clinical Decision Support—2nd Edition)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Multivariate Framework of Metabolism in Advanced Prostate Cancer Using Whole Abdominal and Pelvic Hyperpolarized 13C MRI—A Correlative Study with Clinical Outcomes
by Hsin-Yu Chen, Ivan de Kouchkovsky, Robert A. Bok, Michael A. Ohliger, Zhen J. Wang, Daniel Gebrezgiabhier, Tanner Nickles, Lucas Carvajal, Jeremy W. Gordon, Peder E. Z. Larson, John Kurhanewicz, Rahul Aggarwal and Daniel B. Vigneron
Cancers 2025, 17(13), 2211; https://doi.org/10.3390/cancers17132211 - 1 Jul 2025
Cited by 1 | Viewed by 534 | Correction
Abstract
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13 [...] Read more.
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13C-pyruvate MRI and evaluate the association between multiparametric features of metabolism (MFM) and clinical outcome measures in advanced and metastatic prostate cancer. Methods: Retrospective statistical analysis was performed on 16 participants with metastatic or local-regionally advanced prostate cancer prospectively enrolled in a tertiary center who underwent HP-pyruvate MRI of abdomen or pelvis between November 2020 and May 2023. Five patients were hormone-sensitive and eleven were castration-resistant. GMP-grade [1-13C]pyruvate was polarized using a 5T clinical-research DNP polarizer, and HP MRI used a set of flexible vest-transmit, array-receive coils, and echo-planar imaging sequences. Three basic metabolic maps (kPL, pyruvate summed-over-time, and mean pyruvate time) were created by semi-automatic segmentation, from which 316 MFMs were extracted using an open-source, radiomic-compliant software package. Univariate risk classifier was constructed using a biologically meaningful feature (kPL,median), and the multivariate classifier used a two-step feature selection process (ranking and clustering). Both were correlated with progression-free survival (PFS) and overall survival (OS) (median follow-up = 22.0 months) using Cox proportional hazards model. Results: In the univariate analysis, patients harboring tumors with lower-kPL,median had longer PFS (11.2 vs. 0.5 months, p < 0.01) and OS (NR vs. 18.4 months, p < 0.05) than their higher-kPL,median counterparts. Using a hypothesis-generating, age-adjusted multivariate risk classifier, the lower-risk subgroup also had longer PFS (NR vs. 2.4 months, p < 0.002) and OS (NR vs. 18.4 months, p < 0.05). By contrast, established laboratory markers, including PSA, lactate dehydrogenase, and alkaline phosphatase, were not significantly associated with PFS or OS (p > 0.05). Key limitations of this study include small sample size, retrospective study design, and referral bias. Conclusions: Risk classifiers derived from select multiparametric HP features were significantly associated with clinically meaningful outcome measures in this small, heterogeneous patient cohort, strongly supporting further investigation into their prognostic values. Full article
Show Figures

Figure 1

16 pages, 1687 KiB  
Article
Towards Precision Medicine in Sinonasal Tumors: Low-Dimensional Radiomic Signature Extraction from MRI
by Riccardo Biondi, Giacomo Gravante, Daniel Remondini, Sara Peluso, Serena Cominetti, Francesco D’Amore, Maurizio Bignami, Alberto Daniele Arosio and Nico Curti
Diagnostics 2025, 15(13), 1675; https://doi.org/10.3390/diagnostics15131675 - 30 Jun 2025
Viewed by 410
Abstract
Background: Sinonasal tumors are rare, accounting for 3–5% of head and neck neoplasms. Machine learning (ML) and radiomics have shown promise in tumor classification, but current models lack detailed morphological and textural characterization. Methods: This study analyzed MRI data from 145 patients (76 [...] Read more.
Background: Sinonasal tumors are rare, accounting for 3–5% of head and neck neoplasms. Machine learning (ML) and radiomics have shown promise in tumor classification, but current models lack detailed morphological and textural characterization. Methods: This study analyzed MRI data from 145 patients (76 malignant and 69 benign) across multiple centers. Radiomic features were extracted from T1-weighted (T1-w) images with contrast and T2-weighted (T2-w) images based on manually annotated tumor volumes. A dedicated ML pipeline assessed the effectiveness of different radiomic features and their integration with clinical variables. The DNetPRO algorithm was used to extract signatures combining radiomic and clinical data. Results: The results showed that ML classification using both data types achieved a median Matthews Correlation Coefficient (MCC) of 0.60 ± 0.07. The best-performing DNetPRO models reached an MCC of 0.73 (T1-w + T2-w) and 0.61 (T1-w only). Key clinical features included symptoms and tumor size, while radiomic features provided additional diagnostic insights, particularly regarding gray-level distribution in T2-w and texture complexity in T1-w images. Conclusions: Despite its potential, ML-based radiomics faces challenges in clinical adoption due to data variability and model diversity. Standardization and interpretability are crucial for reliability. The DNetPRO approach helps explain feature importance and relationships, reinforcing the clinical relevance of integrating radiomic and clinical data for sinonasal tumor classification. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

Back to TopTop