Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (840)

Search Parameters:
Keywords = MARINE corrosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2188 KiB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 - 2 Aug 2025
Viewed by 351
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 172
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4261 KiB  
Article
Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
by Tianlong Zhang, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang and Yantao Li
Materials 2025, 18(15), 3585; https://doi.org/10.3390/ma18153585 - 30 Jul 2025
Viewed by 171
Abstract
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl [...] Read more.
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl, rainfall, and temperature fluctuations) remain poorly understood—particularly regarding dynamic corrosion–product evolution. The corrosion characteristics and behavior of AZ31 magnesium alloy exposed in Sanya and Nansha were evaluated using X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical measurements, scanning electron microscopy, and weight loss tests. The results showed that the main components of corrosion products were MgCO3·xH2O(x = 3, 5), Mg5(CO3)4(OH)2·4H2O, Mg2Cl(OH)3·4H2O, and Mg(OH)2. The corrosion rate exposed in the Nansha was 26.5 μm·y−1, which was almost two times than that in Sanya. Localized corrosion is the typical corrosion characteristic of AZ31 magnesium alloy in this tropical marine atmosphere. This study exposes the dynamic crack–regeneration mechanism of corrosion products under high-Cl-rainfall synergy. The corrosion types of AZ31 magnesium alloy in this tropical marine atmosphere were mainly represented by pitting corrosion and filamentous corrosion. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

13 pages, 4232 KiB  
Article
Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy
by Nobumitsu Hirai, Yuhei Miwa, Shunta Hattori, Hideyuki Kanematsu, Akiko Ogawa and Futoshi Iwata
Microorganisms 2025, 13(8), 1779; https://doi.org/10.3390/microorganisms13081779 - 30 Jul 2025
Viewed by 241
Abstract
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected [...] Read more.
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected to provide insight into this. In this study, we report on the successful in situ nanoscale observations of a marine bacterial biofilm on glass in phosphate buffer solution (PBS) using both scanning ion conductance microscopy (SICM) and confocal laser scanning microscopy (CLSM) over the same area. By observing the same area by SICM and CLSM, we were able to clarify the three-dimensional morphology of the biofilm, the arrangement of bacteria within the biofilm, and the difference in local ion conductivity within the biofilm simultaneously, which could not be achieved by observation using a microscope alone. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

39 pages, 14288 KiB  
Article
Design and Performance Study of a Magnetic Flux Leakage Pig for Subsea Pipeline Defect Detection
by Fei Qu, Shengtao Chen, Meiyu Zhang, Kang Zhang and Yongjun Gong
J. Mar. Sci. Eng. 2025, 13(8), 1462; https://doi.org/10.3390/jmse13081462 - 30 Jul 2025
Viewed by 282
Abstract
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related [...] Read more.
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related leaks. This study develops a magnetic flux leakage (MFL)-based pig for detecting corrosion in subsea pipelines. Using a three-dimensional finite element model, this study analyzes the effects of defect geometry, lift-off distance, and operating speed on MFL signals. It proposes a defect estimation method based on axial peak-to-valley values and radial peak spacing, with inversion accuracy validated against simulation results. This study establishes a theoretical and practical framework for subsea pipeline integrity management, providing an effective solution for corrosion monitoring. Full article
(This article belongs to the Special Issue Theoretical Research and Design of Subsea Pipelines)
Show Figures

Figure 1

26 pages, 3943 KiB  
Article
Effect of Corrosion-Induced Damage on Fatigue Behavior Degradation of ZCuAl8Mn13Fe3Ni2 Nickel–Aluminum Bronze Under Accelerated Conditions
by Ruonan Zhang, Junqi Wang, Pengyu Wei, Lian Wang, Chihui Huang, Zeyu Dai, Jinguang Zhang, Chaohe Chen and Xinyan Guo
Materials 2025, 18(15), 3551; https://doi.org/10.3390/ma18153551 - 29 Jul 2025
Viewed by 305
Abstract
Corrosion fatigue damage significantly affects the long-term service of marine platforms such as propellers. Fatigue testing of pre-corrosion specimens is essential for understanding damage mechanisms and accurately predicting fatigue life. However, traditional seawater-based tests are time-consuming and yield inconsistent results, making them unsuitable [...] Read more.
Corrosion fatigue damage significantly affects the long-term service of marine platforms such as propellers. Fatigue testing of pre-corrosion specimens is essential for understanding damage mechanisms and accurately predicting fatigue life. However, traditional seawater-based tests are time-consuming and yield inconsistent results, making them unsuitable for rapid evaluation of newly developed equipment. This study proposes an accelerated corrosion testing method for ZCuAl8Mn13Fe3Ni2 nickel–aluminum bronze, simulating the marine full immersion zone by increasing temperature, adding H2O2, reducing the solution pH, and preparing the special solution. Coupled with the fatigue test of pre-corrosion specimens, the corrosion damage characteristics and their influence on fatigue performance were analyzed. A numerical simulation method was developed to predict the fatigue life of pre-corrosion specimens, showing an average error of 13.82%. The S–N curves under different pre-corrosion cycles were also established. The research results show that using the test solution of 0.6 mol/L NaCl + 0.1 mol/L H3PO4-NaH2PO4 buffer solution + 1.0 mol/L H2O2 + 0.1 mL/500 mL concentrated hydrochloric acid for corrosion acceleration testing shows good corrosion acceleration. Moreover, the test methods ensure accuracy and reliability of the fatigue behavior evaluation of pre-corrosion specimens of the structure under actual service environments, offering a robust foundation for the material selection, corrosion resistance evaluation, and fatigue life prediction of marine structural components. Full article
Show Figures

Figure 1

16 pages, 4613 KiB  
Article
Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach
by Ibrahim M. Gadala, Shabnam Pournazari, Davood Nakhaie, Akram Alfantazi, Daan M. Maijer and Edouard Asselin
Metals 2025, 15(8), 846; https://doi.org/10.3390/met15080846 - 29 Jul 2025
Viewed by 264
Abstract
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use [...] Read more.
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use in marine structures. In this study, the electrochemical behavior of B206 is investigated in artificial seawater at temperatures and dissolved oxygen (DO) concentrations anticipated during service in marine environments. In particular, the influence of anodizing B206 in deaerated seawater on the subsequent corrosion behavior of the alloy is studied using potentiodynamic and potentiostatic polarization, electrochemical impedance spectroscopy (EIS), and Mott–Schottky analysis. The results showed that the effect of DO on the corrosion of B206 is more significant than the effect of temperature. In the absence of DO, results of potentiostatic polarization, EIS, and Mott–Schottky analysis at anodic potentials all indicated the development of a thicker, more protective passive layer in colder seawater. Moreover, passive layer thickness modeled using Power-Law was found to range between 3 and 9 nm, whilst decreasing in thickness with temperature. Donor densities of the n-type passive layer are on the order of 1021 cm−3 and increase with temperature. The findings presented in this study support the feasibility of implementing anodizing for B206 in marine service environments. Full article
Show Figures

Figure 1

13 pages, 5877 KiB  
Article
Effect of Interval Time Between Pre-Deformation and Artificial Aging on Mechanical Properties of Er-Containing 7075 Aluminum Alloy
by Yingze Liu, Zhiqian Liao, Desheng Wang, Guoyuan Liu, Jiangyi Ren, Wenfu Li, Yunao Yang, Lingjie Chen and Yue Wang
Metals 2025, 15(8), 841; https://doi.org/10.3390/met15080841 - 28 Jul 2025
Viewed by 192
Abstract
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching [...] Read more.
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching and two-stage aging processes were investigated by mechanical property tests, metallographic tests, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mechanical properties of Er-containing 7075 aluminum alloy can be significantly improved by increasing the extrusion ratio. Pre-stretching provides nucleation sites for the precipitation of reinforcing phases, accelerates the aging strengthening process, and shortens the peak aging time. The crack source of fracture in Er-containing 7075 aluminum alloy is attributed to the segregated second phases containing Cu and Er in the alloy. The research results have significant engineering significance for the optimization of the heat treatment process of Er-containing 7075 aluminum alloy. Full article
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 287
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 735
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 284
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

16 pages, 4296 KiB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Viewed by 324
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

5 pages, 175 KiB  
Proceeding Paper
General Concepts from the Risk Assessment and Hazard Identification of HTL-Derived Bio-Oil: A Case Study of the MARINES Project
by Nicholas J. Daras, Paraskevi C. Divari, Constantinos C. Karamatsoukis, Konstantinos G. Kolovos, Theodore Liolios, Georgia Melagraki, Christos Michalopoulos and Dionysios E. Mouzakis
Proceedings 2025, 121(1), 12; https://doi.org/10.3390/proceedings2025121012 - 25 Jul 2025
Viewed by 162
Abstract
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, [...] Read more.
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, including oxidative polymerization, corrosion, and micro-explosions during combustion. Key hazards include storage instability, particulate emissions (20–30% higher than diesel), and aquatic toxicity (LC50 < 10 mg/L for phenolics). Mitigation strategies such as inert gas blanketing, preheating, and spill containment are proposed. While offering renewable fuel potential, HTL bio-oil demands rigorous safety protocols for military/industrial deployment, warranting further experimental validation. Full article
19 pages, 3112 KiB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 273
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

Back to TopTop