Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials for Experiments
2.2. Methods for Experiments
3. Results and Discussion
3.1. Macroscopic Corrosion Morphology and Environmental Impact Analysis
3.2. Corrosion Mechanism
3.3. Comparative Analysis with Literature
4. Conclusions
- (1)
- AZ31 magnesium alloy exhibits severe localized corrosion in tropical marine atmospheres, primarily manifested as pitting corrosion and crevice corrosion. Filamentous corrosion features were observed in microscopic morphologies, consistent with prior studies. This localized degradation poses critical risks to structural integrity and service life.
- (2)
- The corrosion rate in the Nansha was nearly twice that in Sanya. This divergence is attributed to the significantly higher chloride deposition rate and extreme annual rainfall in the Nansha, which intensified electrolyte formation and accelerated electrochemical reactions. The synergistic effect of rainfall-induced erosion and chloride infiltration on the corrosion product layer is the reason for the severe corrosion of the AZ31 magnesium alloy in this area.
- (3)
- This study resolves the knowledge gap regarding corrosion–product evolution under extreme tropical conditions by demonstrating how high Cl− flux (>400 mg·m−2·d−1) synergizes with torrential rainfall (>2000 mm·y−1) to drive a unique ‘crack–regeneration’ process. Electrochemical tests revealed that the samples exposed in Nansha exhibited lower corrosion current density and positive shift in corrosion potential, indicating a denser but dynamically regenerated corrosion product layer. Corrosion products in both regions comprised MgCO3·xH2O(x = 3, 5), Mg2Cl(OH)3·4H2O, Mg5(CO3)4(OH)2·4H2O, and Mg(OH)2.
- (4)
- Based on the ‘crack–regeneration’ mechanism and chloride-driven degradation, AZ31 magnesium alloy corrosion resistance in tropical marine environments can be enhanced through hydrophobic coatings to disrupt wet–dry cycles; β-phase distribution control via thermo-mechanical processing to mitigate micro-galvanic corrosion; and rare-earth alloying (Ce/Gd) to form chloride-penetration-resistant inter-metallics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.M.; Huang, X.Q.; Kong, L.F.; Chen, J.X.; Gao, F.; Liu, S.H.; Chen, M.F.; Zhang, J.; Tie, D. Research Advances in Corrosion Behavior of Magnesium Alloy in Marine Atmospheric Environment. Rare. Metal. Mat. Eng. 2024, 53, 1170–1180. [Google Scholar]
- Atrens, A.; Song, G.L.; Liu, M.; Shi, Z.M.; Cao, F.Y.; Dargusch, M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- An, G.W.; Jin, S.C.; Lee, T.K.; Jo, S.; Park, S.H. Comparative study of dynamic recrystallization behavior, microstructural characteristics, and mechanical properties of high-speed-extruded AZ31 and BA56 magnesium alloys. J. Magnes. Alloy 2025, 25, 76–81. [Google Scholar] [CrossRef]
- Kulekci, M.K. The investigation of laser conditions on the surface properties for AZ31 magnesium alloys. Surf. Coat. Technol. 2025, 502, 131927. [Google Scholar]
- Mordike, B.L.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Friedrich, H.; Schumann, S. Research for a “new age of magnesium” in the automotive industry. Mater. Process. Technol. 2001, 117, 276–281. [Google Scholar] [CrossRef]
- Sun, J.; Jin, Z.Q.; Chang, H.L.; Zhang, W. A review of chloride transport in concrete exposed to the marine atmosphere zone environment: Experiments and numerical models. J. Build. Eng. 2024, 84, 108591. [Google Scholar] [CrossRef]
- Meira, G.R.; Andrade, C.; Alonso, C.; Padaratz, I.J.; Borba, J.C. Modelling sea-salt transport and deposition in marine atmosphere zone—A tool for corrosion studies. Corros. Sci. 2008, 50, 2724–2731. [Google Scholar] [CrossRef]
- Lindström, R.; Johansson, L.G.; Thompson, G.E.; Skeldon, P.; Svensson, J.E. Corrosion of magnesium in humid air. Corros. Sci. 2004, 46, 1141–1158. [Google Scholar] [CrossRef]
- Feliu, S.; Maffiotte, C.; Galván, J.C.; Barranco, V. Atmospheric corrosion of magnesium alloys AZ31 and AZ61 under continuous condensation conditions. Corros. Sci. 2011, 53, 1865–1872. [Google Scholar] [CrossRef]
- Fournier, V.; Marcus, P.; Olefjord, I. Oxidation of magnesium. Surf. Interface Anal. 2002, 34, 494–497. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Li, X.G.; Xiao, K.; Dong, C.F. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corros. Sci. 2013, 76, 243–256. [Google Scholar] [CrossRef]
- LeBozec, N.; Jönsson, M.; Thierry, D. Atmospheric Corrosion of Magnesium Alloys: Influence of Temperature, Relative Humidity, and Chloride Deposition. Corrosion 2004, 60, 356–361. [Google Scholar] [CrossRef]
- Merino, M.C.; Pardo, A.; Arrabal, R.; Merino, S.; Mohedano, M. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog. Corros. Sci. 2010, 52, 1696–1704. [Google Scholar] [CrossRef]
- Liao, J.S.; Hotta, M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure. Corros. Sci. 2015, 100, 353–364. [Google Scholar] [CrossRef]
- Jiang, Q.T.; Lu, D.Z.; Liu, N.Z.; Yang, L.H.; Hou, B.R.; Cheng, L.R. The corrosion behavior of EW75 magnesium alloy in the research vessel KEXUE during the ocean voyage. NPJ Mater. Degrad. 2022, 6, 28. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.; Coy, A.; Arrabal, R.; Viejo, F.; Matykina, E. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros. Sci. 2008, 50, 823–834. [Google Scholar] [CrossRef]
- Zengin, H.; Krawiec, H.; Minarik, P.; Hassel, A.W. Influence of secondary phases and their redistribution by deformation on corrosion behaviour of magnesium alloys—A short review. J. Mater. Res. Technol. 2025, 37, 122–132. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.H.; Wang, M.Q.; Sun, C.T.; Wang, X.T.; Li, J.R.; Li, J.Y. Corrosion behavior of AZ91 magnesium alloys in harsh marine atmospheric environment in South China Sea. J. Mater. Res. Technol. 2025, 35, 2477–2486. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Y.X.; Tong, S.J.; Zhang, Y.L.; Yuan, Y.; Chen, X.H.; Pan, F.S. Effect of impurity elements on the corrosion behavior of Mg-Al alloys: A first principles study. J. Mater. Res. Technol. 2025, 36, 8632–8642. [Google Scholar] [CrossRef]
- Zengin, H.; Hassel, A.W. Magnesium alloys with rare earth elements—A review of the recent progress on the corrosion properties. Corros. Sci. 2025, 249, 112827. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.Y.; Bai, P.K.; Li, X.F.; Liu, B.; Tan, J.B.; Wu, X.Q. In-situ monitoring of pitting corrosion of AZ31 magnesium alloy by combining electrochemical noise and acoustic emission techniques. J. Alloys Compd. 2021, 878, 160334. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.C.; Wang, X.T.; Jiang, Q.T.; Li, Y.T.; Huang, Y.L.; Yang, L.H. Research on Dynamic Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy. Metals 2022, 12, 1886. [Google Scholar] [CrossRef]
- Liao, J.; Hotta, M.; Motoda, S.i.; Shinohara, T. Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size. Corros. Sci. 2013, 71, 53–61. [Google Scholar] [CrossRef]
- Yang, L.H.; Lin, C.G.; Gao, H.P.; Xu, W.C.; Li, Y.T.; Hou, B.R.; Huang, Y.L. Corrosion Behaviour of AZ63 Magnesium Alloy in Natural Seawater and 3.5 wt.% NaCl Aqueous Solution. Int. J. Electrochem. Sci. 2018, 13, 8084–8093. [Google Scholar] [CrossRef]
- Arash, F.A.; Razieh, C.; Alireza, A.; Sajad, A.; Mosab, K. Unraveling the impact of purification and alloying elements on corrosion performance and passivation of magnesium alloys. J. Magnes. Alloy 2024, 12, 4808–4827. [Google Scholar]
- Zhan, X.; Bai, J.X.; Qin, N.; Qian, L.M. Investigation of surface integrity, subsurface microstructural transformation, and corrosion behavior in multi-field coupling machining of AZ31 magnesium alloy. J. Manuf. Process. 2025, 148, 345–360. [Google Scholar] [CrossRef]
- Jiang, Q.T.; Lu, D.Z.; Wang, N.; Wang, X.T.; Zhang, J.; Duan, J.Z.; Hou, B.R. The corrosion behavior of Mg–Nd binary alloys in the harsh marine environment. J. Magnes. Alloy. 2021, 9, 292–304. [Google Scholar] [CrossRef]
- Martin, H.J.; Horstemeyer, M.F.; Wang, P.T. Structure–property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy. Corros. Sci. 2011, 53, 1348–1361. [Google Scholar] [CrossRef]
- Yu, R.H.; Cao, F.Y.; Zhao, C.; Yao, J.H.; Wang, J.J.; Wang, Z.M.; Zou, Z.W.; Zheng, D.J.; Cai, J.L.; Song, G.L. The marine atmospheric corrosion of pure Mg and Mg alloys in field exposure and lab simulation. Corros. Eng. Sci. Technol. 2020, 55, 609–621. [Google Scholar] [CrossRef]
- Atrens, A.; Shi, Z.M.; Mehreen, S.U.; Johnston, S.; Song, G.L.; Chen, X.H.; Pan, F.S. Review of Mg alloy corrosion rates. J. Magnes. Alloy. 2020, 8, 989–998. [Google Scholar] [CrossRef]
- Yang, L.H.; Liu, C.; Wang, Y.; Wang, X.T.; Gao, H.P. Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean. Materials 2024, 17, 2294. [Google Scholar] [CrossRef]
- Pan, H.; Wang, L.W.; Lin, Y.; Ge, F.; Zhao, K.; Wang, X.; Cui, Z.Y. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution. J. Mater. Sci. Technol. 2020, 54, 1–13. [Google Scholar] [CrossRef]
Element (wt%) | Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
AZ31 | 2.93 | 0.68 | 0.25 | 0.02 | 0.003 | 0.003 | 0.0006 | Bal. |
Location | Corrosion Rate (μm·y−1) | Cl− Deposition (mg·m−2·d−1) | Rainfall (mm·y−1) |
---|---|---|---|
Nansha | 26.5 | 400 | 2078 |
Sanya | 13.9 | 35 | 1200 |
Xisha [31] | 17.66 | 64.39 | 1536 |
Shimizu [32] | 9.8 | 4.2 | 2300 |
Lab-simulated [33] | 2.3 | - | - |
Location | Self-Corrosive Potential (vs. SCE)/V | Corrosion Current Density (μA cm−2) | bc (mV dec−1) |
---|---|---|---|
Unexposed AZ31 | −1.5313 | 93.28 | 174 |
Sanya AZ31 | −1.5172 | 45.95 | 140 |
NanshaAZ31 | −1.4330 | 7.90 | 158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wu, S.; Liu, H.; Yang, L.; Chen, T.; Wang, X.; Li, Y. Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea. Materials 2025, 18, 3585. https://doi.org/10.3390/ma18153585
Zhang T, Wu S, Liu H, Yang L, Chen T, Wang X, Li Y. Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea. Materials. 2025; 18(15):3585. https://doi.org/10.3390/ma18153585
Chicago/Turabian StyleZhang, Tianlong, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang, and Yantao Li. 2025. "Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea" Materials 18, no. 15: 3585. https://doi.org/10.3390/ma18153585
APA StyleZhang, T., Wu, S., Liu, H., Yang, L., Chen, T., Wang, X., & Li, Y. (2025). Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea. Materials, 18(15), 3585. https://doi.org/10.3390/ma18153585