Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Electrochemical Studies at Different Temperatures and DO Conditions
3.3. Passive Layer Behavior
3.3.1. Passive Current Density Decay
3.3.2. Passive Layer Components and Structure
3.3.3. EIS
3.3.4. Mott–Schottky Analysis and Passive Layer Thickness
4. Conclusions
- Potentiodynamic polarization studies on B206 demonstrate that the effect of dissolved oxygen is more significant than that of temperature. The anodic polarization curves present an active–passive breakdown transition in deaerated seawater, whereas localized corrosion of B206 can occur under open-circuit conditions in aerated seawater.
- The protectiveness of the outer Al(OH)3 layer formed through anodizing B206 in deaerated seawater decreases with increased temperature in the 6–25 °C range. This is proposed to be due to the higher rate of Cl−-induced dissolution of the outer Al(OH)3 passive layer at higher temperatures, increasing the size and density of pores therein. Increased diffusion of electroactive species with temperature, seen in the EIS results, corroborates the inference that enhanced breakdown of Al(OH)3 at higher temperatures forms larger-sized pores reaching through to the Al2O3 inner layer.
- Increasing the temperature of the deaerated seawater during anodizing not only affects the pore size and density in the outer Al(OH)3 passive layer but also degrades the resistivity of the inner Al2O3 layer. Through Mott–Schottky analysis, the donor density (mainly oxygen vacancies) of the Al2O3 inner layer decreases with increased temperature, strongly contributing to the reduced protectiveness of the overall duplex-structure passive layer on B206. Donor densities of the passive layer exhibiting n-type semiconductive behavior are on the order of 1021 cm−3, comparing well with values for other Al alloys reported in the literature.
- Passive layer thickness is found to be between 3 and 9 nm using the Power-Law model, comparable to those of Al-oxide layers calculated through other characterization methods in the literature. A temperature-dependent trend for passive layer thickness supports decreased protectiveness (due to thinning) at the higher temperatures in the 6–25 °C range. Mainly, this is attributed to the more difficult growth of the outer passive layer at higher temperatures due to temperature-induced increased dissolution rate of Al(OH)3 counteracting its formation from Al2O3.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorenzi, S.; Carrozza, A.; Cabrini, M.; Nani, L.; Andreatta, F.; Virtanen, E.; Tirelli, T.; Pastore, T. Corrosion behavior assessment of an Al-Cu alloy manufactured via laser powder bed fusion. Corros. Sci. 2024, 227, 111698. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Akama, T.; Tahara, M.; Inamura, T.; Nakamura, K.; Hosoda, H. Aging behaviors of the Al–Cu alloy via ultrasound-promoted thermal treatments. J. Mater. Res. Technol. 2024, 28, 478–489. [Google Scholar] [CrossRef]
- Ren, L.; Tan, R.; Zhang, D.; Zhang, X. Regulating grain boundary element distribution of Al-Cu alloy to improve corrosion resistance by boron addition. Corros. Sci. 2025, 244, 112665. [Google Scholar] [CrossRef]
- Alhejazi, H.J.; Maijer, D.M.; Avraham, S.; Phillion, A.B. Numerical-Experimental Assessment of the Semi-Solid Contraction Behavior of Grain-Refined High Strength Aluminum Alloy, B206. Metall. Mater. Trans. A 2024, 55, 3164–3171. [Google Scholar] [CrossRef]
- Manivannan, M.; Sokolowski, J.H.; Northwood, D.O. An Investigation of the Effect of Various Heat Treatments on the Corrosion Resistance of a High-Strength Aluminum-Copper Casting Alloy. In Proceedings of the 48th Annual Conference of the Australasian Corrosion Association 2008: Corrosion and Prevention 2008, Wellington, New Zealand, 16–19 November 2008; pp. 1–10. [Google Scholar]
- Kearney, A.L.; Rooy, E.L. ASM Handbook Volume 02—Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed.; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Pournazari, S.; Maijer, D.M.; Asselin, E. Effects of Dissolved Oxygen and Temperature on the Corrosion Properties of B206 and A356 Aluminum Alloys Exposed to Seawater. In Proceedings of the Corrosion Conference and Expo, Vancouver, BC, Canada, 6–10 March 2016; p. NACE-2016-7561. [Google Scholar]
- Davis, J.; Destefani, J.; Frissell, H. ASM Metals Handbook Volume 13 Corrosion; ASM International: Materials Park, OH, USA, 1987. [Google Scholar]
- Arima, H. Seawater Corrosion of the Anodized A1050 Aluminum Plate for Heat Exchangers. Metals 2025, 15, 300. [Google Scholar] [CrossRef]
- Pournazari, S.; Maijer, D.; Asselin, E. FIB/SEM study of pitting and intergranular corrosion in an Al-Cu alloy. Corrosion 2017, 73, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Rakhmonov, J.U.; Qi, J.; Bahl, S.; Dunand, D.C.; Shyam, A. Co-, Ni- and Fe-rich grain-boundary phases enhance creep resistance in θ′-strengthened Al-Cu alloys. Mater. Sci. Eng. A 2024, 913, 147052. [Google Scholar] [CrossRef]
- Zhu, Y.; Frankel, G.S.; Miller, L.G.; Garves, J.; Pope, J.; Locke, J. Electrochemical Characteristics of Intermetallic Phases in Al–Cu–Li Alloys. J. Electrochem. Soc. 2023, 170, 021502. [Google Scholar] [CrossRef]
- Yoshida, H.; Nishimoto, M.; Muto, I.; Takaya, M.; Kyo, Y.; Minoda, T.; Sugawara, Y. Difference in the Precursory Process of the Intergranular Corrosion of Aged Al-Cu and Al-Cu-Mg Alloys in 0.1 M NaCl. J. Electrochem. Soc. 2023, 170, 111501. [Google Scholar] [CrossRef]
- de Sousa Araujo, J.V.; Costa, I.; Zhou, X. Comparison of Constituent Intermetallic Particles in Different Aluminium Alloys. Metallogr. Microstruct. Anal. 2025, 14, 106–119. [Google Scholar] [CrossRef]
- Kayani, S.H.; Ha, H.-Y.; Kim, B.-J.; Cho, Y.-H.; Son, H.-W.; Lee, J.-M. Impact of intermetallic phases on the localised pitting corrosion and high-temperature tensile strength of Al–SiMgCuNi alloys. Corros. Sci. 2024, 233, 112064. [Google Scholar] [CrossRef]
- Kosari; Tichelaar, F.; Visser, P.; Zandbergen, H.; Terryn, H.; Mol, J.M.C. Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corros. Sci. 2020, 177, 108947. [Google Scholar] [CrossRef]
- Miramontes, J.C.; Tiburcio, C.G.; Mata, E.G.; Alcála, M.Á.E.; Maldonado-Bandala, E.; Lara-Banda, M.; Nieves-Mendoza, D.; Olguín-Coca, J.; Zambrano-Robledo, P.; López-León, L.D.; et al. Corrosion Resistance of Aluminum Alloy AA2024 with Hard Anodizing in Sulfuric Acid-Free Solution. Materials 2022, 15, 6401. [Google Scholar] [CrossRef]
- de S. Araujo, J.V.; Chen, J.; Costa, I.; Zhou, X. Localized corrosion in anodized aluminium alloys: The role of constituent particle-induced defects in anodic films. Corros. Sci. 2025, 252, 112961. [Google Scholar] [CrossRef]
- ASTM E3061; Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://store.astm.org/e3061-17.html (accessed on 1 May 2017).
- ASTM D1141; Practice for the Preparation of Substitute Ocean Water. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://store.astm.org/d1141-98r21.html (accessed on 1 May 2017).
- Stansbury, E.E.; Buhcanan, R. Fundamentals of Electrochemical Corrosion; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Bok, F.; Moog, H.C.; Brendler, V. The solubility of oxygen in water and saline solutions. Front. Nucl. Eng. 2023, 2, 1158109. Available online: https://www.frontiersin.org/journals/nuclear-engineering/articles/10.3389/fnuen.2023.1158109 (accessed on 1 May 2017). [CrossRef]
- Kelly, R.G.; Scully, J.R.; Shoesmith, D.W.; Buchheit, R.G. Electrochemical Techniques in Corrosion Science and Engineering; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Orazem, M.E. Measurement model for analysis of electrochemical impedance data. J. Solid State Electrochem. 2024, 28, 1273–1289. [Google Scholar] [CrossRef]
- Peltier, F.; Thierry, D. Localised corrosion of intermetallic particles on aluminium AA2099-T8. Corros. Eng. Sci. Technol. 2021, 56, 610–617. [Google Scholar] [CrossRef]
- Visser, P.; Gonzalez-Garcia, Y.; Mol, J.M.C.; Terryn, H. Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride. J. Electrochem. Soc. 2018, 165, C60–C70. [Google Scholar] [CrossRef]
- Ishii, K.; Ozaki, R.; Kaneko, K.; Fukushima, H.; Masuda, M. Continuous monitoring of aluminum corrosion process in deaerated water. Corros. Sci. 2007, 49, 2581–2601. [Google Scholar] [CrossRef]
- Lee, H.-J.; Park, I.-J.; Choi, S.-R.; Kim, J.-G. Effect of Chloride on Anodic Dissolution of Aluminum in 4 M NaOH Solution for Aluminum-Air Battery. J. Electrochem. Soc. 2017, 164, A549–A554. [Google Scholar] [CrossRef]
- Zhou, W.; Xue, F.; Li, M. Corrosion Behavior of Al-Mg Alloys with Different Alloying Element Contents in 3.5% NaCl Solution. Metals 2025, 15, 327. [Google Scholar] [CrossRef]
- Liang, Y.; Du, Y.; Zhu, Z.; Chen, L.; Liu, Y.; Zhang, L.; Qiao, L. Investigation on AC corrosion of aluminum alloy sacrificial anode in the artificial simulated seawater environment. Electrochim. Acta 2023, 446, 142002. [Google Scholar] [CrossRef]
- Vivier, V.; Orazem, M.E. Impedance Analysis of Electrochemical Systems. Chem. Rev. 2022, 122, 11131–11168. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, J.; Qin, Z.; Xia, D.-H.; Behnamian, Y.; Hu, W.; Tribollet, B. A mechanistic study on stress corrosion cracking of sensitized AA5083 in a simulated water level fluctuation zone: Combined impedance analysis and tensile tests. Corros. Sci. 2025, 245, 112701. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Foley, R.T. The Chemical Nature of Aluminum Corrosion II. The Initial Dissolution Step. J. Electrochem. Soc. 1982, 129, 27–32. [Google Scholar] [CrossRef]
- McCafferty, E. Sequence of steps in the pitting of aluminum by chloride ions. Corros. Sci. 2003, 45, 1421–1438. [Google Scholar] [CrossRef]
- Kolics, A.; Polkinghorne, J.C.; Wieckowski, A. Adsorption of sulfate and chloride ions on aluminum. Electrochim. Acta 1998, 43, 2605–2618. [Google Scholar] [CrossRef]
- Orazem, M.E.; Ulgut, B. On the Proper Use of a Warburg Impedance. J. Electrochem. Soc. 2024, 171, 40526. [Google Scholar] [CrossRef]
- Ning, Z.; Wen, D.; Zhou, Q.; Li, N.; Macdonald, D.D. Theoretical explanation of passivation behavior in OFP-Cu and OF-Cu. Acta Mater. 2024, 271, 119882. [Google Scholar] [CrossRef]
- Kumar, A.; Chaudhari, G.P. Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides. J. Solid State Electrochem. 2024, 28, 4087–4103. [Google Scholar] [CrossRef]
- Hu, X.; Gao, K.; Xiong, X.; Huang, H.; Wu, X.; Wen, S.; Wei, W.; Nie, Z.; Zhou, D. Influence of Grain Size and Film Formation Potential on the Diffusivity of Point Defects in the Passive Film of Pure Aluminum in NaCl Solution. Metals 2024, 14, 782. [Google Scholar] [CrossRef]
- Fernandes, J.C.S.; Picciochi, R.; Da Cunha Belo, M.; Silva, T.M.E.; Ferreira, M.G.S.; Fonseca, I.T.E. Capacitance and photoelectrochemical studies for the assessment of anodic oxide films on aluminium. Electrochim. Acta 2004, 49, 4701–4707. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, G.Z.; Cheng, Y.F. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions. Electrochim. Acta 2009, 54, 4155–4163. [Google Scholar] [CrossRef]
- Lv, J.; Luo, H. Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy. Surf. Coat. Technol. 2013, 235, 513–520. [Google Scholar] [CrossRef]
- Macdonald, D.D. On the Existence of Our Metals-Based Civilization I. Phase-Space Analysis. J. Electrochem. Soc. 2006, 153, B213–B224. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Yan, C.; Du, K.; Wang, F. Corrosion behaviors of Zn/Al–Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg–Al–Zn). Electrochim. Acta 2009, 55, 560–571. [Google Scholar] [CrossRef]
- Pan, C.; Behnamian, Y.; Guo, Y.; Qin, Z.; Hu, W.; Xia, D.-H.; Tribollet, B. Cavitation erosion of the AA7050 aluminum alloy in 3.5 wt% NaCl solution—Part 2: An impedance investigation of the effect of cavitation intensity on interfacial states. Corros. Sci. 2025, 251, 112936. [Google Scholar] [CrossRef]
- Ter-Ovanessian, B.; Galipaud, J.; Marcelin, S.; Tribollet, B.; Normand, B. Dielectric bi-layer model for electrochemical impedance spectroscopy characterisation of oxide film. Electrochim. Acta 2024, 492, 144307. [Google Scholar] [CrossRef]
- Nkoua, C.; Esvan, J.; Tribollet, B.; Basseguy, R.; Blanc, C. Combined electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of the passive films formed on 5083 aluminium alloy. Corros. Sci. 2023, 221, 111337. [Google Scholar] [CrossRef]
- Mohammadi, M.; Choudhary, L.; Gadala, I.M.; Alfantazi, A. Electrochemical and Passive Layer Characterizations of 304L, 316L, and Duplex 2205 Stainless Steels in Thiosulfate Gold Leaching Solutions. J. Electrochem. Soc. 2016, 163, C883–C894. [Google Scholar] [CrossRef]
- Chang, C.-L.; Engelhard, M.H.; Ramanathan, S. Superior nanoscale passive oxide layers synthesized under photon irradiation for environmental protection. Appl. Phys. Lett. 2008, 92, 263103. [Google Scholar] [CrossRef]
- Strohmeier, B. An Esca Method for Determining the Oxide Thickness on Aluminum-Alloys. Surf. Interface Anal. 1990, 15, 51–56. [Google Scholar] [CrossRef]
Cu | Si | Fe | Mn | Mg | Ti | Zn | Al |
---|---|---|---|---|---|---|---|
4.68 | 0.03 | 0.05 | 0.27 | 0.31 | 0.02 | 0.02 | Balance |
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr | H3BO3 | SrCl2 | NaF |
---|---|---|---|---|---|---|---|---|---|
24.53 | 5.20 | 4.09 | 1.16 | 0.695 | 0.201 | 0.101 | 0.027 | 0.025 | 0.003 |
Components | Solution Temperature [°C] | |||
---|---|---|---|---|
6 | 10 | 14 | 25 | |
Figure 6 | Figure 7 | Figure 7 | Figure 7 | |
Rsol [Ω cm2] | 6.14 | 14.2 | 4.58 | 8.41 |
Qdl [Ω−1 sn] | 1.83 × 10−6 | 2.10 × 10−5 | 2.46 × 10−5 | 9.55 × 10−5 |
ndl | 1 | 0.92 | 0.93 | 0.96 |
Cdl [F cm−2] | 1.83 × 10−6 | 5.17 × 10−6 | 7.14 × 10−6 | 4.73 × 10−5 |
Rct [Ω cm2] | 2.96 × 104 | 2.44 × 104 | 2.32 × 104 | 2.19 × 104 |
Qf [Ω−1 sn] | 2.75 × 10−5 | 1.42 × 10−6 | 1.90 × 10−6 | 1.41 × 10−5 |
nf | 0.84 | 1 | 1 | 0.92 |
Cf [F cm−2] | 8.34 × 10−4 | 1.43 × 10−3 | 2.14 × 10−3 | 2.43 × 10−3 |
Rf [Ω cm2] | 2.24 × 104 | 1.25 × 103 | 8.18 × 102 | 8.03 × 102 |
W [Ω−1 s0.5] | / | 1.47 × 108 | 8.99 × 107 | 1.7 × 107 |
4.52 × 10−4 | 1.65 × 10−3 | 1.84 × 10−3 | 2.26 × 10−3 | |
% error in fit | <2.35 | <3.84 | <3.89 | <4.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadala, I.M.; Pournazari, S.; Nakhaie, D.; Alfantazi, A.; Maijer, D.M.; Asselin, E. Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach. Metals 2025, 15, 846. https://doi.org/10.3390/met15080846
Gadala IM, Pournazari S, Nakhaie D, Alfantazi A, Maijer DM, Asselin E. Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach. Metals. 2025; 15(8):846. https://doi.org/10.3390/met15080846
Chicago/Turabian StyleGadala, Ibrahim M., Shabnam Pournazari, Davood Nakhaie, Akram Alfantazi, Daan M. Maijer, and Edouard Asselin. 2025. "Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach" Metals 15, no. 8: 846. https://doi.org/10.3390/met15080846
APA StyleGadala, I. M., Pournazari, S., Nakhaie, D., Alfantazi, A., Maijer, D. M., & Asselin, E. (2025). Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach. Metals, 15(8), 846. https://doi.org/10.3390/met15080846