Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = MAE-UHPLC-MS/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2593 KiB  
Article
Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies
by Felicia Suciu, Dragos Paul Mihai, Anca Ungurianu, Corina Andrei, Ciprian Pușcașu, Carmen Lidia Chițescu, Robert Viorel Ancuceanu, Cerasela Elena Gird, Emil Stefanescu, Nicoleta Mirela Blebea, Violeta Popovici, Adrian Cosmin Rosca, Cristina Isabel Viorica Ghiță and Simona Negres
Int. J. Mol. Sci. 2025, 26(13), 6426; https://doi.org/10.3390/ijms26136426 - 3 Jul 2025
Viewed by 407
Abstract
The current study evaluated the anticonvulsant properties of ethanolic extracts from Morus alba, Angelica archangelica, Passiflora incarnata, and Valeriana officinalis using integrated phytochemical, in vivo, biochemical, and computational approaches. Phytochemical analysis by UHPLC-HRMS/MS revealed the presence of various bioactive compounds, notably [...] Read more.
The current study evaluated the anticonvulsant properties of ethanolic extracts from Morus alba, Angelica archangelica, Passiflora incarnata, and Valeriana officinalis using integrated phytochemical, in vivo, biochemical, and computational approaches. Phytochemical analysis by UHPLC-HRMS/MS revealed the presence of various bioactive compounds, notably flavonoids such as isorhamnetin, quercetin, and kaempferol. In an electroshock-induced seizure model, Morus alba extract (MAE, 100 mg/kg) demonstrated significant anticonvulsant effects, reducing both seizure duration and incidence, likely mediated by flavonoid interactions with GABA-A and 5-HT3A receptors, as suggested by target prediction and molecular docking analyses. The extracts of Angelica archangelica (AAE, 100 mg/kg) and Passiflora incarnata (PIE, 50 mg/kg) exhibited moderate, non-significant anticonvulsant activities. At the same time, Valeriana officinalis (VOE, 50 mg/kg) displayed considerable antioxidant and anti-inflammatory properties but limited seizure protection. All extracts significantly reduced brain inflammation markers (TNF-α) and enhanced antioxidant defenses, as indicated by total thiols. Molecular docking further supported the interaction of key phytochemicals, including naringenin and chlorogenic acid, with human and mouse 5-HT3A receptors. Overall, Morus alba extract exhibited promising therapeutic potential for epilepsy management, warranting further investigation into chronic seizure models and optimized dosing strategies. Full article
Show Figures

Figure 1

18 pages, 1436 KiB  
Article
Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice
by Łukasz Duda, Zbigniew Włodzimierz Pasieka, Monika Anna Olszewska, Magdalena Rutkowska, Grażyna Budryn, Andrzej Jaśkiewicz, Barbara Kłosińska, Karolina Czajkowska and Karol Kamil Kłosiński
Int. J. Mol. Sci. 2025, 26(13), 6387; https://doi.org/10.3390/ijms26136387 - 2 Jul 2025
Viewed by 296
Abstract
Cichorium intybus L. (common chicory) is a medicinal plant valued for health-promoting effects. Although analgesic properties are known for chicory sesquiterpenes, the effects of extracts need yet to be explored. This study aimed to evaluate for the first time the analgesic effect (against [...] Read more.
Cichorium intybus L. (common chicory) is a medicinal plant valued for health-promoting effects. Although analgesic properties are known for chicory sesquiterpenes, the effects of extracts need yet to be explored. This study aimed to evaluate for the first time the analgesic effect (against nociceptive pain) of the root extract from C. intybus var. foliosum. The target evaluation was preceded by toxicity tests in vivo and phytochemical standardization of root extracts prepared with different extraction methods—pectinase-assisted, pressure-assisted, and a combination of both—to choose the most effective one. The phytochemical profiling involved UHPLC-PDA-ESI-MS/MS and UHPLC-PDA analyses. The toxicity and the analgesic effects were tested in mice following the OECD 423 guideline and the hot-plate test, respectively. The highest recovery of bioactive compounds was achieved for the pressure-assisted extract: 642.5 mg sesquiterpene lactones, 187.1 mg phenolic acids, and 47.3 g inulin/100 g of dry matter. The extract showed no toxic effects at the oral dose of 2000 mg/kg body weight, including no histopathologic changes, in mice within two weeks (GHS Category 5/Uncategorized). The maximum analgesic effect (MAE) of the extract at 600 mg/kg was 6.75% for rearing and 13.7% for jumping, with the impact on the nocifensive reactions not differing significantly from those of paracetamol at 60 mg/kg. Despite the relatively low effects at 600 mg/kg, the verified safety and abundance of active compounds encourage further studies on the extract and its active fractions as potential approaches to complementary pain therapy, with special concern for their mechanisms of action. Full article
Show Figures

Figure 1

20 pages, 20332 KiB  
Article
A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study
by Raymond Rubianto Tjandrawinata and Fahrul Nurkolis
Mar. Drugs 2024, 22(8), 365; https://doi.org/10.3390/md22080365 - 12 Aug 2024
Cited by 6 | Viewed by 2891
Abstract
Enhalus acoroides, a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and [...] Read more.
Enhalus acoroides, a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) and to evaluate the biological properties of these extracts against oxidative stress, diabetes, and obesity through in silico and in vitro analyses. E. acoroides samples were collected from Manado City, Indonesia, and subjected to UAE and MAE. The extracts were analyzed using UHPLC-ESI-MS/MS to identify carotenoids, including β-carotene, lutein, lycopene, β-cryptoxanthin, and zeaxanthin. In silico analysis was conducted to predict the compounds’ bioactivity, toxicity, and drug-likeness using WAY2DRUG PASS and molecular docking with CB-Dock2. The compounds C3, C4, and C7 demonstrated notable interactions, with key metabolic proteins and microRNAs, further validating their potential therapeutic benefits. In vitro assays evaluated antioxidant activities using DPPH and FRAP assays, antidiabetic properties through α-glucosidase and α-amylase inhibition, and antiobesity effects via lipase inhibition and MTT assay with 3T3-L1 cells. Results indicated that both UAE and MAE extracts exhibited significant antioxidant, antidiabetic, and antiobesity activities. MAE extracts showed higher carotenoid content and greater biological activity compared to UAE extracts. These findings suggest that E. acoroides, mainly when extracted using MAE, has promising potential as a source of natural bioactive compounds for developing marine-based antioxidant, antidiabetic, and antiobesity agents. This study supplements existing literature by providing insights into the efficient extraction methods and the therapeutic potential of E. acoroides carotenoids. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Graphical abstract

11 pages, 610 KiB  
Article
Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity
by Evelyn Guillen, Hector Terrones, Teresa Cano de Terrones, Mario J. Simirgiotis, Jan Hájek, José Cheel, Beatriz Sepulveda and Carlos Areche
Plants 2024, 13(9), 1213; https://doi.org/10.3390/plants13091213 - 27 Apr 2024
Viewed by 2160
Abstract
Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary [...] Read more.
Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry. Full article
Show Figures

Figure 1

13 pages, 1438 KiB  
Article
Microwave-Assisted Extraction/UHPLC-Q-Orbitrap-MS-Based Lipidomic Workflow for Comprehensive Study of Lipids in Soft Cheese
by Maria Campaniello, Valeria Nardelli, Rosalia Zianni, Michele Tomaiuolo, Oto Miedico, Marco Iammarino and Annalisa Mentana
Foods 2024, 13(7), 1033; https://doi.org/10.3390/foods13071033 - 28 Mar 2024
Cited by 6 | Viewed by 1820
Abstract
In this work, Microwave-Assisted Extraction (MAE) was proposed as an alternative and environmentally friendly technique in lipidomics to study the lipid fingerprint of soft cheeses, such as mozzarella. For method development, a first step concerning an evaluation of extraction solvents was carried out [...] Read more.
In this work, Microwave-Assisted Extraction (MAE) was proposed as an alternative and environmentally friendly technique in lipidomics to study the lipid fingerprint of soft cheeses, such as mozzarella. For method development, a first step concerning an evaluation of extraction solvents was carried out via testing three different mixtures, including methanol/ethyl acetate, isopropanol/ethyl acetate, and ethanol/ethyl acetate, at a 1:2 v/v ratio. The latter was chosen as a solvent mixture for subsequent method optimization. MAE conditions, in terms of solvent volume, time, and temperature, were explored to define their effects on extraction capability through a full factorial experimental design. The best compromise to extract more lipids at the same time was obtained with 24 mL g−1 for solvent-to-solid ratio, 65 °C for temperature, and 18 min for time. Lipid analyses were conducted by UHPLC-Q-Orbitrap-MS associated with multivariate statistics. The developed lipidomic workflow allowed for the extraction of over 400 lipids grouped into 18 different subclasses. The results confirmed that MAE is a suitable technique for lipid extraction in the omics approach with high efficiency, even using low-cost and less toxic solvents. Moreover, a comprehensive structure characterization of extracted lipids, in terms of fatty acid composition and regiochemistry, was carried out. Full article
(This article belongs to the Special Issue Metabolomics Advances in Food Science)
Show Figures

Graphical abstract

21 pages, 2928 KiB  
Article
Teucrium montanum L.—Unrecognized Source of Phenylethanoid Glycosides: Green Extraction Approach and Elucidation of Phenolic Compounds via NMR and UHPLC-HR MS/MS
by Ana Mandura Jarić, Ana Čikoš, Marijana Pocrnić, Krunoslav Aladić, Stela Jokić, Danijela Šeremet, Aleksandra Vojvodić Cebin and Draženka Komes
Antioxidants 2023, 12(11), 1903; https://doi.org/10.3390/antiox12111903 - 24 Oct 2023
Cited by 8 | Viewed by 2297
Abstract
Health-oriented preferences, a demand for innovative food concepts, and technological advances have greatly influenced changes in the food industry and led to remarkable development of the functional food market. Incorporating herbal extracts as a rich source of bioactive compounds (BC) could be an [...] Read more.
Health-oriented preferences, a demand for innovative food concepts, and technological advances have greatly influenced changes in the food industry and led to remarkable development of the functional food market. Incorporating herbal extracts as a rich source of bioactive compounds (BC) could be an effective solution to meet the high demand of consumers in terms of expanding the high-quality range of functional foods. The aim of this study is the valorization of the bioactive potential of T. montanum L., an understudied Mediterranean plant species, and the in-depth elucidation of a polyphenolic profile with a UHPLC-HR MS/MS and NMR analysis. The total phenolic content (TPC) and antioxidant capacity (AC) were determined on heat-assisted (HAE), microwave-assisted (MAE) and subcritical water (SWE) extracts. In terms of antioxidant capacity, SWE extracts showed the most notable potential (ABTS: 0.402–0.547 mmol eq Trolox g−1 dw, DPPH: 0.336–0.427 mmol eq Trolox g−1 dw). 12 phenolic compounds were identified in the samples of T. montanum from six microlocations in Croatia, including nine phenylethanoid glycosides (PGs) with total yields of 30.36–68.06 mg g−1 dw and 25.88–58.88 mg g−1 dw in HAE and MAE extracts, respectively. Echinacoside, teupolioside, stachysoside A, and poliumoside were the most abundant compounds HAE and MAE extracts, making T. montanum an emerging source of PGs. Full article
Show Figures

Graphical abstract

18 pages, 2220 KiB  
Article
Water-Based Microwave-Assisted Extraction of Pigments from Madder Optimized by a Box–Behnken Design
by Marine Chambaud, Cyril Colas and Emilie Destandau
Separations 2023, 10(8), 433; https://doi.org/10.3390/separations10080433 - 30 Jul 2023
Cited by 3 | Viewed by 2099
Abstract
Water is one of the greenest and most accessible solvents. To harness its potential, the water-based microwave-assisted extraction (MAE) of pigments from madder was optimized by the response surface methodology (RSM) using a Box–Behnken experimental design. The extract that presented both the highest [...] Read more.
Water is one of the greenest and most accessible solvents. To harness its potential, the water-based microwave-assisted extraction (MAE) of pigments from madder was optimized by the response surface methodology (RSM) using a Box–Behnken experimental design. The extract that presented both the highest extraction yield and the most intense color was obtained after a 30-s cycle at 1000 W using 100 mg of madder for 20 mL of water. This water-based MAE was more efficient than Soxhlet extraction and proved comparable to hydroalcoholic MAE. The optimized extract was further characterized using UHPLC-HRMS/MS to identify its main compounds. Glycosylated flavonoids and anthraquinones were putatively identified, as well as free anthraquinones, generally found in madder. The microwave-assisted extraction extended the range of polarity of the extracted compounds, making the water more versatile. Full article
(This article belongs to the Special Issue Separation, Extraction and Purification of Natural Products)
Show Figures

Figure 1

29 pages, 3373 KiB  
Article
Seasonal Monitoring of Volatiles and Antioxidant Activity of Brown Alga Cladostephus spongiosus
by Sanja Radman, Martina Čagalj, Vida Šimat and Igor Jerković
Mar. Drugs 2023, 21(7), 415; https://doi.org/10.3390/md21070415 - 21 Jul 2023
Cited by 10 | Viewed by 6074
Abstract
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). [...] Read more.
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). The effects of air drying and growing season on VOCs were determined. Two different extraction methods (ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE)) were used to obtain ethanolic extracts of C. spongiosus. In addition, the seasonal antioxidant potential of the extracts was determined, and non-volatile compounds were identified from the most potent antioxidant extract. Aliphatic compounds (e.g., pentadecane) were predominantly found by HS-SPME/GC-MS. Hydrocarbons were more than twice as abundant in the dry samples (except in May). Aliphatic alcohols (e.g., hexan-1-ol, octan-1-ol, and oct-1-en-3-ol) were present in high percentages and were more abundant in the fresh samples. Hexanal, heptanal, nonanal, and tridecanal were also found. Aliphatic ketones (octan-3-one, 6-methylhept-5-en-2-one, and (E,Z)-octa-3,5-dien-2-one) were more abundant in the fresh samples. Benzene derivatives (e.g., benzyl alcohol and benzaldehyde) were dominant in the fresh samples from May and August. (E)-Verbenol and p-cymen-8-ol were the most abundant in dry samples in May. HD revealed aliphatic compounds (e.g., heptadecane, pentadecanal, (E)-heptadec-8-ene, (Z)-heptadec-3-ene), sesquiterpenes (germacrene D, epi-bicyclosesquiphellandrene, gleenol), diterpenes (phytol, pachydictyol A, (E)-geranyl geraniol, cembra-4,7,11,15-tetraen-3-ol), and others. Among them, terpenes were the most abundant (except for July). Seasonal variations in the antioxidant activity of the ethanolic extracts were evaluated via different assays. MAE extracts showed higher peroxyl radical inhibition activity from 55.1 to 74.2 µM TE (Trolox equivalents). The highest reducing activity (293.8 µM TE) was observed for the May sample. Therefore, the May MAE extract was analysed via high-performance liquid chromatography with high-resolution mass spectrometry and electrospray ionisation (UHPLC-ESI-HRMS). In total, 17 fatty acid derivatives, 9 pigments and derivatives, and 2 steroid derivatives were found. The highest content of pheophorbide a and fucoxanthin, as well as the presence of other pigment derivatives, could be related to the observed antioxidant activity. Full article
Show Figures

Graphical abstract

24 pages, 1661 KiB  
Article
The Influence of Microwave-Assisted Extraction on the Phenolic Compound Profile and Biological Activities of Extracts from Selected Scutellaria Species
by Joanna Oracz, Stanisław Kowalski, Dorota Żyżelewicz, Gabriela Kowalska, Dorota Gumul, Kamila Kulbat-Warycha, Justyna Rosicka-Kaczmarek, Anna Brzozowska, Aleksandra Grzegorczyk and Anna Areczuk
Molecules 2023, 28(9), 3877; https://doi.org/10.3390/molecules28093877 - 4 May 2023
Cited by 7 | Viewed by 2487
Abstract
The aim of the study was to investigate the effects of microwave-assisted extraction (MAE) conditions (microwave power, extraction time, and ethanol concentration) on the efficiency of the extraction of phenolic compounds from selected plant species belonging to the genus Scutellaria (i.e., Scutellaria baicalensis [...] Read more.
The aim of the study was to investigate the effects of microwave-assisted extraction (MAE) conditions (microwave power, extraction time, and ethanol concentration) on the efficiency of the extraction of phenolic compounds from selected plant species belonging to the genus Scutellaria (i.e., Scutellaria baicalensis and Scutellaria lateriflora). The extracts from selected Scutellaria species were examined to establish the total phenolic content and the in vitro antioxidant and anti-inflammatory activity. The antioxidant capacity was determined by the ferric reducing antioxidant power (FRAP) and 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity methods. The anti-inflammatory activity was evaluated through the lipoxygenase (LOX) inhibitory assay. The phenolic profile of the extracts was characterized using ultra-high performance liquid chromatography coupled with diode array detection and high-resolution electrospray ionization mass spectrometry (UHPLC–DAD/ESI–HRMS/MS). Depending on the type of solvent and the extraction conditions used, the extracts obtained from selected Scutellaria species showed different total and individual phenolic content, as well as different antioxidant and anti-inflammatory properties. The results showed that all Scutellaria extracts had high total phenolic content and exhibited strong ferric ion reducing power and free radical scavenging capacity and a significant ability to inhibit the LOX activity. In general, the 70% ethanol extracts contained more phenolic compounds, mainly flavones, flavanones, and their derivatives, and showed greater in vitro biological activity than other extracts. The highest levels of phenolic compounds and the strongest antioxidant and anti-inflammatory potential were found in extracts from the roots of S. baicalensis. Optimal extraction conditions for all the plant materials tested were determined as the microwave power of 63 W, extraction time of 10 min, and 70% ethanol as the solvent. Full article
Show Figures

Figure 1

19 pages, 1784 KiB  
Article
Bioactive Properties of Extracts from Plectranthus barbatus (Coleus forskohlii) Roots Received Using Various Extraction Methods
by Kamila Kulbat-Warycha, Joanna Oracz and Dorota Żyżelewicz
Molecules 2022, 27(24), 8986; https://doi.org/10.3390/molecules27248986 - 16 Dec 2022
Cited by 13 | Viewed by 4028
Abstract
The aim of this study was to verify various extraction methods: shaking water bath extraction (SWA), ultrasound-assisted extraction (UAE) and microwave assisted extraction (MAE), and their parameters to optimize the extraction yield as well as maximize the concentration of polyphenols in Plectranthus barbatus [...] Read more.
The aim of this study was to verify various extraction methods: shaking water bath extraction (SWA), ultrasound-assisted extraction (UAE) and microwave assisted extraction (MAE), and their parameters to optimize the extraction yield as well as maximize the concentration of polyphenols in Plectranthus barbatus extracts. Extracts were obtained from dried roots of P. barbatus in various degrees of fragmentation and analyzed for content of polyphenols, antioxidant capacity and flavonoids. Additionally, phenolic compounds in extracts were analyzed using the UHPLC–DAD–ESI–MS/MS method. The conducted research showed that roots of P. barbatus are rich in polyphenolic compounds. A total of 15 phenolic compounds, belonging to the group of phenolic acids and their derivatives, were identified. The extraction yield was similar for all extraction methods and averaged 31%. Irrespective of the extraction method, the yield was the lowest in the case of using 80% ethanol as the solvent. The extracts obtained from the finer fraction were characterized by a higher antioxidant capacity as well as a higher concentration of polyphenolic compounds including flavonoids. UAE seems to be the most effective method for extraction of polyphenols from P. barbatus roots. Regardless of the extraction method, ethanol was a better extractant than distilled water. All ethanolic extracts were characterized by a high antioxidant capacity. The 80% ethanol solution was considered the best solvent for the extraction of flavonoids, while the 40% and 60% ethanol solutions were sufficient for the effective extraction of polyphenolic compounds in general. Full article
Show Figures

Graphical abstract

19 pages, 2984 KiB  
Article
Optimizing Conditions for Microwave-Assisted Extraction of Polyphenolic Content and Antioxidant Activity of Barleria lupulina Lindl.
by Noor Wahida Ismail-Suhaimy, Siti Salwa Abd Gani, Uswatun Hasanah Zaidan, Mohd Izuan Effendi Halmi and Paiman Bawon
Plants 2021, 10(4), 682; https://doi.org/10.3390/plants10040682 - 1 Apr 2021
Cited by 38 | Viewed by 4376
Abstract
Barleria lupulina Lindl. (Acanthaceae) as an ornamental plant has been widely used in folklore medicine due to its abundancy in polyphenolic compounds. The present study examined conditions for optimal extraction of antioxidants from B. lupulina leaf extracts by using the microwave-assisted extraction (MAE) [...] Read more.
Barleria lupulina Lindl. (Acanthaceae) as an ornamental plant has been widely used in folklore medicine due to its abundancy in polyphenolic compounds. The present study examined conditions for optimal extraction of antioxidants from B. lupulina leaf extracts by using the microwave-assisted extraction (MAE) method. The effects of ethanol concentrations, microwave power, and extraction time on total phenolic content (TPC), total flavonoid content (TFC), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2,20-azino-bis (3-ethylbenzothizoline-6-sulfonic acid) (ABTS) were investigated by single-factor experiments. Response surface methodology (RSM) was applied to observe interactions of three independent variables (ethanol concentrations, microwave power, and extraction time) on the dependent variables (TPC, TFC, DPPH, and ABTS) to establish optimal extraction conditions. Quadratic polynomial equations in all experimental models yielded favorably with fitted models with R2 and R2adj of more than 0.90 and a non-significant lack of fit at p > 0.05. The optimal conditions for the extraction of antioxidant activity were established at 80% (v/v) ethanol, 400 W, and 30 s with TPC (238.71 mg gallic acid equivalent (GAE)/g sample), TFC (58.09 mg QE/g sample), DPPH (87.95%), and ABTS (89.56%). Analysis by ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) successfully identified four new phenylethanoid glycoside compounds in the species. Full article
(This article belongs to the Special Issue Plant Polyphenols—from Plants to Human Health)
Show Figures

Figure 1

15 pages, 1373 KiB  
Article
Optimization and Comparison of Ultrasound and Microwave-Assisted Extraction of Phenolic Compounds from Cotton-Lavender (Santolina chamaecyparissus L.)
by Mohammed Aourach, Ana V. González-de-Peredo, Mercedes Vázquez-Espinosa, Haiat Essalmani, Miguel Palma and Gerardo F. Barbero
Agronomy 2021, 11(1), 84; https://doi.org/10.3390/agronomy11010084 - 4 Jan 2021
Cited by 28 | Viewed by 4678
Abstract
The interest in natural phenolic compounds has increased because of their attractive use especially as antioxidant and antimicrobial agents in foods. The large content in phenolic compounds of interest in Santolina chamaecyparissus L. (S. chamaecyparissus) makes this plant a target source [...] Read more.
The interest in natural phenolic compounds has increased because of their attractive use especially as antioxidant and antimicrobial agents in foods. The large content in phenolic compounds of interest in Santolina chamaecyparissus L. (S. chamaecyparissus) makes this plant a target source that is worthy of note. In this work, new extraction technologies comprising ultrasound (UAE) and microwave (MAE) assisted extraction of the phenolic compounds in S. chamaecyparissus have been developed, optimized, and compared. Several extraction factors have been optimized based on a Box-Behnken design. Such optimized factors include the percentage of methanol in water (25–75%), the temperature (10–70 °C), the ultrasound amplitude (20–80%), the ultrasound cycle (0.2–1 s), the solvent pH (2–7) and the solvent-sample ratio (5/0.2–15/0.2 mL/g) with regard to UAE, while the percentage of methanol in water (50–100%), the temperature (50–100 °C), the pH (2–7) and the solvent-sample ratio (5/0.2–15/0.2 mL/g) were optimized for MAE. The solvent composition was the most influential parameter both on MAEs (64%) and UAEs (74%). The extraction optimum time was established as 15 min for MAE and 25 min for UAE. Five major phenolic compounds were detected and identified by Ultra-High-Performance Liquid Chromatography—Quadrupole Time of Flight—Mass Spectrometry (UHPLC-QToF-MS) in the extracts: chlorogenic acid, quercetin 3-O-galactoside, quercetin 3-O-glucoside, isoorientin, and cynarin. With the exception of chlorogenic acid, the other four compounds have been identified for the first time in S. chamaecyparissus. The findings have confirmed that MAE is a significantly more efficient extraction method than UAE to extract phenolic compounds from S. chamaecyparissus. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

16 pages, 4765 KiB  
Article
Multiresidue Analysis of Organic UV Filters and UV Stabilizers in Fish of Common Consumption
by Sandra Gimeno-Monforte, Sarah Montesdeoca-Esponda, Zoraida Sosa-Ferrera, José Juan Santana-Rodríguez, Óscar Castro, Eva Pocurull and Francesc Borrull
Foods 2020, 9(12), 1827; https://doi.org/10.3390/foods9121827 - 9 Dec 2020
Cited by 19 | Viewed by 3450
Abstract
Fish species can bioaccumulate different pollutants present in the marine environments and incorporate them into the trophic chain. In this work, the occurrence of organic ultraviolet (UV) stabilizers and filters in different species of fishes of high consumption has been studied. A multiresidue [...] Read more.
Fish species can bioaccumulate different pollutants present in the marine environments and incorporate them into the trophic chain. In this work, the occurrence of organic ultraviolet (UV) stabilizers and filters in different species of fishes of high consumption has been studied. A multiresidue method based on microwave-assisted extraction and ultra-high performance liquid chromatography with mass spectrometry detection was developed and then it was applied to nine fish species from markets in the Canary Islands and Catalonia (Spain). Three UV filters (BP-3, OC and BM-DBM) and two stabilizers (UV-328 and UV-329) were found in some of the studied species, in concentrations ranging between 0.067 and 0.683 µg g−1 dry weight (dw). BP-3 (UV filter) was the most frequently detected compound, followed by UV-329 (UV stabilizer). Thunnus thynnus was the most heavily polluted species, with a concentration of 1.201 µg g−1 dw as the sum of all measured compounds. Full article
Show Figures

Graphical abstract

10 pages, 1449 KiB  
Article
Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics
by Panagiotis Zoumpoulakis, Vassilia J. Sinanoglou, Eleni Siapi, George Heropoulos and Charalampos Proestos
Antioxidants 2017, 6(3), 46; https://doi.org/10.3390/antiox6030046 - 24 Jun 2017
Cited by 31 | Viewed by 7875
Abstract
Recently there is a great interest in using high energy techniques (HET) which involve microwave or ultrasound-assisted extraction (MAE and UAE) for isolation of natural bioactive compounds from plant foods. Such bioactive compounds are phenolics which were determined from sunflower (Helianthus annuus [...] Read more.
Recently there is a great interest in using high energy techniques (HET) which involve microwave or ultrasound-assisted extraction (MAE and UAE) for isolation of natural bioactive compounds from plant foods. Such bioactive compounds are phenolics which were determined from sunflower (Helianthus annuus L.) kernels and hulls (defatted) utilising two different high energy extraction techniques, ultrasound and microwave assisted solvent extraction. All samples were characterised by ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS). The effect of parameters such as the nature of the solvent, volume of solvent, temperature and time is discussed. It is proved that the techniques applied had reduced solvent consumption and shorter extraction times, and extraction yields of the analytes were equal to or to some extent higher than those obtained with conventional techniques. Total Phenolic Composition (TPC) of samples examined was studied by the Folin-Ciocalteu method and results were presented in μg gallic acid equivalents (GAE)/g dry extract. Kernels proved to have the higher amount of TPC while the press residues had shown comparable TPC results. The antioxidant activity of samples was spectrophotometrically determined by 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay using Butylated hydroxyl toluene (BHT) as reference compound to compare with samples. Sunflower seeds (kernels) showed again the highest antiradical efficiency (AE) compared to hulls and press-residue extract. Afterwards, ferric reducing ability of plasma (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays were used for measuring the antioxidant capacity of samples. Press residue, a by-product of sunflower oil extraction, contained phenolics as shown by UHPLC-ESI-MS analysis. Hence, later on these compounds can be possibly utilised by food or neutraceutical industries. Phenolic substances characterised in hulls, kernels, and press residue were phenolic acids, mainly chlorogenic, caffeic, cinnamic, 4-hydroxybenzoic and p-coumaric. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Health Promotion)
Show Figures

Figure 1

Back to TopTop