Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies
Abstract
1. Introduction
2. Results
2.1. Phytochemical Characterization
2.2. In Vivo Studies
2.2.1. Effects on Motor Activity
2.2.2. Anti-Seizure Activity
2.2.3. Biochemical Assays
2.3. Computational Studies
2.3.1. Target Prediction
2.3.2. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extracts
4.2. Identification and Quantification of Phytochemicals by UHPLC-HRMS/MS
4.3. In Vivo Studies
4.3.1. Animals
4.3.2. Treatment Groups
4.3.3. Motor Activity
4.3.4. Anti-Seizure Activity
4.3.5. Biochemical Assays
4.4. Computational Studies
4.4.1. Target Prediction
4.4.2. Molecular Docking
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Tomson, T. The pharmacological treatment of epilepsy in adults. Lancet Neurol. 2011, 10, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.J.; Barry, S.J.E.; Bamagous, G.A.; Norrie, J.D.; Kwan, P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 2012, 78, 1548–1554. [Google Scholar] [CrossRef]
- Spinella, M. Herbal Medicines and Epilepsy: The Potential for Benefit and Adverse Effects. Epilepsy Behav. 2001, 2, 524–532. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Mostafa Mohammed, D.; Korma, S.A.; Alshahrani, M.Y.; Ahmed Ezzat Ahmed, A.; Ibrahim, E.H.; Salem, H.M.; Alkafaas, S.S.; Saif, A.M.; et al. Medicinal plants: Bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits—A comprehensive review. Front. Immunol. 2025, 16, 1491777. [Google Scholar] [CrossRef]
- Situmorang, P.C.; Ilyas, S.; Nugraha, S.E.; Syahputra, R.A.; Nik Abd Rahman, N.M.A. Prospects of Compounds of Herbal Plants as Anticancer Agents: A Comprehensive Review from Molecular Pathways. Front. Pharmacol. 2024, 15, 1387866. [Google Scholar] [CrossRef]
- Rana, J.N.; Mumtaz, S. Prunin: An Emerging Anticancer Flavonoid. Int. J. Mol. Sci. 2025, 26, 2678. [Google Scholar] [CrossRef]
- de Almeida, R.N.; Agra, M.F.; Maior, F.N.S.; de Sousa, D.P. Essential Oils and Their Constituents: Anticonvulsant Activity. Molecules 2011, 16, 2726–2742. [Google Scholar] [CrossRef]
- Bialer, M.; White, H.S. Key Factors in the Discovery and Development of New Antiepileptic Drugs. Nat. Rev. Drug Discov. 2010, 9, 68–82. [Google Scholar] [CrossRef]
- He, X.; Chen, X.-F.; Yang, Y.; Xie, Y.; Liu, Y. Medicinal Plants for Epileptic Seizures: Phytoconstituents, Pharmacology and Mechanisms Revisited. J. Ethnopharmacol. 2023, 320, 117386. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, P.; Ashawat, M.; Sharma, P. A Comprehensive Overview on Phytomedicines as an Upcoming/Emerging Candidate for the Management of Epilepsy. J. Drug Deliv. Ther. 2023, 13, 7. [Google Scholar] [CrossRef]
- Asif, M. Anticonvulsant Potential of Some Traditional Medicinal Plants. CELLMED 2014, 4, 1–13. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, J.; Son, E.-S.; Lee, J.-M.; Park, H.-R. Neuroprotective Effect of Extracts from Root Bark of Morus alba on Glutamate-Induced Cytotoxicity in Neuronal Cells. J. Life Sci. 2009, 19, 963–967. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.; Dhanavade, M.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Liao, Y.; Wan, J.; Bukhari, J.S.S.; Zhen, O. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry (Morus alba): Current Paradigms and Future Challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, W.-C.; Sun, K.; Ryu, I.; Lee, K.; Kim, C. Antioxidative Flavonoids from the Leaves of Morus alba. Arch. Pharm. Res. 1999, 22, 81–85. [Google Scholar] [CrossRef]
- Janiak, M.A.; Gryn-Rynko, A.; Sulewska, K.; Amarowicz, R.; Penkacik, K.; Graczyk, R.; Olszewska-Słonina, D.; Majewski, M.S. Phenolic Profiles and Antioxidant Activity of Morus alba L. Infusions Prepared from Commercially Available Products and Naturally Collected Leaves. Sci. Rep. 2025, 15, 13030. [Google Scholar] [CrossRef]
- Rayam, S.; Kudagi, B.L.; Sufyan, M.; Buchineni, M.; Pathapati, R. Assessment of Morus alba (Mulberry) Leaves Extract for Anticonvulsant Property in Rats. Int. J. Basic Clin. Pharmacol. 2019, 8, 520–523. [Google Scholar] [CrossRef]
- Gupta, G.; Dua, K.; Kazmi, I.; Anwar, F. Anticonvulsant Activity of Morusin Isolated from Morus alba: Modulation of GABA Receptor. Biomed. Aging Pathol. 2014, 4, 29–32. [Google Scholar] [CrossRef]
- Kaur, A.; Bhatti, R. Understanding the Phytochemistry and Molecular Insights to the Pharmacology of Angelica archangelica L. (Garden Angelica) and Its Bioactive Components. Phytother. Res. 2021, 35, 5961–5979. [Google Scholar] [CrossRef]
- Kumar, D.; Bhat, Z.A.; Kumar, V.; Shah, M. Coumarins from Angelica archangelica Linn. and Their Effects on Anxiety-Like Behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Fraternale, D.; Teodori, L.; Rudov, A.; Prattichizzo, F.; Olivieri, F.; Guidarelli, A.; Albertini, M. The In Vitro Activity of Angelica archangelica L. Essential Oil on Inflammation. J. Med. Food 2018, 21, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Härmälä, P.; Vuorela, H.; Hiltunen, R.; Nyiredy, S.; Sticher, O.; Törnquist, K.; Kaltia, S. Strategy for the Isolation and Identification of Coumarins with Calcium Antagonistic Properties from the Roots of Angelica archangelica. Phytochem. Anal. 1992, 3, 42–48. [Google Scholar] [CrossRef]
- Grundmann, O.; Wang, J.; McGregor, G.; Butterweck, V. Anxiolytic Activity of a Phytochemically Characterized Passiflora incarnata Extract Is Mediated via the GABAergic System. Planta Med. 2008, 74, 1769–1773. [Google Scholar] [CrossRef]
- Elsas, S.; Rossi, D.; Raber, J.; White, G.; Seeley, C.A.; Gregory, W.L.; Mohr, C.; Pfankuch, T.; Soumyanath, A. Passiflora incarnata L. (Passionflower) Extracts Elicit GABA Currents in Hippocampal Neurons In Vitro, and Show Anxiogenic and Anticonvulsant Effects In Vivo, Varying with Extraction Method. Phytomedicine 2010, 17, 940–949. [Google Scholar] [CrossRef]
- Singh, B.; Singh, D.; Goel, R.K. Dual Protective Effect of Passiflora incarnata in Epilepsy and Associated Post-Ictal Depression. J. Ethnopharmacol. 2012, 139, 273–279. [Google Scholar] [CrossRef]
- Swamy, V.; Pranavi, S. A Study of Anticonvulsant Activity of Alcoholic Extract of Leaves of Passiflora incarnata on Mice. Res. J. Pharm. Technol. 2011, 4, 1932–1934. [Google Scholar]
- Manavi, M.A. Exploring Valeriana Species: Unraveling Anticonvulsant Potential through Phytochemistry and Pharmacology. Future Nat. Prod. 2024, 9, 100–110. [Google Scholar] [CrossRef]
- Ortiz, J.; Nieves-Natal, J.; Chávez, P. Effects of Valeriana officinalis Extracts on [3H]Flunitrazepam Binding, Synaptosomal [3H]GABA Uptake, and Hippocampal [3H]GABA Release. Neurochem. Res. 1999, 24, 1373–1378. [Google Scholar] [CrossRef]
- Mulyawan, E.; Ahmad, M.R.; Islam, A.; Massi, M.; Hatta, M.; Arif, S.K. Effect of Valerian Extract on GABRB3 Gene mRNA Expression and Sedation in BALB/C Mice. Curr. Bioact. Compd. 2020, 16, 1249–1257. [Google Scholar] [CrossRef]
- Torres-Hernández, B.A.; Del Valle-Mojica, L.M.; Ortiz, J. Valerenic Acid and Valeriana officinalis Extracts Delay Onset of PTZ-Induced Seizures in Adult Zebrafish. BMC Complement. Altern. Med. 2015, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Namvaran, A. Effect of Valeriana officinalis Root Extract on PTZ-Induced Seizure Threshold in Mice. Vet. Res. Bull. 2012, 7, 43–47. [Google Scholar]
- Rezvani, M.; Roohbakhsh, A.; Allahtavakoli, M.; Shamsizadeh, A. Anticonvulsant Effect of Aqueous Extract of Valeriana officinalis in Amygdala-Kindled Rats: Possible Involvement of Adenosine. J. Ethnopharmacol. 2010, 127, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zhao, X.; Yu, L.; Yin, Y.; Zhang, X.D.; Wang, L.; Li, J.X.; Zhu, Q.; Luo, J.L. Current Status of GABA Receptor Subtypes in Analgesia. Biomed. Pharmacother. 2023, 168, 115800. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, X.; Liu, Y.; Han, D.; Wang, Y.; Wang, X.; Chen, S. Extraction, Purification and Anti-Fatigue Activity of γ-Aminobutyric Acid from Mulberry (Morus alba L.) Leaves. Sci. Rep. 2016, 6, 18933. [Google Scholar] [CrossRef]
- Zaugg, J.; Eickmeier, E.; Rueda, D.C.; Hering, S.; Hamburger, M. HPLC-Based Activity Profiling of Angelica pubescens Roots for New Positive GABA_A Receptor Modulators in Xenopus Oocytes. Fitoterapia 2011, 82, 434–440. [Google Scholar] [CrossRef]
- Yuan, C.-S.; Mehendale, S.; Xiao, Y.; Aung, H.H.; Xie, J.T.; Ang-Lee, M.K. The Gamma-Aminobutyric Acidergic Effects of Valerian and Valerenic Acid on Rat Brainstem Neuronal Activity. Anesth. Analg. 2004, 98, 353–358. [Google Scholar] [CrossRef]
- Fisher, J.L. A Mutation in the GABAA Receptor Alpha 1 Subunit Linked to Human Epilepsy Affects Channel Gating Properties. Neuropharmacology 2004, 46, 629–637. [Google Scholar] [CrossRef]
- Gholipour, T.; Ghasemi, M.; Riazi, K.; Ghaffarpour, M.; Dehpour, A.R. Seizure Susceptibility Alteration through 5-HT3 Receptor: Modulation by Nitric Oxide. Epilepsy Res. 2010, 89, 17–22. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, Y.; Chen, S.; Li, X.; Huo, H. 5-HT3 Receptors: A Potential Therapeutic Target for Epilepsy. Curr. Neuropharmacol. 2018, 16, 29–36. [Google Scholar] [CrossRef]
- Wu, X.; Reddy, D.S. Integrins as Receptor Targets for Neurological Disorders. Pharmacol. Ther. 2012, 134, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Pinkstaff, J.K.; Lynch, G.; Gall, C.M. Localization and Seizure-Regulation of Integrin β1 mRNA in Adult Rat Brain. Mol. Brain Res. 1998, 55, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Luszczki, J.J.; Glowniak, K.; Czuczwar, S.J. Time-Course and Dose-Response Relationships of Imperatorin in the Mouse Maximal Electroshock Seizure Threshold Model. Neurosci. Res. 2007, 59, 18–22. [Google Scholar] [CrossRef]
- Bum, E.N.; Ngah, E.; Ekoundi, B.; Dong, C. Sedative and Anticonvulsant Properties of Passiflora edulis Dried Leaves Decoction in Mice. Afr. J. Tradit. Complement. Altern. Med. 2004, 1, 17602770. [Google Scholar] [CrossRef]
- Xu, S.L.; Choi, R.C.Y.; Zhu, K.Y.; Leung, K.-W.; Guo, A.J.Y.; Xu, D.B.H.; Lau, D.T.W.; Dong, T.T.X.; Tsim, K.W.K. Isorhamnetin, a Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor. Evid.-Based Complement. Alternat. Med. 2012, 2012, 278273. [Google Scholar] [CrossRef]
- Zhao, J.J.; Song, J.Q.; Pan, S.Y.; Wang, K. Treatment with Isorhamnetin Protects the Brain against Ischemic Injury in Mice. Neurochem. Res. 2016, 41, 1939–1948. [Google Scholar] [CrossRef]
- Vieira, E.K.; Bona, S.; Di Naso, F.C.; Porawski, M.; Tieppo, J.; Marroni, N.P. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats. ISRN Gastroenterol. 2011, 2011, 604071. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, S.; Gao, Y.; Zeng, S. Modulatory Effects of Quercetin on Hypobaric Hypoxic Rats. Eur. J. Pharmacol. 2012, 674, 450–454. [Google Scholar] [CrossRef]
- Moghbelinejad, S.; Alizadeh, S.; Mohammadi, G.; Khodabandehloo, F.; Rashvand, Z.; Najafipour, R.; Nassiri-Asl, M. The Effects of Quercetin on the Gene Expression of the GABAA Receptor α5 Subunit Gene in a Mouse Model of Kainic Acid-Induced Seizure. J. Physiol. Sci. 2017, 67, 339–343. [Google Scholar] [CrossRef]
- Joshi, D.; Naidu, P.; Singh, A.; Kulkarni, S. Protective Effect of Quercetin on Alcohol Abstinence-Induced Anxiety and Convulsions. J. Med. Food 2005, 8, 392–396. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Su, C.; Chen, X.; Wang, Q.; Jiao, W.; Luo, H.; Tang, J.; Wang, W.; Li, S.; Guo, S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. J. Agric. Food Chem. 2020, 68, 6464–6484. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Jiang, P.; Lu, B.; Sheng, Y.; Wang, X.; Wang, Z. Chlorogenic Acid, a Dietary Polyphenol, Protects Against Acetaminophen-Induced Liver Injury and Its Mechanism. J. Nutr. Biochem. 2013, 24, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Kim, Y.-W.; Park, Y.; Lee, H.-J.; Kim, K.-W. Anti-Inflammatory Effects of Chlorogenic Acid in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Inflamm. Res. 2014, 63, 81–90. [Google Scholar] [CrossRef]
- Zheng, Z.; Sheng, Y.; Lu, B.; Ji, L. The Therapeutic Detoxification of Chlorogenic Acid Against Acetaminophen-Induced Liver Injury by Ameliorating Hepatic Inflammation. Chem. Biol. Interact. 2015, 238, 93–101. [Google Scholar] [CrossRef]
- Song, H.-K.; Kim, H.J.; Kim, S.C.; Kim, T. Therapeutic Effects of Sigesbeckia pubescens Makino Against Atopic Dermatitis-Like Skin Inflammation Through the JAK2/STAT Signaling Pathway. Int. J. Mol. Sci. 2025, 26, 4191. [Google Scholar] [CrossRef]
- Benke, D.; Barberis, A.; Kopp, S.; Altmann, K.-H.; Schubiger, M.; Vogt, K.E.; Rudolph, U.; Möhler, H. GABA A Receptors as In Vivo Substrate for the Anxiolytic Action of Valerenic Acid, a Major Constituent of Valerian Root Extracts. Neuropharmacology 2009, 56, 174–181. [Google Scholar] [CrossRef]
- Lee, B.-H.; Jeong, S.-M.; Lee, J.-H.; Kim, J.-H.; Yoon, I.-S.; Lee, J.-H.; Choi, S.-H.; Lee, S.-M.; Chang, C.-G.; Kim, H.-C.; et al. Quercetin Inhibits the 5-Hydroxytryptamine Type 3 Receptor-Mediated Ion Current by Interacting with Pre-Transmembrane Domain I. Mol. Cells 2005, 20, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Al-Yamani, M.J.; Asdaq, S.M.B.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Alsalman, A.J.; Al Mohaini, M.; Al Hawaj, M.A.; Alanazi, A.A.; Alanzi, K.D.; et al. The Role of Serotonergic and Catecholaminergic Systems for Possible Antidepressant Activity of Apigenin. Saudi J. Biol. Sci. 2022, 29, 11–17. [Google Scholar] [CrossRef]
- Ungureanu, A.R.; Chițescu, C.L.; Luță, E.A.; Moroșan, A.; Mihaiescu, D.E.; Mihai, D.P.; Costea, L.; Ozon, E.A.; Fița, A.C.; Balaci, T.D.; et al. Outlook on Chronic Venous Disease Treatment: Phytochemical Screening, In Vitro Antioxidant Activity and In Silico Studies for Three Vegetal Extracts. Molecules 2023, 28, 3668. [Google Scholar] [CrossRef]
- Ionus, E.; Schröder, V.; Chiţescu, C.L.; Bucur, L.A.; Lupu, C.E.; Dumitrescu, D.-E.; Popescu, L.; Mihai, D.P.; Olaru, O.T.; Nițulescu, G.M.; et al. Phytochemical, In Vitro, In Vivo, and In Silico Research on the Extract of Ajuga chamaepitys (L.) Schreb. Plants 2024, 13, 1192. [Google Scholar] [CrossRef] [PubMed]
- Mihai, D.P.; Ungurianu, A.; Ciotu, C.I.; Fischer, M.J.M.; Olaru, O.T.; Nitulescu, G.M.; Andrei, C.; Zbarcea, C.E.; Zanfirescu, A.; Seremet, O.C.; et al. Effects of Venlafaxine, Risperidone and Febuxostat on Cuprizone-Induced Demyelination, Behavioral Deficits and Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 7183. [Google Scholar] [CrossRef] [PubMed]
- Blebea, N.M.; Mihai, D.P.; Andrei, C.; Stoica, D.M.; Chiriță, C.; Negreș, S. Evaluation of Therapeutic Potential of Cannabidiol-Based Products in Animal Models of Epileptic Seizures, Neuropathic Pain and Chronic Inflammation. Farmacia 2022, 70, 1123–1130. [Google Scholar] [CrossRef]
- Nitulescu, G.; Mihai, D.P.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Dev. Res. 2019, 80, 1136–1145. [Google Scholar] [CrossRef]
- López-Sánchez, U.; Munro, L.J.; Ladefoged, L.K.; Pedersen, A.J.; Brun, C.C.; Lyngby, S.M.; Baud, D.; Juillan-Binard, C.; Pedersen, M.G.; Lummis, S.C.R.; et al. Structural Determinants for Activity of the Antidepressant Vortioxetine at Human and Rodent 5-HT3 Receptors. Nat. Struct. Mol. Biol. 2024, 31, 1232–1242. [Google Scholar] [CrossRef]
- Land, H.; Humble, M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol. Biol. 2018, 1685, 43–67. [Google Scholar]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z) | Retention Time (min) |
---|---|---|---|---|
Abscinic acid | C15H20O4 | 264.13616 | 263.12891 | 15.73 |
Apigenin | C15H10O5 | 270.05282 | 269.04502 | 17.54 |
Caffeic acid | C9H8O4 | 180.04226 | 179.03501 | 8.71 |
Catechin | C15H14O6 | 290.07904 | 289.07176 | 7.80 |
Chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 8.20 |
Chrysin | C15H10O4 | 254.05791 | 253.05066 | 17.63 |
Daidzein | C15H10O4 | 254.05791 | 253.05066 | 16.50 |
Epicatechin gallate | C15H14O6 | 290.07904 | 289.07176 | 10.19 |
Ferulic acid | C10H10O4 | 194.05791 | 193.05066 | 14.98 |
Formononetin | C16H12O4 | 268.07356 | 267.06631 | 18.74 |
Galangin | C15H10O5 | 270.05282 | 269.04557 | 19.98 |
Gallic acid | C7H6O5 | 170.02152 | 169.01427 | 1.73 |
Genistein | C15H10O5 | 270.05282 | 269.04502 | 18.07 |
Genistin | C21H20O10 | 432.10565 | 431.09837 | 12.56 |
Glycitein | C16H12O5 | 284.06847 | 283.06122 | 16.33 |
Hesperitin | C16H14O6 | 302.07904 | 301.07179 | 16.83 |
Hyperoside | C21H20O12 | 464.09548 | 463.08768 | 17.63 |
Isorhamnetin | C16H12O7 | 316.0583 | 315.05105 | 13.20 |
Kaempferol | C15H10O6 | 286.04774 | 285.04049 | 17.06 |
Naringenin | C15H12O5 | 272.06847 | 271.06122 | 19.69 |
p-Coumaric acid | C9H8O3 | 164.04734 | 163.03954 | 10.77 |
Pinocembrin | C15H12O4 | 256.07356 | 255.06631 | 17.50 |
Pinostrobin | C16H14O4 | 270.08921 | 269.08196 | 17.40 |
Quercitin | C15H10O7 | 302.04265 | 301.0354 | 16.59 |
Rutin | C27H30O16 | 610.15338 | 609.14613 | 14.20 |
Syringic acid | C9H10O5 | 198.05282 | 197.04555 | 15.38 |
Concentration (µg/g Extract) | ||||
---|---|---|---|---|
Compound | AAE | PIE | VOE | MAE |
Abscinic acid | NF | 152.41 | NF | 152.39 |
Apigenin | 7.68 | 40.75 | NF | 164.87 |
Caffeic acid | 3.43 | NF | NF | NF |
Catechin | NF | NF | NF | 10,735.54 |
Chlorogenic acid | 779.76 | 437.31 | 11,714.16 | 1761.08 |
Chrysin | NF | NF | NF | 362.43 |
Daidzein | NF | 20.50 | NF | 144.42 |
Epicatechin gallate | NF | NF | NF | NF |
Ferulic acid | 6350.87 | 402.99 | NF | 255.81 |
Formononetin | 0.28 | NF | NF | NF |
Galangin | NF | NF | NF | 311.67 |
Gallic acid | 179.10 | 231.40 | 207.59 | 174.38 |
Genistein | 70.9 | NF | 66.6 | NF |
Genistin | NF | 93.45 | NF | NF |
Glycitein | NF | NF | NF | NF |
Hesperetin | NF | NF | NF | NF |
Hyperoside | NF | 117.94 | NF | 2367.92 |
Isorhamentin | NF | 1885.15 | NF | 61,936.48 |
Kaempherol | NF | 102.14 | NF | 7935.80 |
Naringenin | 11.45 | 9.89 | NF | 557.35 |
p-Coumaric acid | 1223.13 | 3154.68 | 1098.99 | 2091.38 |
Pinocembrin | NF | NF | NF | 8.66 |
Pinostrobin | 66.67 | NF | NF | NF |
Quercitin | NF | 5660.54 | NF | 26,356.80 |
Rutin | 202.93 | 289.39 | 123.53 | 274.42 |
Syringic acid | NF | 165.3 | NF | NF |
Compound | Target Name | Probabilities |
---|---|---|
Abscisic acid | NA | NA |
Apigenin | NA | NA |
Caffeic acid | Integrin α4/β1 | 0.5736 |
Catechin | NA | NA |
Chlorogenic acid | NA | NA |
Chrysin | GABA-A receptor; α1/β2/γ2 | 0.7022 |
Daidzein | GABA-A receptor; α1/β2/γ2 | 0.5649 |
Epicatechin gallate | GABA-A receptor; α1/β2/γ2; Serotonin 3A (5-HT3A) receptor | 0.6461; 0.6823 |
Ferulic acid | Integrin α4/β1 | 0.6200 |
Formononetin | GABA-A receptor; α1/β2/γ2 | 0.7516 |
Galangin | GABA-A receptor; α1/β2/γ2 | 0.7201 |
Gallic acid | NA | NA |
Genistein | NA | NA |
Genistin | NA | NA |
Glycitein | GABA-A receptor; α1/β2/γ2 | 0.6125 |
Hesperetin | NA | NA |
Hyperoside | NA | NA |
Isorhamnetin | NA | NA |
Kaempferol | NA | NA |
Naringenin | NA | NA |
p-Coumaric acid | Integrin α4/β1 | 0.5116 |
Pinocembrin | GABA-A receptor; α1/β2/γ2; Serotonin 3A (5-HT3A) receptor | 0.6715; 0.5441 |
Pinostrobin | GABA-A receptor; α1/β2/γ2 | 0.7796 |
Quercetin | NA | NA |
Rutin | NA | NA |
Syringic acid | NA | NA |
Mouse 5-HT3A | Human 5-HT3A | |||
---|---|---|---|---|
Compound | Binding Energy (kcal/mol) | LE | Binding Energy (kcal/mol) | LE |
Abscisic acid | −7.886 | 0.4151 | −9.739 | 0.5126 |
Apigenin | −10.277 | 0.5139 | −10.112 | 0.5056 |
Caffeic acid | −8.231 | 0.6332 | −8.496 | 0.6535 |
Catechin | −8.756 | 0.417 | −10.195 | 0.4855 |
Chlorogenic acid | −9.758 | 0.3903 | −9.882 | 0.3953 |
Chrysin | −8.784 | 0.4623 | −9.864 | 0.5192 |
Daidzein | −10.109 | 0.5321 | −9.276 | 0.4882 |
Epicatechin gallate | −8.042 | 0.2513 | −6.699 | 0.2093 |
Ferulic acid | −7.72 | 0.5514 | −8.075 | 0.5768 |
Formononetin | −8.991 | 0.4281 | −8.909 | 0.4242 |
Galangin | −8.918 | 0.4459 | −9.897 | 0.4949 |
Gallic acid | −6.606 | 0.5505 | −6.859 | 0.5716 |
Genistein | −9.126 | 0.4563 | −9.209 | 0.4604 |
Genistin | −9.517 | 0.307 | −9.538 | 0.3077 |
Glycitein | −9.041 | 0.4305 | −9.142 | 0.4353 |
Hesperetin | −8.533 | 0.4063 | −9.39 | 0.4471 |
Hyperoside | −7.422 | 0.2249 | −7.482 | 0.2267 |
Isorhamnetin | −9.191 | 0.3996 | −10.205 | 0.4437 |
Kaempferol | −8.712 | 0.4149 | −9.962 | 0.4744 |
Naringenin | −10.414 | 0.5207 | −10.223 | 0.5111 |
p-Coumaric acid | −8.017 | 0.6681 | −8.006 | 0.6672 |
Pinocembrin | −10.27 | 0.5405 | −9.859 | 0.5189 |
Pinostrobin | −8.866 | 0.4433 | −9.746 | 0.4873 |
Quercetin | −9.076 | 0.4125 | −10.259 | 0.4663 |
Rutin | −7.564 | 0.1759 | −7.023 | 0.1633 |
Syringic acid | −6.758 | 0.4827 | −6.609 | 0.4721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suciu, F.; Mihai, D.P.; Ungurianu, A.; Andrei, C.; Pușcașu, C.; Chițescu, C.L.; Ancuceanu, R.V.; Gird, C.E.; Stefanescu, E.; Blebea, N.M.; et al. Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies. Int. J. Mol. Sci. 2025, 26, 6426. https://doi.org/10.3390/ijms26136426
Suciu F, Mihai DP, Ungurianu A, Andrei C, Pușcașu C, Chițescu CL, Ancuceanu RV, Gird CE, Stefanescu E, Blebea NM, et al. Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies. International Journal of Molecular Sciences. 2025; 26(13):6426. https://doi.org/10.3390/ijms26136426
Chicago/Turabian StyleSuciu, Felicia, Dragos Paul Mihai, Anca Ungurianu, Corina Andrei, Ciprian Pușcașu, Carmen Lidia Chițescu, Robert Viorel Ancuceanu, Cerasela Elena Gird, Emil Stefanescu, Nicoleta Mirela Blebea, and et al. 2025. "Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies" International Journal of Molecular Sciences 26, no. 13: 6426. https://doi.org/10.3390/ijms26136426
APA StyleSuciu, F., Mihai, D. P., Ungurianu, A., Andrei, C., Pușcașu, C., Chițescu, C. L., Ancuceanu, R. V., Gird, C. E., Stefanescu, E., Blebea, N. M., Popovici, V., Rosca, A. C., Ghiță, C. I. V., & Negres, S. (2025). Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies. International Journal of Molecular Sciences, 26(13), 6426. https://doi.org/10.3390/ijms26136426