Extraction, Isolation, and Characterization of Plant Natural Products Using Conventional and Non-conventional Techniques

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 11676

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Faculty of Sciences, University of Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile
Interests: conventional and non-conventional extraction; isolation of secondary metabolites from terrestrial and marine organisms; nuclear magnetic resonance (NMR); liquid chromatography/mass spectrometry (LC/MS/MS); green chemistry from natural products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The extraction of secondary metabolites depends on many conditions, such as the extraction technique and the extraction solvent used. Such techniques can be divided into conventional or non-conventional. Conventional techniques use organic solvents, temperature, and agitation, such as with Soxhlet, maceration, and hydrodistillation techniques. On the other hand, non-conventional techniques reduce energy use and are considered clean techniques (Green); supercritical extraction, pressurized liquid extraction, ultrasound- and microwave-assisted extraction, pulsed electric field, high hydrostatic pressure, and high voltage electrical discharges are all non-conventional techniques. For the isolation of plant natural products along with their purification, some classic techniques, including traditional chromatography (open column, chromatotron, etc), liquid chromatography, and countercurrent chromatography, are essential.

This Special Issue aims to include the most recent processes used in the extraction, isolation, and purification of plant natural products. Therefore, it focuses on extraction and isolation using classical methods and novel methodologies; structural characterization based on NMR and MS/MS; identification of extracts via hyphenated techniques and their pharmacological applications. We hope that our colleagues can contribute original research papers and/or reviews according to their expertise.

Dr. Carlos Areche
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • conventional extraction
  • chromatography
  • HSCCC
  • HPLC
  • structural elucidation
  • unconventional extraction
  • green chemistry
  • green technology
  • natural products
  • plants
  • supercritical fluids
  • ultrasound
  • microwave

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 6605 KiB  
Article
Effects of Steam Explosion on Curcumin Extraction from Fresh Turmeric Chips
by Umnat Imcharoen, Pornchai Rachtanapun, Parichat Thipchai, Ruangvate Sae Eng, Sinchai Chinvorarat and Petch Jearanaisilawong
Plants 2024, 13(23), 3417; https://doi.org/10.3390/plants13233417 - 5 Dec 2024
Cited by 1 | Viewed by 1653
Abstract
The purpose of this research is to study the effect of the steam explosion (SE) process on curcumin extraction from fresh turmeric chips. Fresh turmeric chips abruptly disintegrated during the steam explosion process. The investigation into the turmeric particles following the steam explosion [...] Read more.
The purpose of this research is to study the effect of the steam explosion (SE) process on curcumin extraction from fresh turmeric chips. Fresh turmeric chips abruptly disintegrated during the steam explosion process. The investigation into the turmeric particles following the steam explosion process in the SEM micrographs revealed that the formation of surface cracks and cavities led to an increase in the surface area of turmeric particles. Curcumin extracted from turmeric particles after the steam explosion process yielded 3.24% (w/w), which was comparable to the yield of 3.98% (w/w) from finely ground turmeric particles, while the steam explosion used 74% less energy than the grinding process. Therefore, the steam explosion process is an efficient process compared to untreated and conventional mechanical grinding methods. On average, the turmeric particles decreased in size when the dissipated energy per mass increased. The curcumin yield from the steam explosion exhibited a linear positive correlation with the dissipated energy per mass. FTIR, TG/DTG, and DSC analyses on the turmeric particles after the steam explosion process showed that the compounds exhibited no change in chemical structure, higher thermal decomposition properties, and higher purity, respectively. The results of this research can be applied to find optimal conditions for extracting curcumin and predicting the yield of curcumin. Additionally, they can be applied to evaluate the process condition in commercial applications. Full article
Show Figures

Figure 1

18 pages, 929 KiB  
Article
Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry
by Nicolás Cifuentes-Araya, Mario Simirgiotis, Beatriz Sepúlveda and Carlos Areche
Plants 2024, 13(11), 1521; https://doi.org/10.3390/plants13111521 - 31 May 2024
Cited by 1 | Viewed by 1027
Abstract
Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid–liquid extraction, and solid–liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different [...] Read more.
Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid–liquid extraction, and solid–liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different membranes (DL, NFW, and NDX (molecular weight cut-offs (MWCOs): 150~300, 300~500, and 500~700 Da, respectively)). The metabolites were identified by ESI-MS/MS. The results showed that the target compounds were effectively fractionated according to their different molecular weights (MWs). The tested membranes showed retention percentages (RPs) of up to 100% for several phenolics. However, lower RPs appeared in the case of coumaric acid (84.51 ± 6.43% (DL), 2.64 ± 2.21% (NFW), 51.95 ± 1.23% (NDX)) and some other phenolics. The RPs observed for the phenolics cryptochlorogenic acid and chlorogenic acid were 99.74 ± 0.21 and 99.91 ± 0.01% (DL membrane), 96.85 ± 0.83 and 99.20 ± 0.05% (NFW membrane), and 92.98 ± 2.34 and 98.65 ± 0.00% (NDX membrane), respectively. The phenolic quantification was realized by UHPLC-ESI-MS/MS. The DL membrane allowed the permeation of amino acids with the MW range of about 300~100 Da (aspartic acid, proline, tryptophan). This membrane allowed the highest permeate flux (22.10–27.73 L/m2h), followed by the membranes NDX (16.44–20.82 L/m2h) and NFW (12.40–14.45 L/m2h). Moreover, the DL membrane allowed the highest recovery of total compounds in the permeate during the concentration process (19.33%), followed by the membranes NFW (16.28%) and NDX (14.02%). Permeate fractions containing phenolics and amino acids were identified in the membrane permeates DL (10 metabolites identified), NFW (13 metabolites identified), and NDX (10 metabolites identified). Particularly, tryptophan was identified only in the DL permeate fractions obtained. Leucine and isoleucine were identified only in the NFW permeate fractions, whereas methionine and arginine were identified only in the NDX ones. Liquid permeates of great interest to the food and pharmaceutical industries were obtained from plant resources and are suitable for future process optimization and scale-up. Full article
Show Figures

Figure 1

11 pages, 610 KiB  
Article
Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity
by Evelyn Guillen, Hector Terrones, Teresa Cano de Terrones, Mario J. Simirgiotis, Jan Hájek, José Cheel, Beatriz Sepulveda and Carlos Areche
Plants 2024, 13(9), 1213; https://doi.org/10.3390/plants13091213 - 27 Apr 2024
Viewed by 2183
Abstract
Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary [...] Read more.
Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry. Full article
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 2073 KiB  
Review
Extraction and Processing of Bioactive Phytoconstituents from Widely Used South African Medicinal Plants for the Preparation of Effective Traditional Herbal Medicine Products: A Narrative Review
by Sphamandla Hlatshwayo, Nokukhanya Thembane, Suresh Babu Naidu Krishna, Nceba Gqaleni and Mlungisi Ngcobo
Plants 2025, 14(2), 206; https://doi.org/10.3390/plants14020206 - 13 Jan 2025
Cited by 7 | Viewed by 5942
Abstract
Medicinal plants are sources of crude traditional herbal medicines that are utilized to reduce the risk of, treat, or manage diseases in most indigenous communities. This is due to their potent antioxidant and anti-inflammatory effects. It is estimated that about 80% of the [...] Read more.
Medicinal plants are sources of crude traditional herbal medicines that are utilized to reduce the risk of, treat, or manage diseases in most indigenous communities. This is due to their potent antioxidant and anti-inflammatory effects. It is estimated that about 80% of the population in developing countries rely on herbal traditional medicines for healthcare. This signifies the need for traditional herbal medicines, which are polyherbal formulations prepared by traditional health practitioners. This review examines preparatory steps to extract bioactive phytoconstituents and post-extraction processes to increase the potency of the extracted bioactive phytoconstituents. Achieving this will allow for the reduced use of plant materials and promote the sustainable use of the limited resource of medicinal plants, especially in our South African context. Electronic ethnobotanical books and online databases were used to find studies that focus on phytoconstituent extraction and post-extraction processing to enhance the potency of the extracted bioactive phytoconstituents. Modification of the extracted bioactive phytoconstituents to synthesize daughter compounds facilitates an enhancement in their potency and bioavailability. Based on the data collected through this review, the importance of understanding the properties of the targeted phytoconstituents is essential in selecting the required extraction method. This determines the quality and yield of extracted bioactive phytoconstituents. Full article
Show Figures

Figure 1

Back to TopTop