Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Profiling
2.2. Toxicity In Vivo
2.3. Hot-Plate Test
- t0 is the time from the placement of the mouse on the plate to the appearance of pain symptoms for placebo;
- t1 is the time from placement of the mouse on the plate to the onset of nocifensive reactions, for treatment;
- t2 is the maximum duration of the experiment (240 s).
Licking | Rearing | Jumping | ||||
---|---|---|---|---|---|---|
Latency (s) | MAE (%) | Latency (s) | MAE (%) | Latency (s) | MAE (%) | |
Chicory extract | 13.8 ± 1.2 a | nc | 44.8 ± 6.3 a | 6.74 | 113.5 ± 6.4 a | 13.7 |
Paracetamol | 13.3 ± 1.3 a | nc | 37.3 ± 3.2 a | 3.16 | 97.1 ± 9.5 a,b | nc |
Placebo | 15.4 ± 1.2 a | - | 30.6 ± 2.0 b | - | 93.4 ± 4.0 b | - |
3. Materials and Methods
3.1. Preparation of the Chicory Root Extract
- Method 1: 5 kg of chicory roots, 8 L of water, 0.5 mL of 0.1% pectinase; pH adjusted to 4.0; maceration, 50 °C, 6 h;
- Method 2: 5 kg of chicory roots, 8 L of water; boiling in a pressure cooker, 0.2 MPa, 120 °C, 30 min;
- Method 3 (a combined method): 5 kg of chicory roots, 8 L of water, 0.5 mL of 0.1% pectinase; pH adjusted to 4.0; maceration at 50 °C for 6 h, and then boiling in a pressure cooker at 0.2 MPa, 120 °C, 30 min.
3.2. Phytochemical Profiling of the Extracts
3.3. Toxicity Studies in Mice
3.4. Hot-Plate Test in Mice
3.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janda, K.; Gutowska, I.; Geszke-Moritz, M.; Jakubczyk, K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties-A Review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef] [PubMed]
- Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium intybus: Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Evid. Based Complement. Altern. Med. 2013, 2013, 579319. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe; European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia 11.0: Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia, 11th ed.; European Directorate for the Quality of Medicines & Healthcare: Strasbourg, France, 2022; Volume III, p. 3. [Google Scholar]
- European Medicines Agency. European Public Summary Report for Herbal Medicine: Chicory Root. EMA/HMPC/286842/2013. 2013. Available online: https://www.ema.europa.eu/en/documents/herbal-summary/chicory-root-summary-public_en.pdf (accessed on 15 April 2025).
- Olsen, N.J.; Branch, V.K.; Jonnala, G.; Seskar, M.; Cooper, M. Phase 1, placebo-controlled, dose escalation trial of chicory root extract in patients with osteoarthritis of the hip or knee. BMC Musculoskelet. Disord. 2010, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Chandra, K.; Jain, V.; Jabin, A.; Dwivedi, S.; Joshi, S.; Ahmad, S.; Jain, S.K. Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: A randomized, double-blind placebo study. Phytother. Res. 2020, 34, 1609–1618. [Google Scholar] [CrossRef]
- Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48. [Google Scholar] [CrossRef]
- Jasim, R.S. Antioxidant, Antimicrobial Activities and Phytochemical Constituents of Cichorium intybus L. Aerial Parts. Int. J. Bot. 2017, 14, 24–29. [Google Scholar] [CrossRef]
- Zhang, H.L.; Dai, L.H.; Wu, Y.H.; Yu, X.P.; Zhang, Y.Y.; Guan, R.F.; Liu, T.; Zhao, J. Evaluation of hepatocyteprotective and anti-hepatitis B virus properties of Cichoric acid from Cichorium intybus leaves in cell culture. Biol. Pharm. Bull. 2014, 37, 1214–1220. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Akrami, R.; Zarshenas, M.M.; Zareie, S.; Ghadimi, T.; Najafi, A.; Rostami Chijan, M.; Dehghan, A.; Zarenezhad, E. Evaluation of the Effect of Cichorium intybus L. on the Liver Enzymes in Burn Patients: A Randomized Double-Blind Clinical Trial. Int. J. Clin. Pract. 2024, 2024, 1016247. [Google Scholar] [CrossRef]
- Maia Campos, P.M.B.G.; Mercurio, D.G.; Melo, M.O.; Closs-Gonthier, B. Cichorium intybus root extract: A “vitamin D-like” active ingredient to improve skin barrier function. J. Dermatolog. Treat. 2017, 28, 78–81. [Google Scholar] [CrossRef]
- Khan, M.F.; Nasr, F.A.; Noman, O.M.; Alyhya, N.A.; Ali, I.; Saoud, M.; Rennert, R.; Dube, M.; Hussain, W.; Green, I.R.; et al. Cichorins D-F: Three New Compounds from Cichorium intybus and Their Biological Effects. Molecules 2020, 25, 4160. [Google Scholar] [CrossRef]
- Duda, Ł.; Kłosiński, K.K.; Budryn, G.; Jaśkiewicz, A.; Kołat, D.; Kałuzińska-Kołat, Ż.; Pasieka, Z.W. Medicinal Use of Chicory (Cichorium intybus L.). Sci. Pharm. 2024, 92, 31. [Google Scholar] [CrossRef]
- Birsa, M.L.; Sarbu, L.G. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023, 15, 1322. [Google Scholar] [CrossRef]
- He, L.; Weng, H.; Li, Q.; Shi, G.; Liu, X.; Du, Y.; Zheng, J.; Ling, W.; Wang, D. Lactucopicrin Inhibits Cytoplasmic Dynein-Mediated NF-kappaB Activation in Inflammated Macrophages and Alleviates Atherogenesis in Apolipoprotein E-Deficient Mice. Mol. Nutr. Food Res. 2021, 65, e2000989. [Google Scholar] [CrossRef]
- Weng, H.; He, L.; Liu, X.; Li, Q.; Du, Y.; Zheng, J.; Wang, D. Natural lactucopicrin alleviates importin-alpha3-mediated NF-kappaB activation in inflammated endothelial cells and improves sepsis in mice. Biochem. Pharmacol. 2021, 186, 114501. [Google Scholar] [CrossRef]
- Wesolowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wojcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol. 2006, 107, 254–258. [Google Scholar] [CrossRef]
- Duda, L.; Budryn, G.; Olszewska, M.A.; Rutkowska, M.; Kruczkowska, W.; Grabowska, K.; Kolat, D.; Jaskiewicz, A.; Pasieka, Z.W.; Klosinski, K.K. Evaluation of Inulin and Polyphenol Content and the Cytotoxicity of Cichorium intybus L. var. foliosum Root Extracts Obtained by Pectinase- and Pressure-Assisted Extraction. Nutrients 2025, 17, 1040. [Google Scholar] [CrossRef]
- Loeser, J.D.; Melzack, R. Pain: An overview. Lancet 1999, 353, 1607–1609. [Google Scholar] [CrossRef]
- Raouf, R.; Quick, K.; Wood, J.N. Pain as a channelopathy. J. Clin. Investig. 2010, 120, 3745–3752. [Google Scholar] [CrossRef]
- Woolf, C.J. What is this thing called pain? J. Clin. Investig. 2010, 120, 3742–3744. [Google Scholar] [CrossRef]
- Reilly, M.M.; Shy, M.E. Diagnosis and new treatments in genetic neuropathies. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1304–1314. [Google Scholar] [CrossRef]
- Clark, J.D. The pitfalls of profoundly effective analgesic therapies. Clin. J. Pain 2008, 24, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Burgess, G.; Williams, D. The discovery and development of analgesics: New mechanisms, new modalities. J. Clin. Investig. 2010, 120, 3753–3759. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.R.R.; Mahomoodally, M.F.; Joaheer, T.; Zhang, Y. A Systematic Review of Traditionally Used Herbs and Animal-Derived Products as Potential Analgesics. Curr. Neuropharmacol. 2021, 19, 553–588. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 423: Acute Oral toxicity—Acute Toxic Class Method. 2002. Available online: https://www.oecd.org/en/publications/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-en.html (accessed on 15 April 2025).
- Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013, 138, 1062–1071. [Google Scholar] [CrossRef]
- Wulfkuehler, S.; Gras, C.; Carle, R. Sesquiterpene lactone content and overall quality of fresh-cut witloof chicory (Cichorium intybus L. var. foliosum Hegi) as affected by different washing procedures. J. Agric. Food Chem. 2013, 61, 7705–7714. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS(n). J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Piccolella, S.; Fiorentino, M.; Cimmino, G.; Esposito, A.; Pacifico, S. Cilentan Cichorium intybus L. organs: UHPLC-QqTOF-MS/MS analysis for new antioxidant scenario, exploitable locally and beyond. Future Foods 2024, 9, 100379. [Google Scholar] [CrossRef]
- Hakkinen, S.T.; Cankar, K.; Nohynek, L.; Suomalainen, M.; van Arkel, J.; Siika-Aho, M.; Twarogowska, A.; Van Droogenbroeck, B.; Oksman-Caldentey, K.M. Enzyme-treated chicory for cosmetics: Application assessment and techno-economic analysis. AMB Express 2022, 12, 152. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.-Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Schmidt, B.M.; Ilic, N.; Poulev, A.; Raskin, I. Toxicological evaluation of a chicory root extract. Food Chem. Toxicol. 2007, 45, 1131–1139. [Google Scholar] [CrossRef]
- Hakkinen, S.T.; Sokovic, M.; Nohynek, L.; Ciric, A.; Ivanov, M.; Stojkovic, D.; Tsitko, I.; Matos, M.; Baixinho, J.P.; Ivasiv, V.; et al. Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals 2021, 14, 941. [Google Scholar] [CrossRef] [PubMed]
- Chadni, M.; Isidore, E.; Diemer, E.; Ouguir, O.; Brunois, F.; Catteau, R.; Cassan, L.; Ioannou, I. Optimization of Extraction Conditions to Improve Chlorogenic Acid Content and Antioxidant Activity of Extracts from Forced Witloof Chicory Roots. Foods 2022, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Diemer, E.; Chadni, M.; Grimi, N.; Ioannou, I. Optimization of the Accelerated Solvent Extraction of Caffeoylquinic Acids from Forced Chicory Roots and Antioxidant Activity of the Resulting Extracts. Foods 2022, 11, 3214. [Google Scholar] [CrossRef]
- Ferioli, F.; D’Antuono, L.F. An update procedure for an effective and simultaneous extraction of sesquiterpene lactones and phenolics from chicory. Food Chem. 2012, 135, 243–250. [Google Scholar] [CrossRef]
- Ruggieri, F.; Hance, P.; Gioia, B.; Biela, A.; Roussel, P.; Hilbert, J.L.; Willand, N. A Three-Step Process to Isolate Large Quantities of Bioactive Sesquiterpene Lactones from Cichorium intybus L. Roots and Semisynthesis of Chicory STLs Standards. Pharmaceuticals 2023, 16, 771. [Google Scholar] [CrossRef]
- van Arkel, J.; Twarogowska, A.; Cornelis, Y.; De Marez, T.; Engel, J.; Maenhout, P.; de Vos, R.C.H.; Beekwilder, J.; Van Droogenbroeck, B.; Cankar, K. Effect of Root Storage and Forcing on the Carbohydrate and Secondary Metabolite Composition of Belgian Endive (Cichorium intybus L. Var. foliosum). ACS Food Sci. Technol. 2022, 2, 1546–1557. [Google Scholar] [CrossRef]
- Gromek, D. Sesquiterpene lactones from Lactuca virosa L. Pol. J. Chem. 1989, 63, 297–301. [Google Scholar]
- Bagdas, D.; Cinkilic, N.; Ozboluk, H.Y.; Ozyigit, M.O.; Gurun, M.S. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med. 2013, 67, 698–704. [Google Scholar] [CrossRef]
- Kakita, K.; Tsubouchi, H.; Adachi, M.; Takehana, S.; Shimazu, Y.; Takeda, M. Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats. Neurosci. Res. 2018, 134, 49–55. [Google Scholar] [CrossRef]
- Bagdas, D.; Gul, Z.; Meade, J.A.; Cam, B.; Cinkilic, N.; Gurun, M.S. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr. Neuropharmacol. 2020, 18, 216–228. [Google Scholar] [CrossRef]
- Akram, W.; Pandey, V.; Sharma, R.; Joshi, R.; Mishra, N.; Garud, N.; Haider, T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int. J. Biol. Macromol. 2024, 259, 129131. [Google Scholar] [CrossRef] [PubMed]
- Farabegoli, F.; Santaclara, F.J.; Costas, D.; Alonso, M.; Abril, A.G.; Espineira, M.; Ortea, I.; Costas, C. Exploring the Anti-Inflammatory Effect of Inulin by Integrating Transcriptomic and Proteomic Analyses in a Murine Macrophage Cell Model. Nutrients 2023, 15, 859. [Google Scholar] [CrossRef] [PubMed]
- OECD. Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures. 2002. Available online: https://www.oecd.org/en/publications/harmonised-integrated-classification-system-for-human-health-and-environmental-hazards-of-chemical-substances-and-mixtures_9789264078475-en.html (accessed on 15 April 2025).
- Bedi, O.; Krishan, P. Investigations on acute oral toxicity studies of purpurin by application of OECD guideline 423 in rodents. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Mamadou, K.; N’Goran, M.K.; Eugene, K.; Amani, B.K.; Koffi, C.; N’Guessan, A.R.Y.; Eric, B.; Therese, D.-P.; Kanga, S.N.z.; Henri, M.D.-K. Acute toxicity and hypoglycaemic activity of the leaf extracts of Persea americana Mill. (Lauraceae) in Wistar rats. Afr. J. Pharm. Pharmacol. 2016, 10, 690–698. [Google Scholar] [CrossRef]
- Hardeep, F.M.; Pandey, D.K. Anti-diabetic activity of Methanolic extract of chicory roots in Streptozocin induced diabetic Rats. Int. J. Pharm. 2013, 3, 211–216. [Google Scholar]
- Klosinski, K.; Girek, M.; Czarnecka, K.; Pasieka, Z.; Skibinski, R.; Szymanski, P. Biological assessment of new tetrahydroacridine derivatives with fluorobenzoic moiety in vitro on A549 and HT-29 cell lines and in vivo on animal model. Hum. Cell 2020, 33, 859–867. [Google Scholar] [CrossRef]
- Modi, A.D.; Parekh, A.; Pancholi, Y.N. Evaluating pain behaviours: Widely used mechanical and thermal methods in rodents. Behav. Brain Res. 2023, 446, 114417. [Google Scholar] [CrossRef]
- Gupta, M.; Banerjee, D.; Mukherjee, A. Studies of Anti Inflammatory, Antipyretic and Analgesic Effects of Aqueous Extract of Traditional Herbal Drug on Rodents. Int. Res. J. Pharm. 2013, 4, 113–120. [Google Scholar] [CrossRef]
- Vittalrao, A.M.; Shanbhag, T.; Kumari, M.; Bairy, K.L.; Shenoy, S. Evaluation of antiinflammatory and analgesic activities of alcoholic extract of Kaempferia galanga in rats. Indian J. Physiol. Pharmacol. 2011, 55, 13–24. [Google Scholar]
- Li, Q.; Zhuang, Q.; Gu, Y.; Dai, C.; Gao, X.; Wang, X.; Wen, H.; Li, X.; Zhang, Y. Enhanced analgesic effects of nefopam in combination with acetaminophen in rodents. Biomed. Rep. 2018, 8, 176–183. [Google Scholar] [CrossRef]
- Minville, V.; Fourcade, O.; Mazoit, J.X.; Girolami, J.P.; Tack, I. Ondansetron does not block paracetamol-induced analgesia in a mouse model of fracture pain. Br. J. Anaesth. 2011, 106, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Vuralli, D.; Wattiez, A.S.; Russo, A.F.; Bolay, H. Behavioral and cognitive animal models in headache research. J. Headache Pain 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Yam, M.F.; Loh, Y.C.; Oo, C.W.; Basir, R. Overview of Neurological Mechanism of Pain Profile Used for Animal “Pain-Like” Behavioral Study with Proposed Analgesic Pathways. Int. J. Mol. Sci. 2020, 21, 4355. [Google Scholar] [CrossRef] [PubMed]
- Gardmark, M.; Hoglund, A.U.; Hammarlund-Udenaes, M. Aspects on tail-flick, hot-plate and electrical stimulation tests for morphine antinociception. Pharmacol. Toxicol. 1998, 83, 252–258. [Google Scholar] [CrossRef]
- Morgan, M.M.; Fossum, E.N.; Stalding, B.M.; King, M.M. Morphine antinociceptive potency on chemical, mechanical, and thermal nociceptive tests in the rat. J. Pain 2006, 7, 358–366. [Google Scholar] [CrossRef]
- Coricello, A.; Adams, J.D.; Lien, E.J.; Nguyen, C.; Perri, F.; Williams, T.J.; Aiello, F. A Walk in Nature: Sesquiterpene Lactones as Multi-Target Agents Involved in Inflammatory Pathways. Curr. Med. Chem. 2020, 27, 1501–1514. [Google Scholar] [CrossRef]
- Karabay-Yavasoglu, N.U.; Karamenderes, C.; Baykan, S.; Apaydin, S. Antinociceptive and Anti-inflammatory Activities and Acute Toxicity ofAchillea nobilis. subsp.neilreichii. Extract in Mice and Rats. Pharm. Biol. 2008, 45, 162–168. [Google Scholar] [CrossRef]
- Taleghani, B.K.; Rasouli, A.H.; Rostampour, M.; Ch, M.H.; Abedinzade, M.; Rohampour, K.; Ansar, M.M. Protective Effect of Cichorium intybus Root Extract and Esculetin on Lipopolysaccharide-Induced Pain and Inflammation in Male Mice: A Potential Role for Tumor Necrosis Factor-α and Interleukin-1β. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Rivero-Cruz, I.; Anaya-Eugenio, G.; Pérez-Vásquez, A.; Martínez, A.L.; Mata, R. Quantitative Analysis and Pharmacological Effects of Artemisia ludoviciana Aqueous Extract and Compounds. Nat. Prod. Commun. 2017, 12, 1934578X1701201002. [Google Scholar] [CrossRef]
- Jaskiewicz, A.; Budryn, G.; Nowak, A.; Efenberger-Szmechtyk, M. Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent. Foods 2020, 9, 1696. [Google Scholar] [CrossRef]
- Skala, E.; Kicel, A.; Olszewska, M.A.; Kiss, A.K.; Wysokinska, H. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives. Biomed. Res. Int. 2015, 2015, 181098. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Pilarczyk, A.; Jonakowski, M.; Jarmuz, A.; Salaga, M.; Lipkowski, A.W.; Fichna, J. Anti-inflammatory and antinociceptive action of the dimeric enkephalin peptide biphalin in the mouse model of colitis: New potential treatment of abdominal pain associated with inflammatory bowel diseases. Peptides 2014, 60, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Salaga, M.; Fichna, J.; Socala, K.; Nieoczym, D.; Pierog, M.; Zielinska, M.; Kowalczuk, A.; Wlaz, P. Neuropharmacological characterization of the oneirogenic Mexican plant Calea zacatechichi aqueous extract in mice. Metab. Brain Dis. 2016, 31, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J. Pharmacol. Exp. Ther. 1953, 107, 385–393. [Google Scholar] [CrossRef]
No. | Analyte | Rt (min) | UV λmax (nm) | Ionization Mode | m/z | MS2/MS3 Fragment Ions | Extract/Method |
---|---|---|---|---|---|---|---|
1 | malic acid | 1.7 | 210 | [M–H]− | 133 | 133 (100) | 1, 2, 3 |
2 | quinic acid | 1.9 | 220, 270 | [M–H]− | 191 | 111 (100) | 1, 2, 3 |
3 | unknown | 3.9 | 215, 300 | [M–H]− | 329 | 167 (100) | 1, 2, 3 |
4 | 3-O-caffeoylquinic acid (NCHA, neochlorogenic acid) a | 6.7 | 216, 324 | [M–H]− | 353 | 191 (100), 179 (42), 135 (5) | 1, 2, 3 |
5 | caffeic acid derivative (CFD) | 9.4 | 216, 325 | [M–H]− | 503 | 257 (100), 215 (34), 179 (15) | 1, 2, 3 |
6 | 5-O-caffeoylquinic acid (chlorogenic acid, CHA) a | 11.2 | 216, 325 | [M–H]− | 353 | 191 (100) | 1, 2, 3 |
7 | 11(S),13-dihydrolactucin acetyl-hexoside (DLCH) | 12.0 | 258 | [M–H]− | 485 | 439 (100), 277 (3), 215 (16), 260 (12) | 1, 2, 3 |
8 | 4-O-caffeoylquinic acid (CCHA, cryptochlorogenic acid) a | 12.6 | 216, 325 | [M–H]− | 353 | 191 (50), 179 (49), 173 (100) | 2 |
9 | 11(S),13-dihydrolactucin (DLC) | 14.3 | 258 | [M–H]+ | 279 | 215 (100), 187 (27) | 1, 2, 3 |
10 | lactucin (LC) a | 16.9 | 258 | [M–H]+ | 277 | 259 (40), 217 (100) | 1, 2, 3 |
11 | 11(S),13-dihydro-8-deoxylactucin hexoside (DDLCH) | 28.9 | 258 | [M–H]− | 469 | 261 (100), 217 (20) | |
12 | 3,4-O-dicaffeoylquinic acid (3,4-diCAQA) | 33.0 | 216, 325 | [M–H]− | 515 | 353 (100) b, 299 (5), 203 (6) 191 (4), 173 (3), 191 (80) c, 179 (60) c, 173 (100) c | 1, 2, 3 |
13 | 3,5-O-dicaffeoylquinic acid (3,5-diCAQA) | 33.5 | 216, 325 | [M–H]− | 515 | 353 (100) b, 191 (3), 179 (3), 191 (100) c, 179 (23) c | 1, 2, 3 |
14 | 11(S),13-dihydro-8-deoxylactucin (DDLC) | 33.6 | 258 | [M–H]+ | 263 | 244 (74), 217 (100) | 1, 2, 3 |
15 | 4,5-O-dicaffeoylquinic acid (4,5-diCAQA) | 36.6 | 216, 325 | [M–H]− | 515 | 353 (100) b, 299 (3), 173 (3), 191 (20) c, 179 (70) c, 173 (100) | 1, 2, 3 |
16 | 11(S),13-dihydrolactucopicrin (DLP) | 50.0 | 258 | [M–H]+ | 413 | 261 (100), 215 (20) | 1, 2, 3 |
17 | lactucopicrin derivative (LPD) | 51.3 | 258 | [M–H]+ | 439 | 411 (100), 277 (64) | 1, 2, 3 |
Constituent (mg/100 g dm) | Pectinase-Assisted Extraction (Method 1) | Pressure-Assisted Extraction (Method 2) | Pectinase + Pressure-Assisted Extraction (Method 3) |
---|---|---|---|
Phenolic acids: | |||
3-O-caffeoylquinic acid (NCHA) | <LOQ | 16.83 ± 0.44 a | 4.79 ± 0.23 b |
caffeic acid derivative (CFD) | 11.46 ± 0.08 b | 14.68 ± 0.17 a | 15.65 ± 0.73 a |
5-O-caffeoylquinic acid (CHA) | <LOQ | 42.06 ± 1.01 a | 28.04 ± 1.37 b |
4-O-caffeoylquinic acid (CCHA) | <LOQ | 20.52 ± 0.51 a | 6.10 ± 0.33 b |
3,4-dicaffeoylquinic acid (3,4-diCFQA) | <LOQ | 35.63 ± 0.35 a | 8.66 ± 0.31 b |
3,5-dicaffeoylquinic acid (3,5-diCFQA) | <LOQ | 26.22 ± 0.27 a | 21.27 ± 0.86 b |
4,5-dicaffeoylquinic acid (4,5-diCFQA) | <LOQ | 31.14 ± 0.25 a | 8.56 ± 0.39 b |
Total phenolic acids (TPA) | 11.46 ± 0.08 c | 187.10 ± 3.01 a | 97.07 ± 4.23 b |
Sesquiterpene lactones: | |||
11(S),13-dihydrolactucin acetyl-hexoside (DLCH) | 44.39 ± 0.65 c | 270.74 ± 2.86 a | 87.46 ± 0.37 b |
11(S),13-dihydrolactucin (DLC) | 156.00 ± 2.38 b | 97.25 ± 1.05 c | 190.37 ± 4.15 a |
lactucin (LC) | <LOQ | 30.66 ± 0.25 a | 22.31 ± 1.08 b |
11(S),13-dihydro-8-deoxylactucin hexoside (DDLCH) | 21.92 ± 0.55 c | 72.78 ± 0.45 a | 30.92 ± 0.50 b |
11(S),13-dihydro-8-deoxylactucin (DDLC) | 61.47 ± 1.04 b | 22.62 ± 0.45 c | 83.59 ± 0.69 a |
11(S),13-dihydrolactucopicrin (DLP) | 71.78 ± 2.81 b | 83.99 ± 3.74 a | 70.70 ± 2.35 b |
lactucopicrin derivative (LPD) | 71.07 ± 2.02 a | 59.48 ± 2.23 b | 71.04 ± 3.72 a |
Total sesquiterpene lactones (TSL) | 426.63 ± 9.45 c | 642.52 ± 11.04 a | 556.39 ± 12.86 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda, Ł.; Pasieka, Z.W.; Olszewska, M.A.; Rutkowska, M.; Budryn, G.; Jaśkiewicz, A.; Kłosińska, B.; Czajkowska, K.; Kłosiński, K.K. Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice. Int. J. Mol. Sci. 2025, 26, 6387. https://doi.org/10.3390/ijms26136387
Duda Ł, Pasieka ZW, Olszewska MA, Rutkowska M, Budryn G, Jaśkiewicz A, Kłosińska B, Czajkowska K, Kłosiński KK. Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice. International Journal of Molecular Sciences. 2025; 26(13):6387. https://doi.org/10.3390/ijms26136387
Chicago/Turabian StyleDuda, Łukasz, Zbigniew Włodzimierz Pasieka, Monika Anna Olszewska, Magdalena Rutkowska, Grażyna Budryn, Andrzej Jaśkiewicz, Barbara Kłosińska, Karolina Czajkowska, and Karol Kamil Kłosiński. 2025. "Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice" International Journal of Molecular Sciences 26, no. 13: 6387. https://doi.org/10.3390/ijms26136387
APA StyleDuda, Ł., Pasieka, Z. W., Olszewska, M. A., Rutkowska, M., Budryn, G., Jaśkiewicz, A., Kłosińska, B., Czajkowska, K., & Kłosiński, K. K. (2025). Phytochemical Profile and Analgesic Properties of Chicory Root Extract in the Hot-Plate Test in Mice. International Journal of Molecular Sciences, 26(13), 6387. https://doi.org/10.3390/ijms26136387