A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study
Abstract
1. Introduction
2. Results
2.1. Quantitation and Identification of E. acoroides Carotenoids Content
2.2. In Silico Analysis
2.2.1. Predicting the Activities of Bioactive Compounds, Analyzing Toxicity, and Assessing Drug-Likeness
2.2.2. Molecular Docking Simulations
2.3. In Vitro Analysis
2.3.1. Antioxidants: FRAP and DPPH with Trolox Control
2.3.2. Antidiabetes: α-Glucosidase and Acarbose Control
2.3.3. Antiobesity: Lipase and In Vitro MTT Assay 3T3-L1 Control Orlistat and Simvastatin
2.3.4. miR-21/132 Expressions
3. Discussion
4. Materials and Methods
4.1. Preparation and Extraction of E. acoroides
4.2. Carotenoid Identification and Analysis of E. acoroides via UHPLC-ESI-MS/MS
4.3. Evaluation of In Silico Study
4.3.1. Predicting the Activities of Bioactive Compounds, Analyzing Toxicity, and Assessing Drug-Likeness
4.3.2. Simulated Molecular Docking
4.4. Evaluation of In Vitro Study
4.4.1. Antioxidants Evaluation through DPPH Radical Scavenging Activities and FRAP Assay
4.4.2. Antidiabetes Evaluation through α-Glucosidase Inhibition
4.4.3. Antiobesity Evaluation: Lipase Inhibition and an In Vitro MTT Assay with the 3T3-L1 Cell Line
4.4.4. The miRNA Expression of miR-21/132
4.5. Data Management and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Menajang, F.S.I.; Mahmudi, M.; Yanuhar, U.; Herawati, E.Y. Evaluation of Phytochemical and Superoxide Dismutase Activities of Enhalus acoroides (L.f.) Royle from Coastal Waters of North Sulawesi, Indonesia. Vet. World 2019, 13, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Nanba, N. Ecological Characteristics of Tropical Seagrasses, Especially Enhalus Acoroides. Fish. Sci. 2002, 68, 1767–1770. [Google Scholar] [CrossRef] [PubMed]
- Rattanachot, E.; Prathep, A. Species-Specific Effects of Seagrass on Belowground Biomass, Redox Potential and Pillucina Vietnamica (Lucinidae). J. Mar. Biol. Assoc. UK 2015, 95, 1693–1704. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, H.; Chen, Q.; Zhao, M.; Sun, D.; Duan, S. Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-Glucuronide from Seagrass Enhalus Acoroides. Int. J. Environ. Res. Public Health 2019, 16, 2615. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, Y.; Sandrina, S.; Nur Aina, R.; Narulita, E. Molecular Docking Analysis of Seagrass (Enhalus acoroides) Phytochemical Compounds as an Antidiabetic. J. Biol. Res. 2022, 95, 224. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Santhosh Kumar, D.S.R.; Sudhagar, B.; Vanthana, M.; Parveen, M.H.; Sarathkumar, S.; Thomas, J.C.; Mary, A.S.; Kannan, C. Seagrass-Mediated Silver Nanoparticles Synthesis by Enhalus Acoroides and Its α-Glucosidase Inhibitory Activity from the Gulf of Mannar. J. Nanostruct. Chem. 2016, 6, 275–280. [Google Scholar] [CrossRef]
- De Vincenti, L.; Glasenapp, Y.; Cattò, C.; Villa, F.; Cappitelli, F.; Papenbrock, J. Hindering the Formation and Promoting the Dispersion of Medical Biofilms: Non-Lethal Effects of Seagrass Extracts. BMC Complement. Altern. Med. 2018, 18, 168. [Google Scholar] [CrossRef]
- Amudha, P.; Jayalakshmi, M.; Vidya, R.; Poojitha, B.N. Chemopreventive and Therapeutic Efficacy of Enhalus Acoroides against Diethylnitrosamine Induced Hepatocellular Carcinoma in Wistar Albino Rats. Appl. Biochem. Biotechnol. 2023, 195, 2597–2617. [Google Scholar] [CrossRef] [PubMed]
- Wismar, J.E.; Ambariyanto. Widianingsih Seagrass (Enhalus acoroides) Restoration Performance with Two Different Methods (Anchor and Seed) in Panjang Island, Jepara, Indonesia. J. Ilm. Perikan. Kelaut. 2023, 15, 84–94. [Google Scholar] [CrossRef]
- Amin, A.A.; Brawijaya, U.; Amrillah, A.M.; Brawijaya, U. Antibacterial test of enhalus acoroides seagrass against bacteria salmonella typhi. J. Environ. Eng. Sustain. Technol. 2023, 10, 95–103. [Google Scholar] [CrossRef]
- Thong-On, W.; Pathomwichaiwat, T.; Boonsith, S.; Koo-Amornpattana, W.; Prathanturarug, S. Green Extraction Optimization of Triterpenoid Glycoside-Enriched Extract from Centella asiatica (L.) Urban Using Response Surface Methodology (RSM). Sci. Rep. 2021, 11, 22026. [Google Scholar] [CrossRef]
- Boggia, R.; Turrini, F.; Villa, C.; Lacapra, C.; Zunin, P.; Parodi, B. Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Vigani, B.; Rossi, S.; Gentile, M.; Sandri, G.; Bonferoni, M.C.; Cavalloro, V.; Martino, E.; Collina, S.; Ferrari, F. Development of a Mucoadhesive and an in Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. II. Loading of a Bioactive Hydroalcoholic Extract. Mar. Drugs 2019, 17, 153. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, G.; Chen, F.; Wang, Z.; Wu, J.; Hu, X. Different Effects of Microwave and Ultrasound on the Stability of (All-E)-Astaxanthin. J. Agric. Food Chem. 2006, 54, 8346–8351. [Google Scholar] [CrossRef]
- Van Thanh, H.; Lan Phi, N.T.; Khoi, N.T.; Xuan, H.N.; Van Hung, P. Green Extraction and Biological Activity of Phenolic Extracts from Cashew Nut Testa Using a Combination of Enzyme and Ultrasound-assisted Treatments. J. Sci. Food Agric. 2023, 103, 5626–5633. [Google Scholar] [CrossRef]
- Albuquerque, B.R. Recovery of Anthocyanins From eugenia spp. Fruit Peels: A Comparison Between Heat- And Ultrasound-Assisted Extraction. Sustain. Food Technol. 2024, 2, 189–201. [Google Scholar] [CrossRef]
- Othman, S.B.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxid. Redox Signal. 2021, 10, 189. [Google Scholar] [CrossRef]
- Dai, J.L.; Raghavan, G.S.V.; Yaylayan, V.A.; Ngadi, M.; Orsat, V. Extraction of Ginsenosides from American Ginseng (Panax quinquefolium L.) Root with Different Extraction Methods and Chromatographic Analysis of the Extracts. Int. J. Food Eng. 2006, 6. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Dilek, N.M.; Karakaya, M.; Unal, K. Valorization of Sugar Beet Molasses Powder by Microwave and Ultrasound-assisted Extractions of Bioactive Compounds: An Optimization Study. J. Food Process. Preserv. 2022, 46, e16820. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-Assisted Extraction of Phenolic Acids and Flavonoids and Production of Antioxidant Ingredients from Tomato: A Nutraceutical-Oriented Optimization Study. Sep. Purif. Technol. 2016, 164, 114–124. [Google Scholar] [CrossRef]
- Huie, C.W. A Review of Modern Sample-Preparation Techniques for the Extraction and Analysis of Medicinal Plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, M.; Rezaei, K. Microwave-assisted Hydrodistillation of Essential Oil from Zataria multiflora Boiss. Eur. J. Lipid Sci. Technol. 2008, 110, 448–454. [Google Scholar] [CrossRef]
- Shintawati; Widodo, Y.R.; Ermaya, D. Yield and Quality Improvement of Candlenut Oil by Microwave Assisted Extraction (MAE) Methods. Iop Conf. Ser. Earth Environ. Sci. 2022, 1012, 012024. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Lin, S.-J.; Zhang, J.; Zhao, C.; Li, H.-B. Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds. Molecules 2017, 22, 1481. [Google Scholar] [CrossRef] [PubMed]
- Dailey, A.; Vuong, Q.V. Optimum Conditions for Microwave Assisted Extraction for Recovery of Phenolic Compounds and Antioxidant Capacity from Macadamia (Macadamia tetraphylla) Skin Waste Using Water. Processes 2015, 4, 2. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M. Alzheimer hastaliğinda inos inhibitörlerinin umut verici rolü. Ank. Univ. Eczaci. Fak. Derg. 2023, 48, 4. [Google Scholar] [CrossRef]
- Cho, Y.D.; Choi, S.H.; Park, S.J.; Kim, J.Y.; Lim, C.W.; Yu, W.; Hwan, K.K.; Shin, T.G. The Impacts of Oxygen and Pentoxifylline in Hypoxic Condition. Eur. J. Inflam. 2022, 20, 20587392211056508. [Google Scholar] [CrossRef]
- Franceschelli, S.; Pia Gatta, D.M.; Pesce, M.; Ferrone, A.; Patruno, A.; De Lutiis, M.A.; Grilli, A.; Felaco, M.; Croce, F.; Speranza, L. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-ΚB/INOS Pathway in U937 Cell Line Under Altered Redox State. Int. J. Mol. Sci. 2016, 17, 1461. [Google Scholar] [CrossRef] [PubMed]
- Minhas, R.; Bansal, Y.; Bansal, G. Inducible Nitric Oxide Synthase Inhibitors: A Comprehensive Update. Med. Res. Rev. 2019, 40, 823–855. [Google Scholar] [CrossRef] [PubMed]
- Sompong, W.; Muangngam, N.; Kongpatpharnich, A.; Manacharoenlarp, C.; Amorworasin, C.; Suantawee, T.; Thilavech, T. The Inhibitory Activity of Herbal Medicines on the Keys Enzymes and Steps Related to Carbohydrate and Lipid Digestion. BMC Complement. Altern. Med. 2016, 16, 439. [Google Scholar] [CrossRef] [PubMed]
- Wiyono, T.; Frediansyah, A.; Sholikhah, E.N.; Pratiwi, W.R. UHPLC-ESI-MS Analysis of Javanese Tamarindus Indica Leaves from Various Tropical Zones and Their Beneficial Properties in Relation to Antiobesity. J. Basic Appl. Pharm. Sci. 2022, 12, 137–147. [Google Scholar] [CrossRef]
- Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Ali-Shtayeh, M.S. Antiobesity and Antioxidant Potentials of Selected Palestinian Medicinal Plants. Evid. Based Complement. Alternat. Med. 2018, 2018, 8426752. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liang, H.; Chen, N.; Shi, B.; Zeng, W. Potential of Phenolic Compounds in Ligustrum robustum (Rxob.) Blume as Antioxidant and Lipase Inhibitors: Multi-spectroscopic Methods and Molecular Docking. J. Food Sci. 2022, 87, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Ridzwan Krishnamurthy, Z.M.; Ali, I.M.; Dayoob, M.; Hussein, S.S.; Karim Khan, N.A. Hibiscus Sabdariffa Extract as Anti-Aging Supplement Through Its Antioxidant and Anti-Obesity Activities. Biomed. Res. Ther. 2020, 7, 3572–3578. [Google Scholar] [CrossRef]
- Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Gavlighi, H.A. Tannin Fraction of Pistachio Green Hull Extract with Pancreatic Lipase Inhibitory and Antioxidant Activity. J. Food Biochem. 2020, 44, e13208. [Google Scholar] [CrossRef] [PubMed]
- Aabideen, Z.U.; Mumtaz, M.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum Officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Umami, K.; Fadlan, A.; Ersam, T. 3,6-Dimethyl Ester-A-Mangostin Compound Modified from Isolate A-Mangostin Garcinia Mangostana Linn. Iptek J. Proc. Ser. 2021, 6, 123–126. [Google Scholar] [CrossRef]
- Afolabi, O.B.; Oloyede, O.I.; Ojo, A.A.; Onansanya, A.A.; Agunbiade, S.O.; Ajiboye, B.O.; Jonathan, J.; Peters, O.A. In Vitro Antioxidant Potential and Inhibitory Effect of Hydro-Ethanolic Extract from African Black Velvet Tamarind (Dialium indium) Pulp on Type 2 Diabetes Linked Enzymes. Potravin. Slovak J. Food Sci. 2018, 12, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, Y.E. A-Glucosidase Inhibitory Activity of Tea and Kombucha from Rhizophora Mucronata Leaves. Beverages 2024, 10, 22. [Google Scholar] [CrossRef]
- Fauziah, F.; Ali, H.; Ilmiawati, C.; Aulia Bakhtra, D.D.; Agustin, Z.; Handayani, D. Inhibitory Activity of A-Glucosidase by the Extract and Fraction of Marine Sponge-Derived Fungus Penicillium Citrinum Xt6. Open Access Maced. J. Med. Sci. 2022, 10, 1290–1293. [Google Scholar] [CrossRef]
- Ranjana, R.; Singh, D.; Jadhav, B.L. Antidiabetic Activity of an Alkaloid (4a-Methyl-5-(6-Methylhept- 5-En-1-Yl)Octahydro-1h-Cyclopenta[A]Pyridazine) Isolated from Lumnitzera Racemosa in Streptozotocin-Induced Diabetic Wistar Rats. Int. J. Pharm. Investig. 2022, 12, 351–357. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S. Chemical Characterization and Antidiabetic Activity of Essential Oils from Pelargonium Graveolens Leaves. Aro-Sci. J. Koya Univ. 2021, 9, 109–113. [Google Scholar] [CrossRef]
- Aguila-Muñoz, D.G. Synthesis and Molecular Docking Studies of Alkoxy- And Imidazole-Substituted Xanthones as A-Amylase and A-Glucosidase Inhibitors. Molecules 2023, 28, 4180. [Google Scholar] [CrossRef] [PubMed]
- Eliwa, D.; Kabbash, A.; El-Aasr, M.; Tawfik, H.O.; Batiha, G.E.-S.; Mahmoud, M.H.; Waard, M.D.; Eldehna, W.M.; Ibrahim, A.-R.S. Papaverinol-N-Oxide: A Microbial Biotransformation Product of Papaverine with Potential Antidiabetic and Antiobesity Activity Unveiled with in Silico Screening. Molecules 2023, 28, 1583. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavadivu, M.; Velmurugan, B.K. Antibacterial Activity and Antidiabetic Activity of Costus igneus, Gymnema sylvestre and Ocimum sanctum. Int. J. Chemtech Res. 2018, 11, 126–134. [Google Scholar] [CrossRef]
- Rathod, C.H.; Nariya, P.B.; Maliwal, D.; Pissurlenkar, R.R.S.; Kapuriya, N.; Patel, A.S. Design, Synthesis and Antidiabetic Activity of Biphenylcarbonitrile-Thiazolidinedione Conjugates as Potential A-Amylase Inhibitors. Chemistryselect 2021, 6, 2464–2469. [Google Scholar] [CrossRef]
- Shafique, K.; Farrukh, A.; Ali, T.; Qasim, S.; Jafri, L.; Abd-Rabboh, H.S.M.; Al-Anazy, M.M.; Kalsoom, S. Designing Click One-Pot Synthesis and Antidiabetic Studies of 1,2,3-Triazole Derivatives. Molecules 2023, 28, 3104. [Google Scholar] [CrossRef]
- Bhutkar, M.A. In Vitro Studies on Alpha Amylase Inhibitory Activity of Some Indigenous Plants. Mod. Appl. Pharm. Pharmacol. 2018, 2, 28–36. [Google Scholar] [CrossRef]
- Lhamyani, S.; Gentile, A.; Giráldez-Pérez, R.M.; Feijóo-Cuaresma, M.; Romero-Zerbo, S.Y.; Clemente-Postigo, M.; Zayed, H.; Oliva-Olivera, W.; Bermúdez-Silva, F.J.; Salas, J.; et al. MiR-21 Mimic Blocks Obesity in Mice: A Novel Therapeutic Option. Mol. Ther. Nucleic Acids 2021, 26, 401–416. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, N.; Song, L.; Xie, H.; Zhao, C.; Li, S.; Zhao, W.; Zhao, Y.; Gao, C.; Xu, G. Adipokines and Free Fatty Acids Regulate Insulin Sensitivity by Increasing MicroRNA-21 Expression in Human Mature Adipocytes. Mol. Med. Rep. 2017, 16, 2254–2258. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, Q.; Xu, K.; Cheng, J.; Gao, Y.; Li, Q.; Du, J.; Shi, H.; Zhou, L. Single-Nucleotide Polymorphisms Inside MicroRNA Target Sites Influence the Susceptibility to Type 2 Diabetes. J. Hum. Genet. 2013, 58, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.; Keyzer, D.D.; Holvoet, P. MicroRNAs Regulating Oxidative Stress and Inflammation in Relation to Obesity and Atherosclerosis. Faseb J. 2011, 25, 2515–2527. [Google Scholar] [CrossRef] [PubMed]
- Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínéz, J.A.; Marti, A. Noncoding RNAs, Cytokines, and Inflammation-Related Diseases. Faseb J. 2015, 29, 3595–3611. [Google Scholar] [CrossRef] [PubMed]
- Nesca, V.; Guay, C.; Jacovetti, C.; Menoud, V.; Peyot, M.; Laybutt, D.R.; Prentki, M.; Regazzi, R. Identification of Particular Groups of MicroRNAs That Positively or Negatively Impact on Beta Cell Function in Obese Models of Type 2 Diabetes. Diabetologia 2013, 56, 2203–2212. [Google Scholar] [CrossRef]
- Mulder, N.L.; Havinga, R.; Kluiver, J.; Groen, A.K.; Kruit, J.K. AAV8-Mediated Gene Transfer of MicroRNA-132 Improves Beta Cell Function in Mice Fed a High-Fat Diet. J. Endocrinol. 2019, 240, 123–132. [Google Scholar] [CrossRef]
- Nemecz, M. Microvesicle-Associated and Circulating MicroRNAs in Diabetic Dyslipidemia: MiR-218, MiR-132, MiR-143, and MiR-21, MiR-122, MiR-155 Have Biomarker Potential. Cardiovasc. Diabetol. 2023, 22, 260. [Google Scholar] [CrossRef]
- Zhu, H.; Leung, S.W. Identification of MicroRNA Biomarkers in Type 2 Diabetes: A Meta-Analysis of Controlled Profiling Studies. Diabetologia 2015, 58, 900–911. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, R.; Tian, L.; Han, X.; Ni, Y.; Jiang, L.; Zhou, H.; Xu, S. Decreased MiR-132 Plays a Crucial Role in Diabetic Encephalopathy by Regulating the GSK-3β/Tau Pathway. Aging 2020, 13, 4590–4604. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.-L.; Fernandez-Bueno, I.; Hernández-Cosido, L.; Bernardo, E.; Manzanedo-Bueno, L.; Hernández-García, I.; Mateos-Díaz, A.-M.; Rozo, O.; Matesanz, N.; Salete-Granado, D.; et al. PPAR-γ Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy. J. Gastrointest. Surg. 2022, 26, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Puig, A.; Considine, R.V.; Jimenez-Liñan, M.; Werman, A.; Pories, W.J.; José, F.; Flier, J.S. Peroxisome Proliferator-Activated Receptor Gene Expression in Human Tissues. Effects of Obesity, Weight Loss, and Regulation by Insulin and Glucocorticoids. J. Clin. Investig. 1997, 99, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Huang, Y.; Chen, X.; Lü, M.; Shi, L.; Li, C. Role and Mechanisms of Action of MicroRNA-21 as Regards the Regulation of the WNT/Β-catenin Signaling Pathway in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Int. J. Mol. Med. 2019, 44, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.; Gburcik, V.; Petrovič, N.; Gallagher, I.J.; Nedergaard, J.; Cannon, B.; Timmons, J.A. Gene-Chip Studies of Adipogenesis-Regulated MicroRNAs in Mouse Primary Adipocytes and Human Obesity. BMC Endocr. Disord. 2011, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Kong Chung, A.C.; Chen, H.; Dong, Y.; Meng, X.; Li, R.; Yang, W.; Hou, F.F.; Lan, H. MiR-21 Is a Key Therapeutic Target for Renal Injury in a Mouse Model of Type 2 Diabetes. Diabetologia 2013, 56, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, A.-D.; Ji, L.; Yao, Y.; Wang, Z.; Tong, L. MiR-132 Regulates the Expression of Synaptic Proteins in APP/PS1 Transgenic Mice Through C1q. Eur. J. Histochem. 2019, 63, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Wang, K.; Lin, H.; Tao, E.; Xia, W.; Wang, F.; Mao, C.; Feng, Y. Engineered Exosomes Derived from MiR-132-Overexpresssing Adipose Stem Cells Promoted Diabetic Wound Healing and Skin Reconstruction. Front. Bioeng. Biotechnol. 2023, 11, 1129538. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Wang, A.; Chu, T.; Lohcharoenkal, W.; Zheng, X.; Grünler, J.; Narayanan, S.; Eliasson, S.; Herter, E.K.; et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds. J. Investig. Dermatol. 2017, 137, 2630–2638. [Google Scholar] [CrossRef]
- Mziaut, H.; Henniger, G.; Ganss, K.; Hempel, S.; Wolk, S.; McChord, J.; Chowdhury, K.; Ravassard, P.; Knoch, K.-P.; Krautz, C.; et al. MiR-132 Controls Pancreatic Beta Cell Proliferation and Survival Through Pten/Akt/Foxo3 Signaling. Mol. Metab. 2020, 31, 150–162. [Google Scholar] [CrossRef]
- Elik, A.; Yanık, D.K.; Göğüş, F. Microwave-Assisted Extraction of Carotenoids from Carrot Juice Processing Waste Using Flaxseed Oil as a Solvent. Lebenson. Wiss. Technol. 2020, 123, 109100. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; June Chelyn, L.; Vimala, S.; Mohd Fairulnizal, M.N.; Brownlee, I.A.; Amin, I. Carotenoid Composition and Antioxidant Potential of Eucheuma Denticulatum, Sargassum Polycystum and Caulerpa Lentillifera. Heliyon 2020, 6, e04654. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y. Protein-Ligand Blind Docking Using CB-Dock2. Methods Mol. Biol. 2024, 2714, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Purnomo, A.F.; Alisaputra, D.; Gunawan, W.B.; Qhabibi, F.R.; Park, W.; Moon, M.; Taslim, N.A.; Park, M.N.; Kim, B. In Silico and in Vitro Studies Reveal a Synergistic Potential Source of Novel Anti-Ageing from Two Indonesian Green Algae. J. Funct. Foods 2023, 104, 105555. [Google Scholar] [CrossRef]
- Kuswari, M.; Nurkolis, F.; Mayulu, N.; Ibrahim, F.M.; Taslim, N.A.; Wewengkang, D.S.; Sabrina, N.; Arifin, G.R.; Mantik, K.E.K.; Bahar, M.R.; et al. Sea Grapes Extract Improves Blood Glucose, Total Cholesterol, and PGC-1α in Rats Fed on Cholesterol- and Fat-Enriched Diet. F1000Research 2021, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.S.; Kim, Y.-J.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Antioxidant Activity and Contents of Leaf Extracts Obtained from Dendropanax Morbifera LEV Are Dependent on the Collecting Season and Extraction Conditions. Food Sci. Biotechnol. 2019, 28, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Taslim, N.A.; Subali, D.; Kurniawan, R.; Hardinsyah, H.; Gunawan, W.B.; Kusuma, R.J.; Yusuf, V.M.; Pramono, A.; Kang, S.; et al. Dietary Supplementation of Caulerpa Racemosa Ameliorates Cardiometabolic Syndrome via Regulation of PRMT-1/DDAH/ADMA Pathway and Gut Microbiome in Mice. Nutrients 2023, 15, 909. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa Racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef]
- Jiang, Z.; Yu, G.; Liang, Y.; Song, T.; Zhu, Y.; Ni, H.; Yamaguchi, K.; Oda, T. Inhibitory Effects of a Sulfated Polysaccharide Isolated from Edible Red Alga Bangia Fusco-Purpurea on α-Amylase and α-Glucosidase. Biosci. Biotechnol. Biochem. 2019, 83, 2065–2074. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Separation and Lipid Inhibition Effects of a Novel Decapeptide from Chlorella Pyenoidose. Molecules 2019, 24, 3527. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-U.; Park, Y.-J. Ergosterol Peroxide from the Medicinal Mushroom Ganoderma Lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. Int. J. Mol. Sci. 2020, 21, 460. [Google Scholar] [CrossRef] [PubMed]
Observed Compounds | Selected Ion | Observed MW | Molecular Formula | TR (min) | PubChem CID | CAS Number |
---|---|---|---|---|---|---|
Fucoxanthin | [M + H–H2O]+ | 658.8779 | C42H58O6 | 16.19 | 5281239 | 3351-86-8 |
Lutein | [M + H–H2O]+ | 568.4239 | C40H56O2 | 20.22 | 5281243 | 127-40-2 |
Astaxanthin | [M + H]+ | 596.5900 | C40H52O4 | 18.99 | 5281224 | 472-61-7 |
Canthaxanthin | [M + H]+ | 564.7000 | C40H52O2 | 21.15 | 5281227 | 514-78-3 |
Zeaxanthin | [M]+ | 568.7209 | C40H56O2 | 20.09 | 5280899 | 144-68-3 |
β-Cryptoxanthin | [M]+ | 552.8838 | C40H56O | 22.49 | 5281235 | 472-70-8 |
Samples | Fucoxanthin | Astaxanthin | Zeaxanthin | Lutein | β-Carotene | β-Cryptoxanthin | Canthaxanthin |
---|---|---|---|---|---|---|---|
E-UAE | 7.65 ± 1.00 a | 6.80 ± 1.03 a | 6.35 ± 0.33 a | 9.73 ± 0.43 a | 8.58 ± 0.54 a | 2.61 ± 0.63 a | 3.51 ± 1.04 a |
E-MAE | 6.08 ± 0.64 b | 5.18 ± 0.56 b | 3.66 ± 0.26 b | 7.69 ± 0.87 b | 6.57 ± 0.52 b | 4.49 ± 0.16 b | 2.04 ± 0.13 a |
Code | Pa Score * | Toxicity Model Computation Analysis ** | Drug-Likeness *** | |||
---|---|---|---|---|---|---|
>0.4 | Predicted LD50 (mg/kg BW) | Toxicity Class | Lipinski Rule | Pfizer Rule | GSK | |
C1/Fucoxanthin | Antiobesity (0.908) | 130 | 3 | Rejected | Accepted | Rejected |
C2/Lutein | Lipid metabolism regulator (0.805) | 10 | 2 | Rejected | Rejected | Rejected |
C3/Astaxanthin | Lipid metabolism regulator (0.844) | 4600 | 5 | Rejected | Rejected | Rejected |
C4/Canthaxanthin | Lipid metabolism regulator (0.821) | 10,000 | 6 | Rejected | Rejected | Rejected |
C5/Zeaxanthin | Lipid metabolism regulator (0.936) | 10 | 2 | Rejected | Rejected | Rejected |
C6/β-Cryptoxanthin | Lipid metabolism regulator (0.946) | 10 | 2 | Rejected | Rejected | Rejected |
C7/β-Carotene | Lipid metabolism regulator (0.918) | 1190 | 4 | Rejected | Rejected | Rejected |
Receptors/Proteins (PDB ID) | Gibbs Free Energy (ΔG; kcal/mol) | |||||
---|---|---|---|---|---|---|
C3 | C4 | C7 | Control/Acarbose | Control/Orlistat | Control/S-Ibuprofen | |
iNOS (3E7G) | −9.3 | −9.4 | −9.7 | −8.3 | ||
Lipase (1LPB) | −9.2 | −9.7 | −9.6 | −7.1 | ||
α-Glucosidase (3L4Y) | −8.0 | −8.0 | −8.0 | −6.8 | ||
α-Amylase (2QV4) | −10.7 | −10.0 | −9.7 | −7.7 |
Proteins | C3 | C4 |
---|---|---|
iNOS | ||
Lipase | ||
α-Glucosidase | ||
α-Amylase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tjandrawinata, R.R.; Nurkolis, F. A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Mar. Drugs 2024, 22, 365. https://doi.org/10.3390/md22080365
Tjandrawinata RR, Nurkolis F. A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Marine Drugs. 2024; 22(8):365. https://doi.org/10.3390/md22080365
Chicago/Turabian StyleTjandrawinata, Raymond Rubianto, and Fahrul Nurkolis. 2024. "A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study" Marine Drugs 22, no. 8: 365. https://doi.org/10.3390/md22080365
APA StyleTjandrawinata, R. R., & Nurkolis, F. (2024). A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Marine Drugs, 22(8), 365. https://doi.org/10.3390/md22080365