Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = M1/M2 macrophage ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2178 KB  
Article
Valorization of Tomato Leaves: Optimization of Eco-Friendly Phenolic Extraction and Assessment of Biological Activities
by Layan Helmi, Suhair Sunoqrot, Samah Abusulieh, Rawan Huwaitat, Espérance Debs, Salma Khazaal, Mohammad H. El-Dakdouki, Nicolas Louka and Nada El Darra
Foods 2025, 14(19), 3383; https://doi.org/10.3390/foods14193383 - 30 Sep 2025
Viewed by 313
Abstract
Tomato leaves, typically discarded during harvest, are a rich yet underutilized source of bioactive compounds. This study aimed to valorize tomato leaves by optimizing the extraction of their phenolic compounds using a water-based method and response surface methodology. The optimal conditions, notably heating [...] Read more.
Tomato leaves, typically discarded during harvest, are a rich yet underutilized source of bioactive compounds. This study aimed to valorize tomato leaves by optimizing the extraction of their phenolic compounds using a water-based method and response surface methodology. The optimal conditions, notably heating a mixture of 1:50 solid-to-liquid ratio at 71 °C for 29 min, yielded the most total phenolic content and antioxidant activity. The biological activities of the lyophilized tomato leaf extract (TLE) were then assessed. TLE showed dose-dependent antimicrobial activity against Escherichia coli and Candida albicans, but neither against Pseudomonas aeruginosa nor Staphylococcus aureus. In addition, it demonstrated moderate cytotoxicity against MCF-7 breast cancer cells with an IC50 value of 114.5 µg/mL. Interestingly, the extract significantly reduced intracellular reactive oxygen species levels in RAW 264.7 macrophages, supporting its anti-inflammatory potential. LC-MS analysis identified rutin (45.21%), 4-hydroxycoumarin (13.60%), and α-tomatine (12.37%) as the major chemical constituents in TLE, suggesting contributing effects behind the observed bioactivities. These results support the potential of tomato leaf extract as an eco-friendly source for functional ingredients, transforming agricultural waste through green extraction into valuable applications for nutraceuticals and sustainable product development. Full article
(This article belongs to the Special Issue Food Bioactive Compounds: Extraction, Identification and Application)
Show Figures

Figure 1

14 pages, 261 KB  
Article
Targeted Macrophage Modulation as a Disease-Modifying Approach in Canine Osteoarthritis: The Efficacy of EF-M2 (ImmutalonTM) in a Double-Blind Placebo-Controlled Study
by Evgeny Pokushalov, Dmitry Kudlay, Nikolai Revkov, Anastasya Shcherbakova, Michael Johnson and Richard Miller
Vet. Sci. 2025, 12(9), 919; https://doi.org/10.3390/vetsci12090919 - 22 Sep 2025
Viewed by 373
Abstract
Osteoarthritis is a prevalent and disabling condition in companion dogs, yet existing treatments are primarily symptomatic and limited by safety concerns. EF-M2, a defined derivative of vitamin D-binding protein, selectively biases macrophages toward an anti-inflammatory phenotype in vitro. We conducted a randomised, double-blind, [...] Read more.
Osteoarthritis is a prevalent and disabling condition in companion dogs, yet existing treatments are primarily symptomatic and limited by safety concerns. EF-M2, a defined derivative of vitamin D-binding protein, selectively biases macrophages toward an anti-inflammatory phenotype in vitro. We conducted a randomised, double-blind, placebo-controlled trial (IMPAWS-OA-1) in 60 client-owned dogs with naturally occurring hip or elbow osteoarthritis. Animals were allocated to subcutaneous EF-M2 (0.1 µg/kg) given thrice weekly or twice weekly, or to saline placebo for four weeks, followed by four weeks off-drug. The primary endpoint was change in Canine Brief Pain Inventory–Pain Severity Score (CBPI-PSS) at Day 28. EF-M2 produced dose–frequency-dependent benefits: LS-mean ΔPSS was −2.11 for thrice weekly, −1.42 for twice weekly, and −0.54 for placebo (arm effect p < 0.001). Objective measures showed parallel improvements in peak vertical force and accelerometery. Serum biomarkers confirmed macrophage repolarisation (ARG1/iNOS ratio, IL-10 increase, TNF-α decrease), correlating with clinical response. Adverse events were infrequent and mild, with no excess over placebo. In conclusion, EF-M2 achieved clinically meaningful pain relief, functional gains, and biomarker shifts without safety signals, establishing first-in-species proof that targeted macrophage modulation may be a viable disease-modifying approach for canine osteoarthritis. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
28 pages, 2669 KB  
Article
Antitumor and Antiangiogenic Effect of Tannic Acid in the Advanced Stage of Ehrlich Ascites Tumor in Mice
by Nada Oršolić, Martina Kunštić and Maja Jazvinšćak Jembrek
Int. J. Mol. Sci. 2025, 26(18), 9070; https://doi.org/10.3390/ijms26189070 - 17 Sep 2025
Viewed by 439
Abstract
Ehrlich ascites tumor (EAT) is a rapidly growing, angiogenesis-dependent tumor characterized by high levels of vascular endothelial growth factor (VEGF). VEGF contributes to ascites formation, which supports tumor cell growth and the accumulation of tumor-associated macrophages (TAMs), primarily of the immunosuppressive M2 phenotype. [...] Read more.
Ehrlich ascites tumor (EAT) is a rapidly growing, angiogenesis-dependent tumor characterized by high levels of vascular endothelial growth factor (VEGF). VEGF contributes to ascites formation, which supports tumor cell growth and the accumulation of tumor-associated macrophages (TAMs), primarily of the immunosuppressive M2 phenotype. M2 macrophages promote tumor progression by secreting angiogenic and immunomodulatory factors such as VEGF, matrix metalloproteinases (MMPs), and cyclooxygenase-2 (COX-2). This study investigated the effects of tannic acid (TA) on tumor growth and angiogenesis in EAT-bearing mice, focusing on TAM–tumor cell interactions. We evaluated ascites volume, cell counts, macrophage activity, peritoneal angiogenesis and blood vessel density, concentrations of VEGF, COX-2, and MMP-2/-9, blood biomarkers, and DNA damage using the comet assay. TA treatment significantly reduced tumor growth and angiogenesis by modulating TAM function. Specifically, TA inhibited VEGF, COX-2, and MMP-2/-9 expression, decreased M2 macrophage numbers, and enhanced the antitumor immune response, as shown by increased lymphocyte activation and favorable shifts in lymphocyte-to-monocyte (LMR) and neutrophil-to-lymphocyte (NLR) ratios. Additionally, TA induced DNA fragmentation in tumor and blood cells, indicating cytotoxicity and potential induction of apoptosis. These findings suggest that TA’s inhibition of TAMs may be a promising strategy for treating tumors and other angiogenesis-related conditions. Full article
(This article belongs to the Special Issue Recent Advances in Antitumor Agents from Natural Source)
Show Figures

Figure 1

22 pages, 4544 KB  
Article
Immune Enhancement Effects and Extraction Optimization of Polysaccharides from Peristrophe roxburghiana
by Yong Chen, Zilong Zhao, Yanyan Xu, Fuyan Li and Qiping Zhan
Antioxidants 2025, 14(9), 1072; https://doi.org/10.3390/antiox14091072 - 1 Sep 2025
Viewed by 556
Abstract
The present study aims to optimize the extraction process and systematically investigate the bioactivity of polysaccharides derived from Peristrophe roxburghiana (Schult.) Brem. (CPPRs). To this end, the Box–Behnken design–response surface methodology was employed to optimize the extraction parameters of polysaccharides. The optimal extraction [...] Read more.
The present study aims to optimize the extraction process and systematically investigate the bioactivity of polysaccharides derived from Peristrophe roxburghiana (Schult.) Brem. (CPPRs). To this end, the Box–Behnken design–response surface methodology was employed to optimize the extraction parameters of polysaccharides. The optimal extraction conditions were as follows: extraction temperature, 84 °C; extraction duration, 208 min; liquid-to-material ratio, 1:27 g/mL; extraction times, 4 times. The maximum extraction yield reached 17.89%, and the yield under non-optimal extraction conditions is 11–16%. This study systematically investigated the polysaccharides’ physicochemical, structural, and morphological properties using multiple advanced techniques (FTIR, SEM, XRD, HPLC, rheology, and TGA). CPPRs are primarily composed of arabinose, galactose and glucose as the main monosaccharides, amorphous, and capable of low-viscosity gels at low shear rates. Furthermore, CPPRs displayed notable antioxidant activity in vitro, scavenging ABTS•+ and DPPH and reducing Fe3+ (with scavenging/reducing rates exceeding 40% at a concentration of 1 mg/mL). Meanwhile, 3 mg/mL CPPRs reduced oxidative damage of red blood cells induced by AAPH, scavenging more than 50% of ROS, and reducing the hemolysis rate by 94.5%. Additionally, CPPRs significantly promoted secretion of cytokines (including TNF-α, IL-6, and IL-10) and NO in RAW264.7 macrophages in vitro compared with the untreated control group. These findings collectively highlight the potential of CPPRs—possessing both antioxidant and immune-enhancing properties—as promising functional ingredients for application in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

20 pages, 5198 KB  
Article
Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery
by Nattawipa Matchimabura, Jiramate Poolsiri, Nataporn Phadungvitvatthana, Rachanida Praparatana, Ousanee Issarachot and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(17), 2301; https://doi.org/10.3390/polym17172301 - 25 Aug 2025
Viewed by 1438
Abstract
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via [...] Read more.
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via the solvent evaporation method, achieving a 24-fold increase in solubility (42.7 mg/mL) at a 1:3 drug-to-polymer ratio. Expandable gastroretentive films were subsequently formulated using starches from Hom-Nil rice, glutinous rice, and white rice, combined with chitosan as the primary film-forming agents, via the solvent casting technique. Hydroxypropyl methylcellulose (HPMC) K100 LV was incorporated as an adjuvant to achieve controlled release. At optimal concentrations (3% w/w starch, 2% w/w chitosan, and 2% w/w HPMC), the films exhibited favorable mechanical properties, swelling capacity, and unfolding behavior. Sustained release of FA over 8 h was achieved in formulations containing HPMC with either Hom-Nil or glutinous rice starch. Among the tested formulations (R6, G6, and H6), those incorporating Hom-Nil rice starch demonstrated the most significant antioxidant (10.38 ± 0.23 μg/mL) and anti-inflammatory (9.26 ± 0.14 μg/mL) effects in murine macrophage cell line (RAW 264.7), surpassing the activities of both free FA and FA-SD. These results highlight the potential of anthocyanin-rich pigmented rice starch-based expandable films as effective gastroretentive systems for enhanced FA delivery. Full article
Show Figures

Graphical abstract

23 pages, 3243 KB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 786
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

19 pages, 10625 KB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 1006
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

14 pages, 895 KB  
Article
Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis
by Manuela Neri, Elisabetta Sanna, Paolo Albino Ferrari, Clelia Madeddu, Eleonora Lai, Valerio Vallerino and Antonio Macciò
Cancers 2025, 17(14), 2325; https://doi.org/10.3390/cancers17142325 - 12 Jul 2025
Viewed by 705
Abstract
Background/Objectives: Endometriosis and high-grade serous ovarian cancer (HGS-OC) share common features within the peritoneal immune microenvironment, yet they exhibit divergent clinical outcomes. This study aimed to dissect the immune–metabolic landscape of the peritoneal cavity in patients with endometriosis and ovarian cancer by evaluating [...] Read more.
Background/Objectives: Endometriosis and high-grade serous ovarian cancer (HGS-OC) share common features within the peritoneal immune microenvironment, yet they exhibit divergent clinical outcomes. This study aimed to dissect the immune–metabolic landscape of the peritoneal cavity in patients with endometriosis and ovarian cancer by evaluating macrophage polarization, intracellular signaling pathways, and iron-driven oxidative stress. Methods: A prospective cohort study enrolled 40 patients with endometriosis, 198 with ascitic ovarian cancer (178 HGS-OC), and 200 controls with benign gynecological conditions. Peritoneal and peripheral blood samples were analyzed via flow cytometry for macrophage (M1/M2) polarization markers, mTOR/AKT expression, and glucose uptake. Inflammatory markers (IL-6, CRP), oxidative stress (ROS), and iron metabolism parameters (hepcidin, ferritin, transferrin, serum/free iron) were quantified. Results: HGS-OC displayed a predominance of M1-polarized tumor-associated macrophages (TAMs) (CD14⁺/CD80⁺/Glut1⁺) and a high M1/M2 ratio (2.5 vs. 0.8 and 0.9; p = 0.019), correlating positively with IL-6 (p = 0.015), ROS (p = 0.023), hepcidin (p = 0.038), and ferritin (p = 0.043). Conversely, endometriosis showed a dominant M2 profile (CD14⁺/CD163⁺), elevated intracellular mTOR and AKT expression in both TAMs and epithelial cells (p < 0.01), and significantly higher ascitic ROS and free iron levels (p = 0.047 and p < 0.0001, respectively). In endometriosis, the M1/M2 ratio correlated inversely with free iron (p = 0.041), while ROS levels were directly associated with iron overload (p = 0.0034). Conclusions: Endometriosis exhibits a distinct immune–metabolic phenotype characterized by M2 macrophage predominance and iron-induced oxidative stress, contrasting with the inflammatory, M1-rich profile of HGS-OC. These findings suggest that iron metabolism and macrophage plasticity contribute to disease persistence in endometriosis and may inform future immunomodulatory strategies. Full article
Show Figures

Figure 1

21 pages, 5329 KB  
Article
Development of Immune-Regulatory Pseudo-Protein-Coated Iron Oxide Nanoparticles for Enhanced Treatment of Triple-Negative Breast Tumor
by Ying Ji, Juan Li, Li Ma, Zhijie Wang, Bochu Du, Hiu Yee Kwan, Zhaoxiang Bian and Chih-Chang Chu
Nanomaterials 2025, 15(13), 1006; https://doi.org/10.3390/nano15131006 - 30 Jun 2025
Viewed by 726
Abstract
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. [...] Read more.
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. This research developed functional polymers that are complexed with therapeutic molecules as a coating strategy for iron oxide nanoparticles. An arginine-based poly (ester urea urethane) polymer complexed with a macrophage-polarizing molecule (APU-R848) could provide a synergistic effect with iron oxide nanoparticles (IONPs) to stimulate the M1-polarization of macrophages at the tumor site, resulting in a versatile nano-platform for immune regulation of TNBC. In the 4T1 in vivo breast tumor model, the APU-R848-IONPs demonstrated an improved intratumoral biodistribution compared to IONPs without a polymer coating. APU-R848-IONPs significantly reversed the immune-suppressive tumor environment by reducing the M2/M1 macrophage phenotype ratio by 51%, associated with an elevated population of cytotoxic T cells and a significantly enhanced production of tumoricidal cytokines. The activated immune response induced by APU-R848-IONP resulted in a significant anti-tumor effect, demonstrating an efficacy that was more than 3.2-fold more efficient compared to the controls. These immune-regulatory pseudo-protein-coated iron oxide nanoparticles represent an effective nano-strategy for macrophages’ regulation and the activation of anti-tumor immunity, providing a new treatment modality for triple-negative breast cancer. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

17 pages, 9885 KB  
Article
Tuberculosis Patients’ Serum Extracellular Vesicles Induce Relevant Immune Responses for Initial Defense Against BCG in Mice
by Wenzhao Xu, Yue Hou, Jingfang Zhang, Tingming Cao, Guangming Dai, Wenjing Wang, Na Tian, Dingyi Liu, Hongqian Chu, Hong Sun and Zhaogang Sun
Microorganisms 2025, 13(7), 1524; https://doi.org/10.3390/microorganisms13071524 - 29 Jun 2025
Cited by 1 | Viewed by 580
Abstract
Extracellular vesicles (EVs) can be distributed in various bodily fluids, such as serum and urine, and play an essential role in immune regulation, substance transport, and other aspects. Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which places [...] Read more.
Extracellular vesicles (EVs) can be distributed in various bodily fluids, such as serum and urine, and play an essential role in immune regulation, substance transport, and other aspects. Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which places a tremendous burden on public health prevention and control within society. Researchers are committed to developing various diagnoses and treatment plans to eliminate TB effectively. The results of some studies conducted to date demonstrate that the serum EVs of TB patients, which carry components related to Mtb, can be used as relevant markers for TB detection and improve diagnostic efficiency. However, no relevant reports exist on the particular physiological functions such EVs perform, thus warranting further exploration. In this study, we collected serum EVs from both healthy individuals and TB patients. After identifying the morphology, concentration, and expression of classic markers (CD63, CD81, and CD9) of EVs, we explored their physiological functions at the cellular level and their physiological functions and effects on BCG colonization in the lungs at the mouse level. It was found that EVs were abundant in TB patients and healthy individuals, and the number of CD63 and CD9 markers co-expressed on the surface of serum EVs in healthy individuals was greater than that in TB patients. Serum EVs in patients with TB can stimulate cells to secrete more immune cytokines, such as TNF-α and IL-6, compared with those in healthy individuals; induce an increase in the M1/M2 ratio of macrophages in the peripheral blood mononuclear cells of mice; and inhibit the colonization of Mycobacterium bovis bacillus Calmette Guérin (BCG) in the lungs of mice. In addition, they can inhibit the occurrence of inflammatory responses in the lung tissue of mice. The above results suggest that serum EVs in TB patients may exert their physiological function by regulating immune responses. This finding also indicates that exploring serum EVs in TB patients with regard to their physiological functions shows excellent potential. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

16 pages, 2852 KB  
Article
A Novel Hybrid Peptide VLP-Aβ Efficiently Regulates Immunity by Stimulating Myeloid Differentiation Protein and Activating the NF-κB Pathway
by Junyong Wang, Xuelian Zhao, Rijun Zhang, Jing Zhang, Yucui Tong, Zaheer Abbas, Dayong Si and Xubiao Wei
Int. J. Mol. Sci. 2025, 26(12), 5834; https://doi.org/10.3390/ijms26125834 - 18 Jun 2025
Viewed by 631
Abstract
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we [...] Read more.
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we successfully identified a novel hybrid peptide, VLP-Aβ (VA), which exhibits both immunomodulatory and antioxidant properties. This study aimed to evaluate the immunomodulatory activity of VA and investigate the underlying molecular mechanisms. In the cyclophosphamide (CTX)-induced immunodeficient mouse model, VA significantly alleviated CTX-induced weight loss. It also restored thymus and spleen indices, and increased serum immunoglobulins (IgA, IgM, IgG) and cytokines (TNF-α, IL-6, IL-1β) levels. VA also improved splenic lymphocyte proliferation, CD4+/CD8+ T cell ratios, and NK cell cytotoxicity. At the cellular level, western blot analysis showed that VA activated the TLR4-NF-κB pathway in RAW264.7 macrophages. Mechanistically, inhibition of the MD2 protein by L6H21 abolished VA’s immunomodulatory effects. This confirms MD2 as a critical mediator. Molecular docking and dynamics simulations revealed that VA binds stably to the hydrophobic pocket of MD2. These findings suggest that VA exerts immunomodulatory effects by stimulating MD2 and activating the TLR4-NF-κB pathway, which provides new ideas, techniques, and approaches for the development of novel peptide immunomodulators. Full article
(This article belongs to the Special Issue Targeted Therapy for Immune Diseases)
Show Figures

Figure 1

22 pages, 1321 KB  
Article
Assessment of Innovative Dry Powders for Inhalation of a Synergistic Combination Against Mycobacterium tuberculosis in Infected Macrophages and Mice
by Faustine Ravon, Emilie Berns, Isaline Lambert, Céline Rens, Pierre-Yves Adnet, Mehdi Kiass, Véronique Megalizzi, Cédric Delporte, Alain Baulard, Vanessa Mathys, Samira Boarbi, Nathalie Wauthoz and Véronique Fontaine
Pharmaceutics 2025, 17(6), 705; https://doi.org/10.3390/pharmaceutics17060705 - 27 May 2025
Viewed by 795
Abstract
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages [...] Read more.
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages make pulmonary administration highly attractive. This study aimed to develop and assess the efficacy of dry powders for inhalation of VAN microparticles embedded with THL. Methods: The dry powders produced by spray-drying, with or without hydrogenated castor oil (HCO), were characterized for their physicochemical properties among others by HPLC-DAD. The fast-screening impactor was used to determine powder aerodynamic properties, and VAN and THL releases were established from the paddle over disk method. Biological activities were assessed in a new M. bovis-infected macrophage model and in Mtb-infected mice. Results and Discussion: The addition of 25% HCO enables co-deposition (fine particle dose) at the desired weight ratio and co-releasing of VAN and THL in aqueous media. Microparticles with 0% to 50% HCO drastically reduced cytoplasmic Mycobacterium bovis survival (99.9% to 62.5%, respectively), with higher efficacy at low HCO concentration. Consequently, VAN/THL with or without 25% HCO was evaluated in Mtb-infected mice. Although no decrease in Mtb lung burden was observed after two weeks of administration, the endotracheal administration of VAN 500 mg/kg and THL 50 mg/kg with 25% HCO administrated three times during five days concomitantly with daily oral rifampicin (10 mg/kg) demonstrated 2-fold bacterial burden reduction compared to the group treated with RIF alone. Conclusions: HCO was crucial for obtaining a fine particle dose at the synergistic weight ratio (VAN/THL 10:1) and for releasing both drugs in aqueous media. With oral administration of the first-line rifampicin, the dry powder VAN/THL/25% HCO was able to exert a potential anti-tubercular effect in vivo in Mtb-infected mice after five days. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

14 pages, 1986 KB  
Article
Activating Transcription Factor 3 (ATF3) Regulates Cellular Senescence and Osteoclastogenesis via STAT3/ERK and p65/AP-1 Pathways in Human Periodontal Ligament Cells
by Won-Jung Bae and Sang-Im Lee
Int. J. Mol. Sci. 2025, 26(10), 4959; https://doi.org/10.3390/ijms26104959 - 21 May 2025
Viewed by 1183
Abstract
Oral cellular aging plays a critical role in the pathogenesis of chronic periodontitis and alveolar bone resorption. Although activating transcription factor 3 (ATF3) has been implicated as a senescence-associated factor, its specific role in periodontal ligament cell (PDLC) senescence remains unclear. Human PDLCs [...] Read more.
Oral cellular aging plays a critical role in the pathogenesis of chronic periodontitis and alveolar bone resorption. Although activating transcription factor 3 (ATF3) has been implicated as a senescence-associated factor, its specific role in periodontal ligament cell (PDLC) senescence remains unclear. Human PDLCs were exposed to lipopolysaccharide (LPS, 1 μg/mL) and nicotine (5 mM) for 3 days to induce senescence. ATF3 expression was silenced using siRNA. The expression of senescence-associated secretory phenotype (SASP) factors (IFNγ, IL6, IL8, TNFα, and IL1β) and the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) were assessed by RT-PCR and immunoassay. Conditioned media (CM) from these cells were applied to mouse bone marrow macrophages (BMMs) to evaluate osteoclast differentiation and bone resorption. In addition, key signaling pathways, including STAT3, ERK, NF-κB (p65), and AP-1, were investigated by Western blotting and immunofluorescence. ATF3 knockdown markedly reduced the LPS/nicotine-induced expression of SASP factors and decreased NO and PGE2 levels. CM from ATF3-silenced PDLCs markedly inhibited osteoclast differentiation, as evidenced by reduced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and diminished bone resorption. Moreover, ATF3 inhibition led to a decreased RANKL/OPG ratio and attenuated the phosphorylation of STAT3 and ERK, along with the reduced nuclear translocation of p65 and AP-1 components. These findings suggest that ATF3 plays a critical role in mediating cellular senescence and osteoclastogenesis in PDLCs. Targeting ATF3 may represent a novel therapeutic strategy for managing age-related oral diseases, such as chronic periodontitis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 1357 KB  
Article
Capsaicinoid Profiles, Phenolic Content, and Antioxidant Properties of Chili Peppers Grown in Urban Settings
by Malak Alghamdi, Thirumurugan Rathinasabapathy and Slavko Komarnytsky
Int. J. Mol. Sci. 2025, 26(10), 4916; https://doi.org/10.3390/ijms26104916 - 20 May 2025
Viewed by 1369
Abstract
The Capsicum genus, native to the Americas and cultivated worldwide for culinary and medicinal purposes, includes five domesticated species with diverse fruit characteristics, pungency, and phytochemical profiles. However, the influence of casual urban backyard growing conditions on these traits remains unknown. In this [...] Read more.
The Capsicum genus, native to the Americas and cultivated worldwide for culinary and medicinal purposes, includes five domesticated species with diverse fruit characteristics, pungency, and phytochemical profiles. However, the influence of casual urban backyard growing conditions on these traits remains unknown. In this study, we first assessed morphological production traits of 11 popular pepper cultivars over two growing seasons to establish a consistent baseline for cultivar performance. Next, we evaluated capsaicinoid and phenolic profiles of 47 pepper cultivars, which contribute to their pungency and antioxidant properties. Capsaicinoid profiles revealed species-specific ratios of capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, with C. annuum and C. baccatum displaying an average 64:30:6 profile, C. chinense and C. frutescens showing a capsaicin-dominant 73:25:2 profile, and C. pubescens expressing a distinct dihydrocapsaicin-dominant 34:60:6 profile. Antioxidant activity positively correlated with capsaicinoid content (ABTS: R2 = 0.8264, p < 0.0001; FRAP: R2 = 0.8117, p < 0.0001), with C. chinense (Carolina Reaper) exhibiting the highest activity (FRAP = 111.8 µM TE/g). In LPS-activated macrophages, all cultivars suppressed nitric oxide production both at the enzymatic (66–89%, p < 0.001) and gene expression levels (4.2 to 5.3-fold reduction, p < 0.05). Interleukin IL-1β expression was upregulated (3.8 to 12.9-fold, p < 0.001), while no significant effects were noted on Cox-2, IL-6, and MCP-1 mRNA levels. These results provide novel insights into the molecular and biochemical adaptations of peppers grown in urban environments and underscore the importance of optimizing cultivation conditions to maximize their bioactive potential and health benefits. Full article
(This article belongs to the Special Issue From Nature to Medicine: Exploring Natural Products for New Therapies)
Show Figures

Figure 1

20 pages, 4306 KB  
Article
Caveolin-1 Deficiency in Macrophages Alleviates Carbon Tetra-Chloride-Induced Acute Liver Injury in Mice
by Ruirui Li, Yixue Shu, Yulin Yan, Junyi Zhu, Zilu Cheng, Jie Zhang, Liming Zhu, Yanhua Qiao and Quan Sun
Int. J. Mol. Sci. 2025, 26(10), 4903; https://doi.org/10.3390/ijms26104903 - 20 May 2025
Viewed by 772
Abstract
Bone marrow-derived macrophages (BMMs) exhibit dynamic behavior and functional capabilities in response to specific microenvironmental stimuli. Recent investigations have proved that BMMs play crucial roles in promoting necrotic lesion resolution. Despite substantial advancements in understanding their activation and interaction with injured livers, researchers [...] Read more.
Bone marrow-derived macrophages (BMMs) exhibit dynamic behavior and functional capabilities in response to specific microenvironmental stimuli. Recent investigations have proved that BMMs play crucial roles in promoting necrotic lesion resolution. Despite substantial advancements in understanding their activation and interaction with injured livers, researchers face challenges to develop effective treatments based on manipulating BMMs function. Caveolin-1 (Cav-1) is the major structural protein on the plasma membrane. We previously reported that Cav-1 knockout (KO) mice exhibited less functional damage and necrosis in carbon tetrachloride (CCl4)-induced liver injury. We hypothesize that the activation and recruitment of BMMs are involved in the resolution of necrotic lesions in Cav-1 KO mice. Wild-type (WT) and Cav-1 KO mice were injected with CCl4 (10% v/v) to induce acute liver injury model. Blood samples and hepatic tissues were harvested for serum alanine transaminase (ALT) activity assessment, histopathological examination through hematoxylin–eosin (H&E) staining, and BMMs subpopulation analysis via flow cytometry. Then, primary BMMs were isolated and cultured to investigate the effect of Cav-1 on BMMs polarization, migration, and activation of STAT3 signal pathway. Validation of hepatic macrophage depletion was induced by administrating clodronate liposomes (CLs), and BMMs reconstitution was evaluated by EGFP labelled BMMs. Following this, hepatic macrophages were depleted by CLs, BMMs were isolated from Cav-1 KO, and WT mice were cultured and administrated to evaluate the protective role of Cav-1-deleted BMMs on the resolution of hepatocellular necrosis and apoptosis in acute liver injury. The BMMs ratio significantly increased from 2.12% (1D), 4.38% (1W), and 5.38% (2W) in oil control mice to 7.17%, 14.90%, and 19.30% in CCl4-treated mice (p < 0.01 or p < 0.001). Concurrently, Cav-1 positive BMMs exhibited a marked elevation from 6.41% at 1D to 24.90% by 2W (p = 0.0228). Cav-1 KO exerted protective effects by reducing serum ALT by 26% (p = 0.0265) and necrotic areas by 28% (p = 0.0220) and enhancing BMMs infiltration by 60% (p = 0.0059). In vitro, Cav-1 KO BMMs showed a decrease in CD206 fluorescence intensity (p < 0.001), a time-dependent upregulation of arginase-1 mRNA (p < 0.05 or p < 0.01), a 1.22-fold increase in phosphorylated STAT3 (p = 0.0036), and impaired wound healing from 12 to 24 h (p < 0.001). The macrophage-depleting action in livers by CL injection persists for a minimum of 48 h. Administrated EGFP+ BMMs emerged as the predominant population following CL injection for a duration of 48 h. Following clodronate liposome-mediated hepatic macrophage depletion, the adoptive transfer of Cav-1 KO BMMs demonstrated therapeutic efficacy in CCl4-induced acute liver injury. In CCl4-induced acute liver injury, the adoptive transfer of Cav-1 KO BMMs reduced necrosis by 12.8% (p = 0.0105), apoptosis by 25.2% (p = 0.0127), doubled macrophages infiltration (p = 0.0269), and suppressed CXCL9/10 mRNA expression (p = 0.0044 or p = 0.0385). BMMs play a key role in the resolution of liver necrotic lesions in CCl4-induced acute liver injury. Cav-1 depletion attenuates hepatocellular necrosis and apoptosis by accelerating BMMs recruitment and M2 polarization. Cav-1 in macrophages may represent a potential therapeutic target for acute liver injury. Full article
(This article belongs to the Special Issue Molecular Insights in Hepatic Disease and Hepatocellular Carcinoma)
Show Figures

Figure 1

Back to TopTop