Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Measured Parameters
2.2. Isolation of Lymphocyte Populations and TAMs from Ascitic Fluid
2.3. Characterization of Lymphocyte/Macrophage Subsets and TAM Polarization
2.4. Intracellular Expression of mTOR and AKT
2.5. Inflammatory Markers, ROS, and Iron Metabolism Parameters in Peripheral Blood and Ascitic Fluid
2.6. Statistical Analysis
3. Results
3.1. Analysis of Lymphocyte Subpopulations and Tumor-Associated Macrophage Polarization in Ascitic Fluid
3.2. Analysis of Intracellular Expression of mTOR, AKT, and PTEN in TAMs and Epithelial Cells Isolated in the Ascitic Fluid
3.3. Analysis of Markers of Inflammation, ROS, and Iron Metabolism in Peripheral Blood and Ascitic Fluid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HGS-OC | High-Grade Serous Ovarian Cancer |
mTOR | Mammalian Target of Rapamycin |
AKT | Protein Kinase B |
CRP | C-Reactive Protein |
ROS | Reactive Oxygen Species |
TAMs | Tumor-Associated Macrophages |
OC | Ovarian Cancer |
References
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Giudice, L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Kitajima, M.; Fujishita, A.; Nakashima, M.; Masuzaki, H. Immunopathogenesis of pelvic endometriosis: Role of hepatocyte growth factor, macrophages and oxidative stress. Gynecol. Obstet. Investig. 2013, 76, 1–8. [Google Scholar]
- Amidifar, S.; Jafari, D.; Mansourabadi, A.H.; Sadaghian, S.; Esmaeilzadeh, A. Immunopathology of Endometriosis, Molecular Approaches. Am. J. Reprod. Immunol. 2025, 93, e70056. [Google Scholar] [CrossRef] [PubMed]
- Brunty, S.; Clower, L.; Mitchell, B.; Fleshman, T.; Zgheib, N.B.; Santanam, N. Peritoneal Modulators of Endometriosis-Associated Ovarian Cancer. Front. Oncol. 2021, 11, 793297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Wang, W.; Wang, D.; Zhang, L.; Wang, X.; He, J.; Cao, L.; Li, K.; Xie, H. Single-Cell Sequencing of Malignant Ascites Reveals Transcriptomic Remodeling of the Tumor Microenvironment during the Progression of Epithelial Ovarian Cancer. Genes 2022, 13, 2276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steinbuch, S.C.; Lüß, A.-M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int. J. Mol. Sci. 2024, 25, 4306. [Google Scholar] [CrossRef]
- Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X. M1 and M2 macrophages in endometriosis. Front. Immunol. 2021, 12, 720202. [Google Scholar]
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 2012, 12, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Meng, Y.; Blank, C.; Brown, I.; Kacha, A.; Kline, J.; Harlin, H. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 2006, 213, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumor-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Samartzis, E.P.; Labidi-Galy, S.I.; Moschetta, M.; Uccello, M.; Kalaitzopoulos, D.R.; Perez-Fidalgo, J.A.; Boussios, S. Endometriosis-associated ovarian carcinomas: Insights into pathogenesis, diagnostics, and therapeutic targets-a narrative review. Ann. Transl. Med. 2020, 8, 1712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, D.; Wang, X.; Shi, Z.; Jiang, Y.; Zheng, B.; Xu, L.; Zhou, S. Understanding endometriosis from an immunomicroenvironmental perspective. Chin. Med. J. 2023, 136, 1897–1909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef]
- Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014, 25, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Lin, W.C.; Ye, J.; Chen, D.T.; Chen, K.C.; Wang, D.Y.; Tan, T.Z.; Wei, L.H.; Huang, R.Y. Spatial Profiling of Ovarian Clear Cell Carcinoma Reveals Immune-Hot Features. Mod. Pathol. 2025, 38, 100630. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J.; Aloisi, A.; Armbruster, S.; Yen, T.T.; Casarin, J.; Leitao, M.M., Jr.; Tanner, E.J.; Matsuno, R.; Machado, K.K.; Dowdy, S.C.; et al. Minimally invasive hysterectomy surgery rates for endometrial cancer performed at National Comprehensive Cancer Network (NCCN) Centers. Gynecol. Oncol. 2018, 148, 480–484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Becker, C.M.; Bokor, A.; Heikinheimo, O.; Horne, A.; Jansen, F.; Kiesel, L.; King, K.; Kvaskoff, M.; Nap, A.; Petersen, K.; et al. ESHRE guideline: Endometriosis. Hum. Reprod. Open 2022, 2022, hoac009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madeddu, C.; Gramignano, G.; Kotsonis, P.; Coghe, F.; Atzeni, V.; Scartozzi, M.; Macciò, A. Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: Key role of interleukin-6. Haematologica 2018, 103, e388–e391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macciò, A.; Gramignano, G.; Cherchi, M.C.; Tanca, L.; Melis, L.; Madeddu, C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci. Rep. 2020, 10, 6096. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Zhong, Z.; Wei, C.; Liu, Y.; Zhu, X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front. Immunol. 2023, 14, 1134663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoover, A.A.; Hufnagel, D.H.; Harris, W.; Bullock, K.; Glass, E.B.; Liu, E.; Barham, W.; Crispens, M.A.; Khabele, D.; Giorgio, T.D.; et al. Increased canonical NF-kappaB signaling specifically in macrophages is sufficient to limit tumor progression in syngeneic murine models of ovarian cancer. BMC Cancer 2020, 20, 970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Artemova, D.; Vishnyakova, P.; Khashchenko, E.; Elchaninov, A.; Sukhikh, G.; Fatkhudinov, T. Endometriosis and Cancer: Exploring the Role of Macrophages. Int. J. Mol. Sci. 2021, 22, 5196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capobianco, A.; Rovere-Querini, P. Endometriosis, a disease of the macrophage. Front. Immunol. 2013, 4, 9. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, Y.; Liu, L.; Zhang, J.; Wu, X.; Liu, Y.; Zhao, X.Z.; Rao, L. Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy. Small 2024, 20, e2311702. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, J.; Tan, M.; Tan, Q. The role of macrophage polarization in ovarian cancer: From molecular mechanism to therapeutic potentials. Front. Immunol. 2025, 16, 1543096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vankerckhoven, A.; Wouters, R.; Mathivet, T.; Ceusters, J.; Baert, T.; Van Hoylandt, A.; Gerhardt, H.; Vergote, I.; Coosemans, A. Opposite Macrophage Polarization in Different Subsets of Ovarian Cancer: Observation from a Pilot Study. Cells 2020, 9, 305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, C.F.; Khine, A.A.; Huang, H.S.; Chu, T.Y. The Double Engines and Single Checkpoint Theory of Endometriosis. Biomedicines 2022, 10, 1403. [Google Scholar] [CrossRef]
- Yan, D.; Liu, X.; Xu, H.; Guo, S.W. Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition. J. Clin. Endocrinol. Metab. 2020, 105, dgaa550. [Google Scholar] [CrossRef]
- Vercellini, P.; Salmeri, N.; Somigliana, E.; Piccini, M.; Caprara, F.; Viganò, P.; De Matteis, S. Müllerian anomalies and endometriosis as potential explanatory models for the retrograde menstruation/implantation and the embryonic remnants/celomic metaplasia pathogenic theories: A systematic review and meta-analysis. Hum. Reprod. 2024, 39, 1460–1470. [Google Scholar] [CrossRef]
- Ishimaru, T.; Khan, K.N.; Fujishita, A.; Kitajima, M.; Masuzaki, H. Hepatocyte growth factor may be involved in cellular changes to the peritoneal mesothelium adjacent to pelvic endometriosis. Fertil. Steril. 2004, 81, 810–818. [Google Scholar] [CrossRef]
- Halme, J.; Becker, S.; Haskill, S. Altered maturation and function of peritoneal macrophages: Possible role in pathogenesis of endometriosis. Am. J. Obstet. Gynecol. 1987, 156, 783–789. [Google Scholar] [CrossRef]
- Ramírez-Pavez, T.N.; Martínez-Esparza, M.; Ruiz-Alcaraz, A.J.; Marín-Sánchez, P.; Machado-Linde, F.; García-Peñarrubia, P. The Role of Peritoneal Macrophages in Endometriosis. Int. J. Mol. Sci. 2021, 22, 10792. [Google Scholar] [CrossRef]
- Tariverdian, N.; Siedentopf, F.; Rücke, M.; Blois, S.M.; Klapp, B.F.; Kentenich, H.; Arck, P.C. Intraperitoneal immune cell status in infertile women with and without endometriosis. J. Reprod. Immunol. 2009, 80, 80–90. [Google Scholar] [CrossRef]
- Oosterlynck, D.J.; Meuleman, C.; Lacquet, F.A.; Waer, M.; Koninckx, P.R. Flow cytometry analysis of lymphocyte subpopulations in peritoneal fluid of women with endometriosis. Am. J. Reprod. Immunol. 1994, 31, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Yamamoto, K.; Fujishita, A.; Muto, H.; Koshiba, A.; Kuroboshi, H.; Saito, S.; Teramukai, S.; Nakashima, M.; Kitawaki, J. Differential Levels of Regulatory T Cells and T-Helper-17 Cells in Women with Early and Advanced Endometriosis. J. Clin. Endocrinol. Metab. 2019, 104, 4715–4729. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.H.; Chen, K.F.; Lin, S.C.; Lgu, C.W.; Tsai, S.J. Aberrant Expression of Leptin in Human Endometriotic Stromal Cells Is Induced by Elevated Levels of Hypoxia Inducible Factor-1α. Am. J. Pathol. 2007, 170, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Defrère, S.; Lousse, J.C.; González-Ramos, R.; Colette, S.; Donnez, J.; Van Langendonckt, A. Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol. Hum. Reprod. 2008, 14, 377–385. [Google Scholar] [CrossRef]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- Klemmt, P.A.B.; Starzinski-Powitz, A. Molecular and Cellular Pathogenesis of Endometriosis. Curr. Women’s Health Rev. 2018, 14, 106–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobayashi, H.; Imanaka, S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review. Reprod. Med. Biol. 2022, 21, e12488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ni, C.; Li, D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine 2024, 103, e37421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, C.T.; Rosas, M.; Davies, L.C.; Giles, P.J.; Tyrrell, V.J.; O’Donnell, V.B.; Topley, N.; Humphreys, I.R.; Fraser, D.J.; Jones, S.A.; et al. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. Eur. J. Immunol. 2016, 46, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burnett, S.H.; Beus, B.J.; Avdiushko, R.; Qualls, J.; Kaplan, A.M.; Cohen, D.A. Development of Peritoneal Adhesions in Macrophage Depleted Mice. J. Surg. Res. 2006, 131, 296–301. [Google Scholar] [CrossRef]
- Salamonsen, L.A.; Zhang, J.; Brasted, M. Leukocyte networks and human endometrial remodelling. J. Reprod. Immunol. 2002, 57, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Berbic, M.; Schulke, L.; Markham, R.; Tokushige, N.; Russell, P.; Fraser, I.S. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod. Oxf. Engl. 2009, 24, 325–332. [Google Scholar] [CrossRef]
- Hogg, C.; Panir, K.; Dhami, P.; Rosser, M.; Mack, M.; Soong, D.; Pollard, J.W.; Jenkins, S.J.; Horne, A.W.; Greaves, E. Macrophages inhibit and enhance endometriosis depending on their origin. Proc. Natl. Acad. Sci. USA 2021, 118, e2013776118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takebayashi, A.; Kimura, F.; Kishi, Y.; Ishida, M.; Takahashi, A.; Yamanaka, A.; Wu, D.; Zheng, L.; Takahashi, K.; Suginami, H.; et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am. J. Reprod. Immunol. 2015, 73, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Poli-Neto, O.B.; Meola, J.; Rosa-E-Silva, J.C.; Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 2020, 10, 313. [Google Scholar] [CrossRef]
- Bacci, M.; Capobianco, A.; Monno, A.; Cottone, L.; Di Puppo, F.; Camisa, B.; Mariani, M.; Brignole, C.; Ponzoni, M.; Ferrari, S.; et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am. J. Pathol. 2009, 175, 547–556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abrao, M.S.; Podgaec, S.; Dias, J.A., Jr.; Averbach, M.; Garry, R.; Silva, L.F.F.; Carvalho, F.M. Deeply infiltrating endometriosis affecting the rectum and lymph nodes. Fertil. Steril. 2006, 86, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Liu, L.; Gong, C.Y.; Shi, H.S.; Zeng, Y.H.; Wang, X.Z.; Zhao, Y.W.; Wei, Y.Q. Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PLoS ONE 2012, 7, e50946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kajiyama, H.; Suzuki, S.; Yoshihara, M.; Tamauchi, S.; Yoshikawa, N.; Niimi, K.; Shibata, K.; Kikkawa, F. Endometriosis and cancer. Free Radic. Biol. Med. 2019, 133, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 macrophages and their overlaps—Myth or reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
Patients with Ovarian Carcinoma | Patients with Endometriosis | ||
---|---|---|---|
Patients enrolled, No. | 198 | 40 | |
Median age, years (range) | 64 ± 7 (58–78) | 30 ± 10 (19–42) | |
Median height, cm (range) | 160 ± 10 (154–174) | 164 ± 15 (150–173) | |
Median weight, kg (range) | 62 ± 15 (37–75) | 55 ± 10 (46–68) | |
Histotype, No. (%) | |||
High-grade serous | 178 (89.8%) | ||
Clear cell | 10 (5.1%) | ||
Endometrioid | 10 (5.1%) | ||
Stage, No. (%) | |||
IIIC | 146 (73.7%) | ||
IV | 52 (26.3%) |
Expression of Markers of TAM Polarization | HGS-OC No. 178 | Other Histotypes No. 20 | Endometriosis No. 40 | p-Value |
---|---|---|---|---|
CD14+/CD80+/Glut+ cells: %, mean ± SD | 56.7 ± 12 | 28.6 ± 10.8 | 23.7 ± 7.9 | 0.038 a,b |
CD14+/CD163+: %, mean ± SD | 34 ± 11 | 52.7 ± 15 | 49.9 ± 11.8 | 0.047 a,b |
CD14+/CD80+/HLADR+: %, mean ± SD | 51.9 ± 11 | 21.9 ± 12 | 31.5 ± 18.6 | <0.001 a,b |
CD14+/CD163+/CD206+: %, mean ± SD | 21.9 ± 11.6 | 40.3 ± 15.4 | 39.7 ± 15.2 | 0.003 a,b |
CD14+/CD80+/Arg1−: %, mean ± SD | 58.7 ± 4.3 | 29.6 ± 10.3 | 30.7 ± 9.8 | 0.0413 a,b |
CD14+/CD163+/Arg1+: %, mean ± SD | 22 ± 6.2 | 37.3 ± 11.5 | 36.4 ± 12.9 | 0.001 a,b |
CD80+/CD163+ ratio: %, median ± SD | 2.5 ± 0.7 | 0.8 ± 0.3 | 0.9 ± 0.4 | 0.019 a,b |
Lymphocyte subpopulations | ||||
CD3+: %, mean ± SD | 39.8 ± 17.1 | 35.8 ± 13.5 | 31.5 ± 11.6 | 0.678 |
CD3+/CD4+: %, mean ± SD | 22.5 ± 11.8 | 25.1 ± 3.3 | 35 ± 9.9 | 0.447 |
CD3+/CD8+: %, mean ± SD | 33.3 ± 19 | 20.6 ± 8.5 | 22.9 ± 7.9 | 0.444 |
CD4/CD8 ratio: mean ± SD | 0.8 ± 0.5 | 1.4 ± 0.6 | 1.4 ± 0.4 | 0.016 a,b |
mTOR/AKT intracellular expression | ||||
CD14+/mTOR+: %, mean ± SD | 22.3 ± 12.1 | 48.2 ± 12.7 | 41.6 ± 13.6 | 0.001 a,b |
CD14+/AKT+: %, mean ± SD | 21 ± 4.2 | 51 ± 16 | 49.6 ± 4.5 | 0.002 a,b |
EPCAM+/mTOR+: %, mean ± SD | 20.1 ± 7.2 | 52 ± 12.6 | 47.5 ± 13.4 | <0.001 a,b |
EPCAM+/AKT+: %, mean ± SD | 23.6 ± 6.2 | 51.4 ± 10.1 | 51.5 ± 6 | <0.001 a,b |
Circulating Parameters: Mean ± SD (Range) | HGS-OC No. 178 | Other Histotypes No. 20 | Endometriosis No. 40 | Controls No. 150 | p-Value |
---|---|---|---|---|---|
CRP, mg/L | 85 ± 56 (7–200) | 17 ± 5 (2–23) | 2.1 ± 0.9 (0–4.5) | 1.5 ± 0.2 (0–5) | <0.0001 a,b,c |
Fibrinogen, mg/dL | 484 ± 197 (340–758) | 350 ± 68 (243–480) | 280 ± 120 (140–340) | 250 ± 90 (180–300) | <0.0001 a,b,c |
IL-6, pg/mL | 80 ± 53 (10–299) | 31 ± 13 (13–89) | 2.4 ± 1.3 (0–4) | 0.5 ± 0.1 (0–1) | <0.0001 a,b,c |
ROS, FORT Units | 457 ± 69 (369–600) | 387 ± 65 (236–430) | 291 ± 185 (150–350) | 200 ± 80 (160–250) | <0.0001 a,b,c |
Hepcidin, ng/mL | 77 ± 25 (32–125) | 33 ± 13 (18–70) | 19.13 ± 14 (0–24) | 17 ± 11 (3–20) | <0.001 a,b,c |
Serum iron, g/dL | 31.6 ± 27 (5–172) | 84.3 ± 55 (11–171) | 65 ± 29.7 (40–171 | 54.5 ± 25 (40–180) | <0.0001 a,b,c |
Ferritin, ng/mL | 505 ± 277 (22–1034) | 113 ± 91 (35–288) | 203 ± 89 (40–250) | 80 ± 48 (5–148) | <0.0001 a,b,c |
Transferrin, ng/mL | 173 ± 35 (115–269) | 183 ± 35 (109–298) | 171 ± 27.6 (100–250) | 160 ± 35 (100–360) | N.S. |
Ascitic Fluid Parameters: Mean ± SD (Range) | HGS-OC No. 178 | Other Histotypes No. 20 | Endometriosis No. 40 | Controls No. 150 | p-Value |
CRP, mg/L | 19.1 ± 7.2 (2.5–38) | 14.1 ± 5.8 (4.1–30.2) | 0.9 ± 0.4 (0.03–1.8) | 0.5 ± 0.1 (0–1.5) | 0.045 a,b,c |
IL-6, pg/mL | 1081 ± 495 (100–1900) | 69 ± 37 (6–169) | 0.7 ± 0.3 (0.1–3.4) | 1 ± 0.2 (0–3) | <0.0001 a,b,c |
ROS, FORT Units | 469 ± 114 (302–600) | 350 ± 190 (202–464) | 540 ± 147 (160–800) | 80 ± 40 (10–160) | 0.047 a,b,c |
Hepcidin, ng/mL | 94 ± 34 (38–210) | 37 ± 24 (12–80) | 8.1 ± 2.1 (1.9–21) | 1.4 ± 0.5 (0–2) | <0.0001 a,b,c |
Free iron, g/dL | 25 ± 15 (4–57) | 45 ± 21 (13–99) | 73.6 ± 45 (21–168) | 48.3 ± 30 (20–60) | <0.0001 a,b,c |
Ferritin, ng/mL | 1005 ± 359 (71–1500) | 395 ± 153 (115–469) | 590 ± 184 (10–750) | 94 ± 57 (10–150) | <0.0001 a,b,c |
Transferrin, ng/mL | 141 ± 45 (35–192) | 151 ± 29 (129–193) | 155 ± 65 (89–263) | 200 ± 40 (150–300) | N.S. |
Macrophage Polarization and Ascitic Inflammation Levels, Oxidative Stress, and Iron Metabolism in Patients with Endometriosis and Ovarian Carcinoma | ||||||
---|---|---|---|---|---|---|
Patients with Endometriosis | Patients with HGS-OC | Patients with Other OC Histotypes | ||||
Parameters | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value |
IL-6 | 0.8096 (−0.6827–0.9958) | 0.1904 | 0.8096 (0.2827–0.9958) | 0.015 | −0.2154 (−0.9224–0.8233) | 0.7279 |
CRP | 0.4274 (−0.0571–0.0945) | 0.1657 | 0.4274 (−0.1941–0.8041) | 0.1657 | 0.3220 (−0.7826–0.9378) | 0.5972 |
Hepcidin | 0.8542 (−0.5971–0.9969) | 0.1458 | 0.8542 (0.5971–0.9969) | 0.0380 | −0.3598 (−0.9428–0.7655) | 0.5520 |
Ferritin | 0.02186 (−0.7434–0.7624) | 0.9629 | 0.6164 (0.0263–0.888) | 0.0434 | 0.8062 (−0.6878–0.9958) | 0.1938 |
Free iron | −0.5033 (−0.7304–0.7741) | 0.0415 | 0.462 (0.2757–0.6522) | 0.0630 | −0.8977 (−0.4826–0.5378) | 0.2905 |
ROS | 0.5762 (−0.4421–0.9456) | 0.5762 | 0.6726 (0.1220–0.9067) | 0.0233 | 0.6869 (−0.4960–0.9770) | 0.2002 |
ROS Levels and Ascitic Levels of Inflammation and Serum Metabolism Parameters in Patients with Endometriosis | ||||||
Patients with Endometriosis | Patients with HGS-OC | Patients with Other OC Histotypes | ||||
Parameters | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value |
IL-6 | 0.3446 (−0.8715–0.5516) | 0.4490 | 0.3554 (−0.1243–0.4323) | 0.0279 | 0.01634 (−0.6732–0.6549) | 0.9667 |
CRP | 0.3920 (−0.2347–0.7885) | 0.2076 | 0.3274 (−0.0941–0.6041) | 0.3567 | 0.2169 (−0.8228–0.9226) | 0.7261 |
Hepcidin | −0.0814 (−0.7073–0.6161) | 0.8352 | −0.08895 (−0.6539–0.5397) | 0.7948 | −0.3598 (−0.9428–0.7655) | 0.5520 |
Ferritin | 0.4913 (−0.2003–0.8561) | 0.1493 | 0.5574 (0.03803–0.8396) | 0.0584 | 0.5395 (−0.8756–0.9882) | 0.4605 |
Free iron | 0.8232 (0.4018–0.9569) | 0.0034 | 0.4491 (0.3074–0.9253) | 0.0510 | 0.4977 (0.1826–0.5378) | 0.0591 |
Parameters | Coefficient | Confidence Interval CI 95% | p-Value |
---|---|---|---|
IL-6 | −15.4377 | −63.7764–32.9009 | 0.4490 |
CRP | 4.8884 | −3.1948–12.9715 | 0.2076 |
Hepcidin | 3.5361 | −2.60185–8.70908 | 0.1458 |
Ferritin | 0.1245 | −0.05545–0.3045 | 0.1493 |
Free iron | 2.7808 | 1.2170–4.3446 | 0.0034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neri, M.; Sanna, E.; Ferrari, P.A.; Madeddu, C.; Lai, E.; Vallerino, V.; Macciò, A. Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis. Cancers 2025, 17, 2325. https://doi.org/10.3390/cancers17142325
Neri M, Sanna E, Ferrari PA, Madeddu C, Lai E, Vallerino V, Macciò A. Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis. Cancers. 2025; 17(14):2325. https://doi.org/10.3390/cancers17142325
Chicago/Turabian StyleNeri, Manuela, Elisabetta Sanna, Paolo Albino Ferrari, Clelia Madeddu, Eleonora Lai, Valerio Vallerino, and Antonio Macciò. 2025. "Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis" Cancers 17, no. 14: 2325. https://doi.org/10.3390/cancers17142325
APA StyleNeri, M., Sanna, E., Ferrari, P. A., Madeddu, C., Lai, E., Vallerino, V., & Macciò, A. (2025). Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis. Cancers, 17(14), 2325. https://doi.org/10.3390/cancers17142325