Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = London dispersive interaction energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4663 KiB  
Article
Effect of Temperature on Adhesion Work of Model Organic Molecules on Modified Styrene–Divinylbenzene Copolymer Using Inverse Gas Chromatography
by Tayssir Hamieh and Vladimir Yu Gus’kov
Crystals 2025, 15(6), 490; https://doi.org/10.3390/cryst15060490 - 22 May 2025
Viewed by 347
Abstract
In previous studies, a new methodology was developed to determine the free dispersive and polar energies, the surface energies, and Lewis acid–base parameters of a polystyrene–divinylbenzene (S-DVB) copolymer modified by melamine, 5-Hydroxy-6-methyluracil, and 5-fluouracil. In this paper, we were interested in the determination [...] Read more.
In previous studies, a new methodology was developed to determine the free dispersive and polar energies, the surface energies, and Lewis acid–base parameters of a polystyrene–divinylbenzene (S-DVB) copolymer modified by melamine, 5-Hydroxy-6-methyluracil, and 5-fluouracil. In this paper, we were interested in the determination of the work of the adhesion of solvents on the modified copolymer as a function of temperature and for the different modifiers with the help of inverse gas chromatography at infinite dilution. The variations in the London dispersive and polar surface properties of copolymers against the temperature led to the determination of the different acid–base components of their surface energies. Using Fowkes’s equation, van Oss’s relation, and Owens’s concept, we obtained the variations in the dispersive and polar works of the adhesion of the different solid surfaces, and the corresponding forces of interaction between the organic solvents and the modified copolymer. It was shown that the work of adhesion is a function of two thermodynamic variables: the temperature and the modifier percentage. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Graphical abstract

19 pages, 4241 KiB  
Article
London Dispersive and Polar Surface Properties of Styrene–Divinylbenzene Copolymer Modified by 5-Hydroxy-6-Methyluracil Using Inverse Gas Chromatography
by Tayssir Hamieh and Vladimir Yu Gus’kov
Crystals 2025, 15(5), 438; https://doi.org/10.3390/cryst15050438 - 3 May 2025
Cited by 1 | Viewed by 1636
Abstract
The London dispersive and polar surface properties of solid materials are very important in many chemical processes, such as adsorption, coatings, catalysis, colloids, and mechanical engineering. One of the materials, a styrene–divinylbenzene copolymer modified with 5-hydroxy-6-methyluracil at different percentages, has not been deeply [...] Read more.
The London dispersive and polar surface properties of solid materials are very important in many chemical processes, such as adsorption, coatings, catalysis, colloids, and mechanical engineering. One of the materials, a styrene–divinylbenzene copolymer modified with 5-hydroxy-6-methyluracil at different percentages, has not been deeply characterized in the literature, and it isparticularly crucial to determine its London dispersive and polar properties. Recent research in the inverse gas chromatography (IGC) technique allowed a full determination of the surface properties of a styrene–divinylbenzene copolymer modified with 5-hydroxy-6-methyluracil by using well-known polar and non-polar organic solvents and varying the temperature. Applying the IGC technique at infinite dilution resulted in the retention volume of adsorbed molecules on styrene–divinylbenzene copolymer modified with 5-hydroxy-6-methyluracil at different percentages, using the Hamieh thermal model and our recent results on the separation of the two polar and dispersive contributions to the free energy of interaction. The surface properties of these materials, such as the surface free energy of adsorption, the polar acid and base surface energy, and the Lewis acid–base parameters, were obtained as a function of temperature and for different percentages of 5-hydroxy-6-methyluracil. The obtained results proved that the polar free energy of adsorption on styrene–divinylbenzene copolymer increased when the percentage of 5-hydroxy-6-methyluracil (HMU) increased. However, a decrease in the London dispersive surface energy of the copolymer was observed for higher percentages of 5-hydroxy-6-methyluracil. A Lewis amphoteric character was shown for the copolymer with the highest acidity, while the basicity linearly increased when the percentage of HMU increased. Full article
Show Figures

Figure 1

16 pages, 2691 KiB  
Article
New Advances on the Dispersive and Polar Surface Properties of Poly(styrene-co-butadiene) Using Inverse Gas Chromatography
by Tayssir Hamieh
Polymers 2024, 16(23), 3233; https://doi.org/10.3390/polym16233233 - 21 Nov 2024
Cited by 1 | Viewed by 989
Abstract
The dispersive and polar properties of materials, and especially of polymers and copolymers, play an important role in several engineering applications implying their surfaces and interfaces. The surface energetic properties of poly(styrene-co-butadiene) have never been studied. We proposed in this study an accurate [...] Read more.
The dispersive and polar properties of materials, and especially of polymers and copolymers, play an important role in several engineering applications implying their surfaces and interfaces. The surface energetic properties of poly(styrene-co-butadiene) have never been studied. We proposed in this study an accurate determination of such properties by using inverse gas chromatography (IGC) at infinite dilution. Background: The IGC surface technique led to the dispersive and polar properties of poly(styrene-co-butadiene) rubber (SBR) by adsorption of organic solvents at various temperatures. Methods: Our new methodology, based on the thermal Hamieh model and the London dispersion interaction energy, was used to determine the London dispersion surface energy, the polar acid–base surface energy, and the Lewis acid–base properties of the copolymer. Results: The different surface energy parameters of the SBR were obtained as a function of temperature from the chromatographic measurements. Conclusions: The dispersive and polar free energies of adsorption of the various n-alkanes and polar molecules on poly(styrene-co-butadiene) were determined at different temperatures. A decrease in the London dispersive surface energy and the polar Lewis acid–base surface energies of SBR was highlighted when the temperature increased. It showed a Lewis amphoteric character of poly(styrene-co-butadiene) with a highest basic constant 10 times larger than its acidic constant. This new and original method can better characterize the surface thermodynamic properties of poly(styrene-co-butadiene). Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

20 pages, 5493 KiB  
Article
Exploring the Application of Advanced Chromatographic Methods to Characterize the Surface Physicochemical Properties and Transition Phenomena of Polystyrene-b-poly(4-vinylpyridine)
by Tayssir Hamieh
Molecules 2024, 29(20), 4812; https://doi.org/10.3390/molecules29204812 - 11 Oct 2024
Cited by 1 | Viewed by 1249
Abstract
The linear diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of [...] Read more.
The linear diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of great importance in many chemical and industrial processes. (2) Methods: The inverse gas chromatography (IGC) at infinite dilution was used for the experimental determination of the retention volumes of organic solvents adsorbed on copolymer surfaces as a function of temperature. This led to the variations in the free energy of interaction necessary to the evaluation of the London dispersive and polar acid–base surface energies, the polar enthalpy and entropy, the Lewis acid–base constants, and the transition temperatures of the PS-P4VP copolymer. (3) Results: The application of the thermal Hamieh model led to an accurate determination of the London dispersive surface energy of the copolymer that showed non-linear variations versus the temperature, highlighting the presence of two transition temperatures. It was observed that the Lewis acid–base parameters of the copolymer strongly depend on the temperature, and the Lewis base constant of the solid surface was shown to be higher than its acid constant. (4) Conclusions: An important effect of the temperature on the surface thermodynamic properties of PS-P4VP was proven and new surface correlations were determined. Full article
Show Figures

Graphical abstract

14 pages, 1801 KiB  
Article
Strength of London Dispersion Forces in Organic Structure Directing Agent—Zeolite Assemblies
by Karima Ata, Tzonka Mineva and Bruno Alonso
Molecules 2024, 29(18), 4489; https://doi.org/10.3390/molecules29184489 - 21 Sep 2024
Cited by 1 | Viewed by 1309
Abstract
Herein, we study the London dispersion forces between organic structure directing agents (OSDAs)—here tetraalkyl-ammonium or -phosphonium molecules—and silica zeolite frameworks (FWs). We demonstrate that the interaction energy for these dispersion forces is correlated to the number of H atoms in OSDAs, irrespective of [...] Read more.
Herein, we study the London dispersion forces between organic structure directing agents (OSDAs)—here tetraalkyl-ammonium or -phosphonium molecules—and silica zeolite frameworks (FWs). We demonstrate that the interaction energy for these dispersion forces is correlated to the number of H atoms in OSDAs, irrespective of the structures of OSDAs or FWs, and of variations in charges and thermal motions. All calculations considered—DFT-D3 and BOMD undertaken by us, and molecular mechanics from an accessible database—led to the same trend. The mean energy of these dispersion forces is ca. −2 kcal.mol−1 per H for efficient H-O contacts. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Graphical abstract

22 pages, 5443 KiB  
Article
Surface Thermodynamic Properties of Styrene–Divinylbenzene Copolymer Modified by Supramolecular Structure of Melamine Using Inverse Gas Chromatography
by Tayssir Hamieh and Vladimir Yu Gus'kov
Chemistry 2024, 6(5), 830-851; https://doi.org/10.3390/chemistry6050050 - 30 Aug 2024
Cited by 2 | Viewed by 2032
Abstract
The surface thermodynamic properties of polymers and copolymers modified by supramolecular structures are used in several industrial processes, such as selective adsorption, paints, coatings, colloids, and adhesion applications. Background: Inverse gas chromatography at infinite dilution was proved to be the best technique to [...] Read more.
The surface thermodynamic properties of polymers and copolymers modified by supramolecular structures are used in several industrial processes, such as selective adsorption, paints, coatings, colloids, and adhesion applications. Background: Inverse gas chromatography at infinite dilution was proved to be the best technique to determine the surface properties of solid surfaces by studying the adsorption of some model polar and non-polar organic molecules adsorbed on solid surfaces at different temperatures. Methods: The retention volume of adsorbed solvents is a valuable parameter that was used to obtain the London dispersive and polar free energies and the London dispersive surface energy of styrene–divinylbenzene copolymer modified by supramolecular structure of melamine using both the Hamieh thermal model and our new methodology consisting of the separation of the two polar molecules and the dispersive free energy of their interaction. This led to the determination of the polar acid and base surface energy, and the Lewis acid–base constants of the various solid materials. Results: Following our new methodology, all surface energetic properties of styrene–divinylbenzene copolymer modified by melamine at different percentages were determined as a function of temperature. Conclusions: It was observed that the styrene–divinylbenzene copolymer exhibited the highest London dispersive surface energy, which decreased when the melamine percentage increased. All materials presented higher Lewis basicity and this Lewis basicity increased with the percentage of melamine. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

16 pages, 2850 KiB  
Article
Self-Association and Microhydration of Phenol: Identification of Large-Amplitude Hydrogen Bond Librational Modes
by Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(13), 3012; https://doi.org/10.3390/molecules29133012 - 25 Jun 2024
Cited by 4 | Viewed by 1720
Abstract
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association [...] Read more.
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association mechanisms of relevance for biological molecular recognition processes via spectroscopic observations of large-amplitude hydrogen bond librational modes of phenol cluster molecules embedded in inert neon “quantum” matrices complemented by domain-based local pair natural orbital-coupled cluster DLPNO-CCSD(T) theory. The spectral signatures confirm a primarily intermolecular O-H⋯H hydrogen-bonded structure of the phenol dimer strengthened further by cooperative contributions from inter-ring London dispersion forces as supported by DLPNO-based local energy decomposition (LED) predictions. In the same way, the hydrogen bond librational bands observed for the trimeric cluster molecule confirm a pseudo-C3 symmetric cyclic cooperative hydrogen-bonded barrel-like potential energy minimum structure. This structure is vastly different from the sterically favored “chair” conformations observed for aliphatic alcohol cluster molecules of the same size owing to the additional stabilizing London dispersion forces and C–H⋯π interactions between the aromatic rings. The hydrogen bond librational transition observed for the phenol monohydrate finally confirms that phenol acts as a hydrogen bond donor to water in contrast to the hydrogen bond acceptor role observed for aliphatic alcohols. Full article
Show Figures

Figure 1

23 pages, 4888 KiB  
Article
Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution
by Tayssir Hamieh
Molecules 2024, 29(12), 2871; https://doi.org/10.3390/molecules29122871 - 17 Jun 2024
Cited by 3 | Viewed by 2077
Abstract
The thermal surface properties of graphenes and carbon materials are of crucial importance in the chemistry of materials, chemical engineering, and many industrial processes. Background: The determination of these surface properties is carried out using inverse gas chromatography at infinite dilution, which leads [...] Read more.
The thermal surface properties of graphenes and carbon materials are of crucial importance in the chemistry of materials, chemical engineering, and many industrial processes. Background: The determination of these surface properties is carried out using inverse gas chromatography at infinite dilution, which leads to the retention volume of organic solvents adsorbed on solid surfaces. This experimental and fundamental parameter actually reflects the surface thermodynamic interactions between injected probes and solid substrates. Methods: The London dispersion equation and the Hamieh thermal model are used to quantify the London dispersive and polar surface energy of graphenes and carbon fibers as well their Lewis acid-base constants by introducing the coupling amphoteric constant of materials. Results: The London dispersive and polar acid-base surface energies, the free energy of adsorption, the polar enthalpy and entropy, and the Lewis acid-base constants of graphenes and carbon materials are determined. Conclusions: It is shown that graphene exhibited the highest values of London dispersive surface energy, polar surface energy, and Lewis acid-base constants. The highest characteristics of graphene justify its great potentiality and uses in many industrial applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

21 pages, 3636 KiB  
Article
Temperature Dependence of the Polar and Lewis Acid–Base Properties of Poly Methyl Methacrylate Adsorbed on Silica via Inverse Gas Chromatography
by Tayssir Hamieh
Molecules 2024, 29(8), 1688; https://doi.org/10.3390/molecules29081688 - 9 Apr 2024
Cited by 5 | Viewed by 2075
Abstract
The adsorption of polymers on solid surfaces is common in many industrial applications, such as coatings, paints, catalysis, colloids, and adhesion processes. The properties of absorbed polymers commonly vary with temperature. In this paper, inverse gas chromatography at infinite dilution was used to [...] Read more.
The adsorption of polymers on solid surfaces is common in many industrial applications, such as coatings, paints, catalysis, colloids, and adhesion processes. The properties of absorbed polymers commonly vary with temperature. In this paper, inverse gas chromatography at infinite dilution was used to determine the physicochemical characterization of PMMA adsorbed on silica. A new method based on the London dispersion equation was applied with a new parameter associating the deformation polarizability with the harmonic mean of the ionization energies of the solvent. More accurate values of the dispersive and polar interaction energies of the various organic solvents adsorbed on PMMA in bulk phase and PMMA/silica at different recovery fractions were obtained, as well as the Lewis acid–base parameters and the transition temperatures of the different composites. It was found that the temperature and the recovery fraction have important effects on the various physicochemical and thermodynamic properties. The variations in all the interaction parameters showed the presence of three transition temperatures for the different PMMA composites adsorbed on silica with various coverage rates, with a shift in these temperatures for a recovery fraction of 31%. An important variation in the polar enthalpy and entropy of adsorption, the Lewis acid–base parameters and the intermolecular separation distance was highlighted as a function of the temperature and the recovery fraction of PMMA on silica. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Figure 1

33 pages, 2756 KiB  
Article
New Progress on London Dispersive Energy, Polar Surface Interactions, and Lewis’s Acid–Base Properties of Solid Surfaces
by Tayssir Hamieh
Molecules 2024, 29(5), 949; https://doi.org/10.3390/molecules29050949 - 21 Feb 2024
Cited by 19 | Viewed by 2825
Abstract
The determination of the polar surface free energy, polar properties, and Lewis’s acid base of solid materials is of capital importance in many industrial processes, such as adhesion, coatings, two-dimensional films, and adsorption phenomena. (1) Background: The physicochemical properties of many solid particles [...] Read more.
The determination of the polar surface free energy, polar properties, and Lewis’s acid base of solid materials is of capital importance in many industrial processes, such as adhesion, coatings, two-dimensional films, and adsorption phenomena. (1) Background: The physicochemical properties of many solid particles were characterized during the last forty years by using the retention time of injected well-known molecules into chromatographic columns containing the solid substrates to be characterized. The obtained net retention time of the solvents adsorbed on the solid, allowing the determination of the net retention volume directly correlated to the specific surface variables, dispersive, polar, and acid–base properties. (2) Methods: Many chromatographic methods were used to quantify the values of the different specific surface variables of the solids. However, one found a large deviation between the different results. In this paper, one proposed a new method based on the London dispersion equation that allowed the quantification of the polar free energy of adsorption, as well as the Lewis’s acid–base constants of many solid surfaces. (3) Results: The newly applied method allowed us to obtain the polar enthalpy and entropy of adsorption of polar model organic molecules on several solid substrates, such as silica, alumina, MgO, ZnO, Zn, TiO2, and carbon fibers. (4) Conclusions: our new method based on the separation between the dispersive and polar free surface energy allowed us to better characterize the solid materials. Full article
Show Figures

Figure 1

17 pages, 1615 KiB  
Article
The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography
by Tayssir Hamieh
Crystals 2024, 14(1), 28; https://doi.org/10.3390/cryst14010028 - 26 Dec 2023
Cited by 4 | Viewed by 1797
Abstract
This paper constitutes an original and new methodology for the determination of the surface properties of carbon fibers in two forms, namely, oxidized and untreated, using the inverse gas chromatography technique at infinite dilution based on the effect of temperature on the surface [...] Read more.
This paper constitutes an original and new methodology for the determination of the surface properties of carbon fibers in two forms, namely, oxidized and untreated, using the inverse gas chromatography technique at infinite dilution based on the effect of temperature on the surface area of various organic molecules adsorbed on the carbon fibers. The studied thermal effect showed a large deviation from the classical methods or models relative to the new determination of the surface properties of carbon fibers, such as the dispersive component of their surface energy, the free surface energy, the free specific energy, and the enthalpy and entropy of the adsorption of molecules on the carbon fibers. It was highlighted that the variations in the London dispersive surface energy of the carbon fibers as a function of the temperature satisfied excellent linear variations by showing large deviations between the values of γsd (T), calculated using different models, which can reach 300% in the case of the spherical model. All models and chromatographic methods showed that the oxidized carbon fibers gave larger specific free enthalpy of adsorption whatever the adsorbed polar molecules. The obtained specific enthalpy and entropy of the adsorption of the polar solvents led to the determination of the Lewis acid–base constants of the carbon fibers. Different molecular models and chromatographic methods were used to quantify the surface thermodynamic properties of the carbon fibers, and the results were compared with those of the thermal model. The obtained results show that the oxidized carbon fibers gave more specific interaction energy and greater acid–base constants than the untreated carbon fibers, thus highlighting the important role of oxidization in the acid–base of fibers. The determination of the specific acid–base surface energy of the two carbon fibers showed greater values for the oxidized carbon fibers than for the untreated carbon fibers. An important basic character was highlighted for the two studied carbon fibers, which was larger than the acidic character. It was observed that the carbon fibers were 1.4 times more acidic and 2.4 times more basic. The amphoteric character of the oxidized fibers was determined, and it was 1.7 times more important than that of the untreated fibers This tendency was confirmed by all molecular models and chromatographic methods. The Lewis acid and base surface energies of the solid surface, γs+ and γs, as well as the specific acid–base surface energy γsAB of the carbon fibers at different temperatures were determined. One showed that the specific surface energy γsAB of the oxidized fibers was 1.5 times larger than that of the untreated fibers, confirming the above results obtained on the strong acid–base interactions of the oxidized carbon fibers with the various polar molecules. Full article
(This article belongs to the Special Issue Synthesis and Application of Nanocomposite Materials)
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid–Base Behavior
by Ali Ali-Ahmad, Tayssir Hamieh, Thibault Roques-Carmes, Mohamad Hmadeh and Joumana Toufaily
Catalysts 2023, 13(1), 205; https://doi.org/10.3390/catal13010205 - 16 Jan 2023
Cited by 12 | Viewed by 4619
Abstract
In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the [...] Read more.
In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the effect of the modulation of UiO-66 by an acid (e.g., formic acid and acetic acid) and on the other hand, we studied the effect of the functionalization of the organic linker by an amine group (NH2) on their dispersive component of the surface energy and on their Lewis acid–base properties. We found that all the studied MOFs presented an amphoteric character with a strong acidity whose acidity/basicity ratio is greater than 1 using all the models and methods in IGC. Moreover, the introduction of a modulator such as acetic acid or formic acid in the synthesis of these MOFs increased the number of structural defects and therefore increased the acidity of these MOFs. Similarly, the functionalization of the MOF by the NH2 group leads to an increase in the basicity constant of the functionalized MOF while remaining smaller than their acidity constant. In addition, the use of acids as modulators and amine groups as functional groups resulted in an increase in the dispersive component of the surface energy of the MOFs. Finally, comparing the results obtained by the different models and methods and based on the increasing order of the acidity of each MOF, it was clear that the thermal model resulted in more exact and precise values than the others. Our findings pave the way for the design and development of new acid catalysts based on UiO-66 structures. Full article
Show Figures

Graphical abstract

17 pages, 2546 KiB  
Article
Theoretical Investigation of the Adsorption of Cadmium Iodide from Water Using Polyaniline Polymer Filled with TiO2 and ZnO Nanoparticles
by Noureddine Mahdhi, Norah Salem Alsaiari, Fatimah Mohammed Alzahrani, Khadijah Mohammedsaleh Katubi, Abdelfattah Amari and Saber Hammami
Water 2021, 13(18), 2591; https://doi.org/10.3390/w13182591 - 19 Sep 2021
Cited by 3 | Viewed by 3275
Abstract
The removal of heavy metals from drinking water has attracted great interest in water purification technology. In this study, a biocompatible Polyaniline (PANI) polymer filled with TiO2 and ZnO nanoparticles (NPs) is considered as an adsorbent of cadmium iodide from water. Theoretical [...] Read more.
The removal of heavy metals from drinking water has attracted great interest in water purification technology. In this study, a biocompatible Polyaniline (PANI) polymer filled with TiO2 and ZnO nanoparticles (NPs) is considered as an adsorbent of cadmium iodide from water. Theoretical investigation of the van der Waals (vdW) interactions deduced from the Hamaker constant calculated on the basis of Lifshitz theory was presented. It was found that the surface energy as well as the work of adhesion between water and PANI/NPs across air increases with an increasing volume fraction of the TiO2 and ZnO nanoparticles. Consequently, an increase in the Laplace pressure around the cavities/porosities was found, which leads to the enhancement of the specific contact surface between water and PANI/NPs. On the other hand, for the interactions between CdI2 particles and PANI/NPs surface across water, we show that the interactions are governed principally by the attractive London dispersion forces. The vdW energy and force increase proportionally with the augmentation of the volume fraction of nanoparticles and of the radius of the CdI2 particle. Particularly, the PANI/TiO2 has been proved to be a better candidate for adsorption of cadmium iodide from water than PANI/ZnO. Full article
(This article belongs to the Special Issue Water Treatment by Adsorption and Catalytic Methods)
Show Figures

Figure 1

20 pages, 9549 KiB  
Article
Solvent-Induced Formation of Novel Ni(II) Complexes Derived from Bis-Thiosemicarbazone Ligand: An Insight from Experimental and Theoretical Investigations
by Ghodrat Mahmoudi, Maria G. Babashkina, Waldemar Maniukiewicz, Farhad Akbari Afkhami, Bharath Babu Nunna, Fedor I. Zubkov, Aleksandra L. Ptaszek, Dariusz W. Szczepanik, Mariusz P. Mitoraj and Damir A. Safin
Int. J. Mol. Sci. 2021, 22(10), 5337; https://doi.org/10.3390/ijms22105337 - 19 May 2021
Cited by 10 | Viewed by 3527 | Correction
Abstract
In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed [...] Read more.
In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex [NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordination geometry around metal centers in all the three crystallographically independent molecules of 1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of LI with methanol upon coordination to the metal center under synthetic conditions. In the structure of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center. The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both structures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including predominantly N–H∙∙∙S and N–H∙∙∙O hydrogen bonds in 1 and 2, respectively; they are further augmented by less typical C–H∙∙∙X (where X = S, N, O, π), CH∙∙∙HC, π∙∙∙π stacking and the most striking, attractive long-range intermolecular C–H∙∙∙Ni preagostic interactions. The latter are found to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C–H∙∙∙S interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane atoms, demonstrating a very weak σ-metalloaromatic character. Full article
(This article belongs to the Special Issue Advances in Chemical Bond and Bonding)
Show Figures

Figure 1

15 pages, 1497 KiB  
Article
Van der Waals Density Functional Theory vdW-DFq for Semihard Materials
by Qing Peng, Guangyu Wang, Gui-Rong Liu and Suvranu De
Crystals 2019, 9(5), 243; https://doi.org/10.3390/cryst9050243 - 8 May 2019
Cited by 22 | Viewed by 6007
Abstract
There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials include energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability [...] Read more.
There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials include energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here, we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β -cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1.05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and three typical layered van der Waals crystals. This success could be attributed to the similar electronic charge density gradients, suggesting a wide use in modeling semihard materials. This method could be useful in developing non-empirical density functional theories for semihard and soft materials. Full article
(This article belongs to the Special Issue First-Principles Prediction of Structures and Properties in Crystals)
Show Figures

Graphical abstract

Back to TopTop