Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (363)

Search Parameters:
Keywords = Li2Ti6O13

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1143 KiB  
Article
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 (registering DOI) - 3 Aug 2025
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, [...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
12 pages, 3794 KiB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 (registering DOI) - 2 Aug 2025
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

13 pages, 9148 KiB  
Article
Investigation of Thermoelectric Properties in Altermagnet RuO2
by Jun Liu, Chunmin Ning, Xiao Liu, Sicong Zhu and Shuling Wang
Nanomaterials 2025, 15(14), 1129; https://doi.org/10.3390/nano15141129 - 21 Jul 2025
Viewed by 277
Abstract
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity [...] Read more.
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity and low thermal conductivity. These exceptional properties endow it with considerable promise in the emerging field of thermal spintronics. We studied the electronic structure and thermoelectric properties of RuO2; the constructed RuO2/TiO2/RuO2 all-antiferromagnetic tunnel junction (AFMTJ) exhibited thermally induced magnetoresistance (TIMR), reaching a maximum TIMR of 1756% at a temperature gradient of 5 K. Compared with prior studies on RuO2-based antiferromagnetic tunnel junctions, the novelty of this work lies in the thermally induced magnetoresistance based on its superior thermoelectric properties. In parallel structures, the spin-down current dominates the transmission spectrum, whereas in antiparallel structures, the spin-up current governs the transmission spectrum, underscoring the spin-polarized thermal transport. In addition, thermoelectric efficiency emphasizes the potential of RuO2 to link antiferromagnetic robustness with ferromagnetic spin functionality. These findings promote the development of efficient spintronic devices and spin-based storage technology for waste heat recovery and emphasize the role of spin splitting in zero-magnetization systems. Full article
Show Figures

Figure 1

21 pages, 8925 KiB  
Article
Zr-Th-REE Mineralization Associated with Albite–Aegirine-Bearing Rocks of the Burpala Alkaline Intrusion (North Baikal Region, South Margin of the Siberian Craton)
by Ivan Aleksandrovich Izbrodin, Anna Gennadievna Doroshkevich, Anastasia Evgenyevna Starikova, Alexandra Vladislavovna Malyutina, Tatyana Nikolaevna Moroz and Igor Sergeevich Sharygin
Minerals 2025, 15(7), 742; https://doi.org/10.3390/min15070742 - 16 Jul 2025
Viewed by 296
Abstract
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the [...] Read more.
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the contact zone between the intrusion and the host terrigenous–sedimentary rock. In albite–aegirine rocks, cubic crystals of “metaloparite”, partially or completely substituted by bastnäsite-(Ce) and polymorphic TiO2 phases (anatase and rutile) mainly represent the rare metal minerals. In albite–aegirine rocks, trace element minerals are predominantly represented by cubic crystals of “metaloparite”, which are partially or completely replaced by bastnäsite-(Ce) and polymorphic TiO2 phases such as anatase and rutile. Additionally, Th-bearing zircon (up to 17.7 wt% ThO2) and a variety of unidentified minerals containing REEs, Th, and Nb were detected. The obtained data indicate that bastnäsite-(Ce) is the result of the recrystallization of “metaloparite” accompanied by the formation of Th-bearing zircon and Nb-bearing rutile (up to 9.9 wt% Nb2O5) and the separation of various undiagnosed, unidentified LREE phases. Our studies show that remobilization of LREEs, HFSEs, and local enrichment of rocks in these elements occurred due to the effects of residual fluid enriched in fluorine and carbon dioxide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 18692 KiB  
Article
Hydrothermally Synthesized TiO2 Nanostructures for Electrochemical Detection of H2O2 in Barley (Hordeum vulgare) Under Salt Stress and Remediation with Fe3O4 Nanoparticles
by Irena Mihailova, Marina Krasovska, Eriks Sledevskis, Vjaceslavs Gerbreders, Jans Keviss, Valdis Mizers, Inese Kokina, Ilona Plaksenkova, Marija Jermalonoka and Aleksandra Mosenoka
Chemosensors 2025, 13(7), 256; https://doi.org/10.3390/chemosensors13070256 - 14 Jul 2025
Viewed by 405
Abstract
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor [...] Read more.
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor exhibited a linear detection range of 0–0.5 mM, a sensitivity of 0.0393 mA · mM−1, and a detection limit of 2.8 μM in phosphate-buffered saline solution (PBS, pH 7.4). This work’s main novelty lies in the systematic investigation of the relationship between TiO2 nanostructure morphology, which is controlled by hydrothermal synthesis parameters, and the resulting sensor performance. Interference studies confirmed excellent selectivity in the presence of common electroactive species found in plant samples, such as NaCl, KNO3, glucose, citric acid, and ascorbic acid. Real sample analysis using barley plant extracts grown under salt stress and treated with Fe3O4 nanoparticles confirmed the sensor’s applicability in complex biological matrices, enabling accurate quantification of endogenously produced H2O2. Endogenous H2O2 concentrations were found to range from near-zero levels in control and Fe3O4-only treated plants, to elevated levels of up to 0.36 mM in salt-stressed samples. These levels decreased to 0.25 and 0.15 mM upon Fe3O4 nanoparticle treatment, indicating a dose-dependent mitigation of stress. This finding was supported by genome template stability (GTS) analysis, which revealed improved DNA integrity in Fe3O4-treated plants. This study takes an integrated approach, combining the development of a nanostructured sensor with physiological and molecular stress assessment. The urgent need for tools to detect stress at an early stage and manage oxidative stress in sustainable agriculture underscores its relevance. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

15 pages, 9578 KiB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Viewed by 408
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

20 pages, 3492 KiB  
Article
Microstructure and Electrochemical Properties of Pure and Vanadium-Doped Li4Ti5O12 Nanoflakes for High Performance Supercapacitors
by Mudda Deepak, Obili M. Hussain and Christian M. Julien
Inorganics 2025, 13(7), 223; https://doi.org/10.3390/inorganics13070223 - 1 Jul 2025
Viewed by 547
Abstract
Nanostructured binary metal oxides have demonstrated the potential for increased electrochemical performance due to their structural stability, electronic conductivity, and various oxidation states. The Li4Ti5O12 was successfully synthesized via a hydrothermal procedure at different reaction periods (12, 18, [...] Read more.
Nanostructured binary metal oxides have demonstrated the potential for increased electrochemical performance due to their structural stability, electronic conductivity, and various oxidation states. The Li4Ti5O12 was successfully synthesized via a hydrothermal procedure at different reaction periods (12, 18, and 24 h), and its microstructural and supercapacitive characteristics were studied. The XRD and XPS studies confirm the formation of Li4Ti5O12 in pure phase when synthesized at 24 h (LTO@24) of reaction time. FESEM and HRTEM images reveal nanoflake surface morphology. Both LTO@24 and V-LTO@24 nanoflakes exhibited impressive electrochemical performance, with specific capacitance values of 357 and 442 F g−1, respectively, at 1 A g−1. The V-LTO@24 showed remarkable supercapacitor properties, demonstrating excellent rate capability and cycleability that surpass those of pure LTO@24. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Graphical abstract

15 pages, 3467 KiB  
Article
Synthesis of a Vanadium-Substituted Fe–Ti-Based Ternary Alloy via Mechanical Alloying, Compacting, and Post-Annealing
by Abhishek Kumar Patel, Davide Violi, Ivan Lorenzon, Carlo Luetto, Paola Rizzi and Marcello Baricco
Metals 2025, 15(7), 723; https://doi.org/10.3390/met15070723 - 28 Jun 2025
Viewed by 338
Abstract
In this study, we address the need for sustainable and scalable synthesis routes for hydrogen storage materials by developing a FeTi alloy in which vanadium (V) partially substitutes for titanium (Ti). The alloy was synthesized using mechanical alloying, compaction, and post-annealing, employing industrial-grade [...] Read more.
In this study, we address the need for sustainable and scalable synthesis routes for hydrogen storage materials by developing a FeTi alloy in which vanadium (V) partially substitutes for titanium (Ti). The alloy was synthesized using mechanical alloying, compaction, and post-annealing, employing industrial-grade Fe and Ti powders and an alternative to pure vanadium, i.e., ferrovanadium (Fe–V). X-ray diffraction (XRD) analysis of the mechanically alloyed mixture revealed the partial formation of a Fe(V) solid solution, along with residual Ti. Subsequent compaction and annealing at 1000 °C led to the formation of the FeTi(V) phase, accompanied by two minor secondary phases, Fe2Ti and Fe2Ti4O. A maximum phase yield of 90% for FeTi was achieved after 48 h of annealing. The novelty of this work lies in the demonstration of a sustainable and economical synthesis approach for V-substituted FeTi alloys using industrial-grade raw materials, offering a potential reduction in the carbon footprint compared with conventional melting techniques. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

18 pages, 4045 KiB  
Article
Microwave Dielectric Permittivity of Nanostructured RMn2O5 Manganate, R2Ti2O7 Titanate, and LiCoPO4 and LiNi0.5Co0.5PO4 Orthophosphate Composites
by Anatoly B. Rinkevich, Dmitry V. Perov, Evgeny A. Kuznetsov and Maria S. Stenina
Nanomaterials 2025, 15(13), 995; https://doi.org/10.3390/nano15130995 - 26 Jun 2025
Viewed by 225
Abstract
The complex dielectric permittivity has been studied with the waves of millimeter wavelength for rare earth manganate and titanate and LiCoPO4 and LiNi0.5Co0.5PO4 orthophosphate composites. The measurements are carried out at frequencies of 26 to 38 GHz [...] Read more.
The complex dielectric permittivity has been studied with the waves of millimeter wavelength for rare earth manganate and titanate and LiCoPO4 and LiNi0.5Co0.5PO4 orthophosphate composites. The measurements are carried out at frequencies of 26 to 38 GHz via measurements of transmission and reflection coefficients through a plate. A special method on how to extract the real and imaginary parts of dielectric permittivity is applied. Discussion is conducted on a nonmonotonic type of the frequency dependences for both real and imaginary parts of permittivity, and it has been shown that relaxation is non-Debye. The Cole–Cole, Havriliak–Negami, and Kohlrausch–Williams–Watts models cannot also explain the nonmonotonic frequency dependence of the real part of dielectric permittivity. Investigation of the structure and phase composition of nanocomposites has been carried out. Full article
Show Figures

Figure 1

33 pages, 7353 KiB  
Review
Green Synthesis of Titanium Dioxide Nanoparticles: Physicochemical Characterization and Applications: A Review
by Nasir Shakeel, Ireneusz Piwoński, Parvaz Iqbal and Aneta Kisielewska
Int. J. Mol. Sci. 2025, 26(12), 5454; https://doi.org/10.3390/ijms26125454 - 6 Jun 2025
Viewed by 1326
Abstract
Nanotechnology is an emerging field in science that exhibits significant promise in the synthesis of nanomaterials for diverse applications. Traditionally, these nanomaterials were manufactured using hazardous and labor-intensive physical and chemical processes. Nevertheless, in recent years, researchers have developed safer, more scalable, and [...] Read more.
Nanotechnology is an emerging field in science that exhibits significant promise in the synthesis of nanomaterials for diverse applications. Traditionally, these nanomaterials were manufactured using hazardous and labor-intensive physical and chemical processes. Nevertheless, in recent years, researchers have developed safer, more scalable, and environmentally friendly methods for green synthesis. The problem addressed in this study is the need for an environmentally friendly and efficient synthesis process for titanium dioxide nanoparticles (TiO2 NPs) with enhanced properties. The aim of this work is to describe the synthesis of TiO2 NPs with various plant extracts using a green approach and to evaluate the physicochemical characteristics and potential applications of the resulting nanoparticles. This study focuses on understanding how the integration of plant extracts influences the properties of TiO2 NPs, particularly in terms of their structural, optical, and functional characteristics. The novelty lies in the use of plant extracts as bio-reductants and capping agents, which not only provides a safer and more sustainable synthesis method but also enhances the functional properties of TiO2 NPs. This green synthesis approach reduces the use of harmful chemicals, making the process more environmentally friendly and economically viable, with potential applications in photocatalysis, antibacterial, and antioxidant activities. The TiO2 NPs possess diverse functionalities, including photocatalysis, antibacterial properties, and antioxidant properties. The initial precursor, such as a metal salt, undergoes transformation into the desired nanoparticles through the actions of plants exactly. Bio-reduction and capping processes are carried out by secondary metabolites found in bacteria and plants. The results demonstrated that the plant extract-mediated TiO2 NPs exhibited enhanced photocatalytic activity, superior antibacterial effects, and higher antioxidant potential compared to chemically synthesized TiO2 NPs. This highlights the potential of green synthesis methods in producing nanomaterials with improved functional properties for a wide range of applications. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Graphical abstract

27 pages, 3841 KiB  
Article
Modeling and Carbon Emission Assessment of Novel Low-Carbon Smelting Process for Vanadium–Titanium Magnetite
by Yun Huang, Jue Tang and Mansheng Chu
Metals 2025, 15(4), 461; https://doi.org/10.3390/met15040461 - 19 Apr 2025
Viewed by 335
Abstract
The iron and steel industry, as a major energy consumer, was critically required to enhance operational efficiency and reduce CO2 emissions. Conventional blast furnace processing of vanadium–titanium magnetite (VTM) in China had been associated with persistent challenges, including suboptimal TiO2 recovery [...] Read more.
The iron and steel industry, as a major energy consumer, was critically required to enhance operational efficiency and reduce CO2 emissions. Conventional blast furnace processing of vanadium–titanium magnetite (VTM) in China had been associated with persistent challenges, including suboptimal TiO2 recovery rates (<50%) and elevated carbon intensity (the optimal temperature range for TiO2 recovery lies within 1400–1500 °C). Shaft furnace technology has emerged as a low-carbon alternative, offering accelerated reduction kinetics, operational flexibility, and reduced environmental impact. This study evaluated the low-carbon PLCsmelt process for VTM smelting through energy–mass balance modeling, comparing two gas-recycling configurations. The process integrates a pre-reduction shaft furnace and a melting furnace, where oxidized pellets are initially reduced to direct reduced iron (DRI) before being smelted into hot metal. In Route 1, CO2 emissions of 472.59 Nm3/tHM were generated by pre-reduction gas (1600 Nm3/tHM, 64.73% CO, and 27.17% CO2) and melting furnace top gas (93.98% CO). Route 2 incorporated hydrogen-rich gas through the blending of coke oven gas with recycled streams, achieving a 56.8% reduction in CO2 emissions (204.20 Nm3/tHM) and altering the pre-reduction top gas composition to 24.88% CO and 40.30% H2. Elevating the pre-reduction gas flow in Route 2 resulted in increased CO concentrations in the reducing gas (34.56% to 37.47%) and top gas (21.89% to 26.49%), while gas distribution rebalancing reduced melting furnace top gas flow from 261.03 to 221.93 Nm3/tHM. The results demonstrated that the PLCsmelt process significantly lowered carbon emissions without compromising metallurgical efficiency (CO2 decreased about 74.48% compared with traditional blast furnace which was 800 Nm3/tHM), offering a viable pathway for sustainable VTM utilization. Full article
(This article belongs to the Special Issue Modern Techniques and Processes of Iron and Steel Making)
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
Modeling and Analysis of KSnI3 Perovskite Solar Cells Yielding Power Conversion Efficiency of 30.21%
by Bonginkosi Vincent Kheswa, Siyabonga Ntokozo Thandoluhle Majola, Hmoud Al-Dmour, Nolufefe Muriel Ndzane and Lucky Makhathini
Nanomaterials 2025, 15(8), 580; https://doi.org/10.3390/nano15080580 - 11 Apr 2025
Cited by 2 | Viewed by 659
Abstract
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, [...] Read more.
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se, using the SCAPS-1D simulation tool. The optimization focused on the thicknesses and dopant densities of the rGO, KSnI3, Al–ZnO, LiTiO2, ZnO, and SnO2 layers, the thickness of the FTO electrode, as well as the defect density of KSnI3. This yielded PCE values of 27.60%, 24.94%, 27.62%, and 30.21% for the FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se perovskite solar cell configurations, respectively. The FTO/SnO2/KSnI3/rGO/Se device is 7.43% more efficient than the FTO/SnO2/3C-SiC/KSnI3/NiO/C device, which is currently the highest performing KSnI3-based perovskite solar cell in the literature. Thus, our FTO/SnO2/KSnI3/rGO/Se perovskite solar cell structure is now, by far, the most efficient PSC design. Its best performance is achieved under ideal conditions of a series resistance of 0.5 Ω cm2, a shunt resistance of 107 Ω cm2, and a temperature of 371 K. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

14 pages, 3484 KiB  
Article
Ti-Doped, Mn-Based Polyanionic Compounds of Na4Fe1.2Mn1.8(PO4)2P2O7 for Sodium-Ion Battery Cathode
by Hualin Li, Gang Pang, Weilong Zhang, Qingan Zhang, Linrui Hou and Changzhou Yuan
Nanomaterials 2025, 15(8), 581; https://doi.org/10.3390/nano15080581 - 11 Apr 2025
Viewed by 727
Abstract
Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a prospective electrode for sodium-ion batteries (SIBs) because of its structure stability, economic viability and environmental friendliness. Nevertheless, its commercialization is constrained by low operating voltage and [...] Read more.
Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a prospective electrode for sodium-ion batteries (SIBs) because of its structure stability, economic viability and environmental friendliness. Nevertheless, its commercialization is constrained by low operating voltage and limited theoretical capacity, which result in a power density significantly inferior to that of LiFePO4. To address these limitations, in this work, we first designed and synthesized a series of Mn-doped NFPP to enhance its operating voltage, inspired by the successful design of LiFe1-xMnxPO4 cathodes. This approach was implemented to enhance the operating voltage of the material. Subsequently, the optimized Na4Fe1.2Mn1.8(PO4)2P2O7 (1.8Mn-NFMPP) sample was selected for further Ti-doped modification to enhance its cycle durability and rate performance. The final Mn/Ti co-doped Na4Fe1.2Mn1.7Ti0.1(PO4)2P2O7 (0.1Ti-NFMTPP) material exhibited a high operating voltage of ~3.6 V (vs. Na+/Na) in a half cell, with an outstanding reversible capacity of 122.9 mAh g−1 at 0.1 C and remained at 90.6% capacity retention after 100 cycles at 0.5 C. When assembled into a coin-type full cell employing a commercial hard carbon anode, the optimized cathode material exhibited an initial capacity of 101.7 mAh g−1, retaining 86.9% capacity retention over 50 cycles at 0.1 C. These results illustrated that optimal Mn/Ti co-doping is an effective methodology to boost the electrochemical behavior of NFPP materials, achieving mitigation of the Jahn–Teller effect on the Mn3+ and Mn dissolution problem, thereby significantly improving structural stability and cycling performance. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

13 pages, 4802 KiB  
Article
Electrochemical Study of β-Titanium Alloy in High-Temperature and -Pressure Water Environment
by Lin Chen, Xiao Ouyang, Xianying Wu, Pan Pang and Qingyan Hou
Coatings 2025, 15(4), 438; https://doi.org/10.3390/coatings15040438 - 7 Apr 2025
Viewed by 450
Abstract
The in situ electrochemical behaviors of Ti-39Nb-6Zr alloy were investigated in 2.3 ppm Li+ and 1500 ppm B3+ solution at 300 °C and 14 MPa. The activation energy is 12.84 kJ/mol, and the oxidation of titanium is controlled by oxygen ions [...] Read more.
The in situ electrochemical behaviors of Ti-39Nb-6Zr alloy were investigated in 2.3 ppm Li+ and 1500 ppm B3+ solution at 300 °C and 14 MPa. The activation energy is 12.84 kJ/mol, and the oxidation of titanium is controlled by oxygen ions diffusion in the liquid phases. The morphology, phase structure, and composition of the oxide film after 700 h exposure time in 300 °C and 14 MPa solution were characterized. The oxide film mainly included anatase TiO2 phases, ZrO2, Nb2O5, and a slight B2O3. The morphology of the film is shown by many nanocrystalline grains and the thickness is about 5 μm. The passivation film on the alloy substrate transforms from a single-layer film structure to a double-layer film structure. The impedance of the passivation decreases with the increase in temperature, which is related to the enhanced ion conductivity of the passivation film at high temperatures. The impedance of the dense layer inside the passivation film is much greater than that of the loose layer outside, and the dense layer inside plays a crucial role in the corrosion resistance of the Ti-39Nb-6Zr alloy. During the insulation process, the impedance of the dense layer inside the passivation film first increases and then slowly decreases, and the corrosion resistance of the passivation film first increases and decreases. Full article
Show Figures

Figure 1

15 pages, 4298 KiB  
Article
Synthesis of Cathode Material Li2FeTiO4 for Lithium-Ion Batteries by Sol–Gel Method
by Pengqing Hou, Qi Sun, Shengxue Yan, Guanglong Li, Yingdong Qu and Shaohua Luo
Batteries 2025, 11(4), 142; https://doi.org/10.3390/batteries11040142 - 6 Apr 2025
Viewed by 1189
Abstract
The development of a simple and reliable strategy to synthesize cathode materials is crucial for achieving the overall high performance of rechargeable lithium batteries, which has proved to be quite challenging. Herein, we report a simple sol–gel method for the synthesis of Li [...] Read more.
The development of a simple and reliable strategy to synthesize cathode materials is crucial for achieving the overall high performance of rechargeable lithium batteries, which has proved to be quite challenging. Herein, we report a simple sol–gel method for the synthesis of Li2FeTiO4 cathode materials. The reaction mechanism of Li2FeTiO4 crystals can be divided into five stages: including the breakage of the coordination bond; the thermal decomposition of citric acid; the thermal decomposition of metal salts and the reduction of trivalent iron and the formation of Li2FeTiO4 crystals. Finally, the optimum calcination temperature for the preparation of Li2FeTiO4 cathode materials was explored. The Li2FeTiO4 cathode material prepared at 700 °C provides a discharge-specific capacity of 121.3 mAh/g in the first cycle and capacity retention of 89.2%. Our results provide new insights into the application of Li2FeTiO4 cathode materials. Full article
Show Figures

Figure 1

Back to TopTop