Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = Langmuir films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5114 KB  
Article
Model Simulations and Experimental Study of Acetic Acid Adsorption on Ice Surfaces with Coupled Ice-Bulk Diffusion at Temperatures Around 200 K
by Atanas Terziyski, Peter Behr, Nikolay Kochev, Peer Scheiff and Reinhard Zellner
Physchem 2026, 6(1), 3; https://doi.org/10.3390/physchem6010003 - 9 Jan 2026
Viewed by 160
Abstract
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice [...] Read more.
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice bulk. The processes represented include gas adsorption on the surface, solvation into the sub-surface layer, and diffusion in the ice bulk. It is assumed that the gases dissolve according to Henry’s law, while the surface concentration follows the Langmuir adsorption equilibrium. The flux of molecules from the sub-surface layer into the ice bulk is treated according to Fick’s second law. Kinetic and thermodynamic quantities as applicable to the uptake of small carbonyl compounds on ice surfaces at temperatures around 200 K have been used to perform model calculations and corresponding sensitivity tests. The primary application in this study is acetic acid. The model simulations are applied by fitting the experimental data obtained from coated-wall flow-systems (CWFT) measurements, with the best curve-fit solutions providing reliable estimations of kinetic parameters. Over the temperature range from 190 to 220 K, the estimated desorption coefficient, kdes, varies from 0.02 to 1.35 s−1, while adsorption rate coefficient, kads, ranges from 3.92 and 4.17 × 10−13 cm3 s−1, and the estimated diffusion coefficient, D, changes by more than two orders of magnitude, increasing from 0.03 to 13.0 × 10−8 cm2 s−1. Sensitivity analyses confirm that this parameter estimation approach is robust and consistent with underlying physicochemical processes. It is shown that for shorter exposure times the loss of molecules from the gas phase is caused exclusively by adsorption onto the surface and solvation into the sub-surface layer. Diffusional loss into the bulk, on the other hand, is only important at longer exposure times. The model is a useful tool for elucidating surface and bulk process kinetic parameters, such as adsorption and desorption rate constants, solution and segregation rates, and diffusion coefficients, as well as the estimation of thermodynamic quantities, such as Langmuir and Henry constants and the ice film thickness. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

22 pages, 3541 KB  
Article
Bio-Based Pectin-Calcium Film and Foam Adsorbents with Immobilized Fe–BTC MOF for Water Contaminant Removal
by Francesco Coin, Carolina Iacovone and Silvina Cerveny
Polymers 2026, 18(2), 171; https://doi.org/10.3390/polym18020171 - 8 Jan 2026
Viewed by 292
Abstract
Metal-organic frameworks (MOFs) offer high porosity for water remediation but face challenges in handling as powders. We address these limitations by physically immobilizing Fe–BTC MOF within calcium-crosslinked low-methoxyl pectin matrices (PE–Ca–MOF). Solvent-cast films and freeze-dried foams were fabricated using water-based and polyvinylpyrrolidone (PVP)-assisted [...] Read more.
Metal-organic frameworks (MOFs) offer high porosity for water remediation but face challenges in handling as powders. We address these limitations by physically immobilizing Fe–BTC MOF within calcium-crosslinked low-methoxyl pectin matrices (PE–Ca–MOF). Solvent-cast films and freeze-dried foams were fabricated using water-based and polyvinylpyrrolidone (PVP)-assisted Fe–BTC dispersions, preserving MOF and pectin structures confirmed by FT–IR. PVP improved Fe–BTC dispersion and reduced particle size, enhancing distribution and plasticizing the matrix proved by DSC. Incorporation of water-dispersed Fe–BTC increased the equilibrium adsorption capacity but reduced the initial adsorption rate, while the PVP-assisted foam further enhanced uptake in comparative batch tests through its more open porous structure. At pH 7, PE–Ca–5%MOF films showed high adsorption capacities and removal efficiencies for paraquat (35.5 mg/g, 70.6%) and tetracycline (14.5 mg/g, 46.8%), while maintaining Zn2+ uptake compared to calcium-pectin films without MOF. Adsorption followed pseudo-first-order kinetics and Langmuir isotherms. Green regeneration with acetic acid enabled >80% capacity retention over five adsorption–desorption cycles. Foam architectures increased porosity and active-site accessibility (SEM), improving performance even at lower MOF loadings. Overall, controlling MOF dispersion and composite morphology enables efficient, reusable, and environmentally friendly bio-based adsorbents for water purification. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

27 pages, 6828 KB  
Article
Evaluation of the Inhibitory Efficiency of Yohimbine on Corrosion of OLC52 Carbon Steel and Aluminum in Acidic Acetic/Acetate Media
by George-Daniel Dima, Mircea Laurențiu Dan, Nataliia Rudenko and Nicolae Vaszilcsin
Coatings 2025, 15(12), 1458; https://doi.org/10.3390/coatings15121458 - 10 Dec 2025
Viewed by 285
Abstract
The present study assesses the effectiveness of the indole-type alkaloid Yohimbine (YHB) as a green corrosion inhibitor for OLC52 carbon steel and Al in 0.25/0.25 mol L−1 acetic acid/potassium acetate solutions relevant for de-icing applications. Electrochemical techniques, including cyclic and linear sweep [...] Read more.
The present study assesses the effectiveness of the indole-type alkaloid Yohimbine (YHB) as a green corrosion inhibitor for OLC52 carbon steel and Al in 0.25/0.25 mol L−1 acetic acid/potassium acetate solutions relevant for de-icing applications. Electrochemical techniques, including cyclic and linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy have been combined with the evaluation of adsorption isotherms and molecular modeling calculations. YHB significantly decreases the corrosion rate for both metals, attaining inhibitory efficiencies of up to 95% for OLC52 and 91% for Al at 298 K, while maintaining high protection efficiency even at higher temperatures. The Langmuir adsorption model and the values of Gadso between −31 and −41 kJ mol−1 indicate a spontaneous adsorption process defined by a mixed physicochemical mechanism, resulting in the formation of a compact protective film. Quantum molecular descriptors support the ability of YHB molecules to interact with metal surfaces via donor–acceptor interactions and electrostatic interactions. The findings demonstrate the potential of YHB as an environmentally friendly inhibitor for the protection of ferrous and non-ferrous alloys in mildly acidic acetic/acetate media used in de-icing solutions. Full article
Show Figures

Figure 1

19 pages, 7895 KB  
Article
Langmuir and Langmuir–Blodgett Monolayers from 20 nm Sized Crystals of the Metal–Organic Framework MIL-101(Cr)
by Asen Dimov, George R. Ivanov, Leonard Keil, Andreas Terfort, Jinxuan Liu and Velichka Strijkova
Coatings 2025, 15(12), 1449; https://doi.org/10.3390/coatings15121449 - 8 Dec 2025
Cited by 1 | Viewed by 726
Abstract
Metal–Organic Frameworks (MOFs) have diverse applications due to their tunable porosity, large surface area, and diverse chemical functionalities. Among them, one of the most researched MOFs is MIL-101(Cr), which, in addition, is very stable in water. We have used a commercially available substance [...] Read more.
Metal–Organic Frameworks (MOFs) have diverse applications due to their tunable porosity, large surface area, and diverse chemical functionalities. Among them, one of the most researched MOFs is MIL-101(Cr), which, in addition, is very stable in water. We have used a commercially available substance with approximately 300 nm large crystals for the preparation of a sensing nano-thin layer for the emerging water contaminant PFOS, due to its high selectivity towards this compound. Here, we have synthesized 20 nm sized crystals of MIL-101(Cr), which are among the smallest reported, and compared them to the same material with 300 nm sized crystals. The material was characterized by TEM and XPS. It was possible to prepare insoluble monolayers at the air–water interface (Langmuir films), which were characterized with film compression isotherms, Brewster angle microscopy, and surface potential measurements. The Langmuir–Blodgett (LB) method was used to deposit monolayers on Si wafers and 434 MHz Surface Acoustic Wave resonator simultaneously. The LB layers were very stable over time. The smaller-sized MIL-101 (Cr) crystals exhibit denser, more homogeneous water coverage and packing upon compression, with no observable 10–100 µm aggregates. LB monolayers from the 20 nm particles have approximately six times lower surface roughness. The LB monolayer is far from being smooth, but this will allow excellent access to the MOF pores by the tested analyte in a chemical sensing application. The lack of research on depositing presynthesized MOFs using probably the best method for nanoarchitectonics—the LB method—is addressed. The 20 nm sized MOF crystals are the smallest deposited by this method so far. Full article
Show Figures

Graphical abstract

27 pages, 3066 KB  
Article
Multi-Modal Adsorption and Synergistic Corrosion Inhibition of a Collagen–BMIM·Br Composite on Mild Steel
by Michael John Klink
Int. J. Mol. Sci. 2025, 26(23), 11355; https://doi.org/10.3390/ijms262311355 - 24 Nov 2025
Viewed by 508
Abstract
The widespread corrosion of mild steel in acidic environments presents a persistent and economically significant challenge across multiple industries. Compounding this issue, many conventional corrosion inhibitors carry substantial environmental and toxicological hazards, underscoring the critical need for developing high-performance, environmentally benign alternatives. This [...] Read more.
The widespread corrosion of mild steel in acidic environments presents a persistent and economically significant challenge across multiple industries. Compounding this issue, many conventional corrosion inhibitors carry substantial environmental and toxicological hazards, underscoring the critical need for developing high-performance, environmentally benign alternatives. This study investigates a corrosion inhibitor composite comprising collagen and 1-butyl-3-methylimidazolium bromide (BMIM·Br) for mild steel in 1.5 M HCl. Gravimetric analysis demonstrated exceptional inhibition efficiency (>95%) across a temperature range of 30–60 °C, with remarkable thermal stability evidenced by less than a 1% decrease at elevated temperatures. The adsorption process was found to be spontaneous and followed the Langmuir isotherm, with thermodynamic parameters (ΔG°ads ≈ −17 to −19 kJ/mol) indicating a mixed physisorption–chemisorption mechanism. FTIR and XRD analyses confirmed molecular-level interactions and the formation of a more amorphous composite structure. A multi-modal adsorption mechanism, supported by Density Functional Theory (DFT) insights, is proposed, elucidating the synergy through ionic bridging and the formation of a co-accreted polymeric film. These findings establish the collagen–BMIM·Br composite as a highly effective, stable, and sustainable corrosion inhibitor for demanding industrial applications in aggressive acidic environments. Full article
(This article belongs to the Special Issue Molecular and Electrochemical Mechanisms of Metal Corrosion)
Show Figures

Figure 1

15 pages, 1871 KB  
Article
Low-Temperature RF Magnetron Sputtering of TiW Thin Films: Effects of the Bulk Plasma Characteristics on Film Growth
by Chiyun Bang, Chang Yeong Ji and Ju-Hong Cha
Appl. Sci. 2025, 15(22), 12300; https://doi.org/10.3390/app152212300 - 19 Nov 2025
Viewed by 686
Abstract
TiW thin films with superior surface properties were deposited at room temperature using RF magnetron sputtering under low-temperature process conditions. The correlation between bulk plasma characteristics and thin-film properties was investigated as a function of applied RF power (200–600 W) and process pressure [...] Read more.
TiW thin films with superior surface properties were deposited at room temperature using RF magnetron sputtering under low-temperature process conditions. The correlation between bulk plasma characteristics and thin-film properties was investigated as a function of applied RF power (200–600 W) and process pressure (1–10 mTorr). Plasma potential and ion density were measured using a Langmuir probe, while deposition rate, surface roughness, sheet resistance, and crystallinity were evaluated. Increasing the applied RF power simultaneously increased plasma potential and ion density, enhancing ion bombardment energy at both the target and substrate, which improved sputtering efficiency and deposition rate. Under low-temperature deposition, thermal stress induced by differences in thermal expansion between the film and substrate was minimal. However, limited surface diffusion of adatoms caused incomplete coalescence of nucleation islands, adversely affecting film crystallinity. Refractory metals such as tungsten exhibit strong dependence of residual stress and microstructure on deposition conditions, highlighting the importance of plasma and process parameters on TiW film properties. When RF power was increased, the enhancement in deposition rate outweighed the effect of increased ion energy, leading to tensile stress from void formation dominating over compressive stress induced by high-energy ions. This also contributed to increased grain size and reduced sheet resistance. In contrast, variations in process pressure had minor effects on plasma characteristics, resulting in limited changes in the deposited film properties. Full article
(This article belongs to the Special Issue Plasma Applications in Material Processing)
Show Figures

Figure 1

22 pages, 4840 KB  
Article
Acousto-Electronic Sensor Based on Langmuir-Blodgett Films of Tetra-Tert-Butylphthalocyaninate Zinc for Chemical Vapor Detection
by Ilya Gorbachev, Andrey Smirnov, Vladimir Kolesov, Alexey Yagodin, Alexander Martynov, Yulia Gorbunova and Iren Kuznetsova
Sensors 2025, 25(22), 7069; https://doi.org/10.3390/s25227069 - 19 Nov 2025
Viewed by 487
Abstract
In this work, the sensor properties of multilayered Langmuir-Blodgett (LB) films of tetra-tert-butylphthalocyaninate zinc (tBuZnPc) were studied using an acoustoelectronic method. The morphology and optical properties of the fabricated films were characterized by atomic force microscopy and ultraviolet-visible spectroscopy, respectively. The LB films [...] Read more.
In this work, the sensor properties of multilayered Langmuir-Blodgett (LB) films of tetra-tert-butylphthalocyaninate zinc (tBuZnPc) were studied using an acoustoelectronic method. The morphology and optical properties of the fabricated films were characterized by atomic force microscopy and ultraviolet-visible spectroscopy, respectively. The LB films were deposited on surface acoustic wave (SAW) delay lines, and their gas-sensing properties were investigated. The films demonstrated high selectivity towards chloroform vapor compared to acetone, methanol, ethanol, and isopropanol. The highest selectivity was observed for the five-layer film, which can be attributed to the specific interaction of chloroform molecules with the hydrophobic cavities formed by the tert-butyl groups. Increasing the film thickness to 41 layers enhanced the absolute response to chloroform to 370 ppm; however, the selectivity decreased due to increased nonspecific adsorption. The results demonstrate the potential of using tBuZnPc LB films as sensitive coatings for the selective detection of chloroform in environmental and industrial monitoring applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 6604 KB  
Article
Adsorption Characteristics of Sodium Ions by Bentonite–Humic Acid Hydrogel: A Promising Water-Retaining Agent for Saline–Alkali Soil Improvement
by Weiye Liu, Mingjie Sun, Binghua Liu, Lin Peng, Xinghong Liu, Yanping Wang, Fangchun Liu and Hailin Ma
Gels 2025, 11(11), 927; https://doi.org/10.3390/gels11110927 - 19 Nov 2025
Viewed by 422
Abstract
Sodium ions are the main harmful ions in coastal saline–alkali soils, and they seriously affect crop growth and soil structure. A bentonite/humic acid composite hydrogel, synthesized via graft copolymerization as a new type of water-retaining agent, can adsorb excessive Na+ in soil, [...] Read more.
Sodium ions are the main harmful ions in coastal saline–alkali soils, and they seriously affect crop growth and soil structure. A bentonite/humic acid composite hydrogel, synthesized via graft copolymerization as a new type of water-retaining agent, can adsorb excessive Na+ in soil, thereby slowing down its adverse effects. This study used batch adsorption experiments to systematically investigate the effects of contact time, initial concentration, pH, temperature, and repeated cyclic adsorption on Na+ adsorption performance of the hydrogel material. The results indicated that Na+ equilibrium was achieved in 25 min, and the maximum adsorption capacity was 91.29 mg/g. Optimal adsorption occurred at pH 6–8.5, particularly in neutral to weakly alkaline conditions. At 30–50 °C, the bentonite substrate maintained excellent adsorption performance despite structural damage to the grafted copolymer. Mechanistic analysis revealed that adsorption followed pseudo-second-order kinetics and the Langmuir isotherm model, indicating chemisorption-dominated monolayer adsorption controlled by both intra-particle and liquid film diffusion. These findings demonstrate the potential of bentonite-based hydrogels for remediating coastal saline–alkali soils by mitigating Na+ toxicity. Full article
(This article belongs to the Special Issue Preparation and Application of New Gel Adsorption Materials)
Show Figures

Figure 1

27 pages, 5501 KB  
Article
Fabrication of Polyamide Thin-Film Composite/Polyethersulfone-Coreshell-Fe3O4/ZnO Membranes for the Efficient Removal of Pb(II) from Wastewater
by Nompumelelo Sharol Mbali Kubheka, Muthumuni Managa, Makwena Justice Moloto and Edward Ndumiso Nxumalo
Membranes 2025, 15(11), 341; https://doi.org/10.3390/membranes15110341 - 17 Nov 2025
Viewed by 723
Abstract
Thin-film composite nanofiltration membranes were fabricated via the interfacial polymerization method from optimized polyethersulfone (PES) mixed matrix membranes, using m-phenylenediamine and trimesoyl chloride monomers, which produced a selective polyamide layer and were used for heavy metal removal. The concentration of trimesoyl chloride (TMC) [...] Read more.
Thin-film composite nanofiltration membranes were fabricated via the interfacial polymerization method from optimized polyethersulfone (PES) mixed matrix membranes, using m-phenylenediamine and trimesoyl chloride monomers, which produced a selective polyamide layer and were used for heavy metal removal. The concentration of trimesoyl chloride (TMC) is a critical factor to govern the properties of the selective polyamide layer, which directly influences the surface morphology and selective performance of (0.5 wt%) PES-coreshell-Fe3O4/ZnO membranes. Morphological structure, illustrated by SEM images, elucidated the role of TMC addition. FTIR spectra validated the successful formation of the amine and acyl chloride groups. Performance studies illustrated that NF3 (made from 0.1 w/v% of TMC) showed a unique salt rejection trend (NaCl > Na2SO4 > MgCl2) with an optimal salt rejection of 52.64%, 50.91%, and 12.67%. A low concentration of 0.1 w/v% of the NF3 membrane was the most optimal high-performance membrane. The adsorption rate of NF3 for Pb(II) ions in real environmental wastewater is attributed to the tailored surface chemistry of the polyamide layered thin-film/PES-coreshell-Fe3O4/ZnO nanocomposites of the membranes. The maximum Langmuir adsorption capacity at the optimal pH = 5 was 8.8573 mg/g at 25 °C. The fabricated adsorptive nanofiltration membranes alleviated the presence of Pb(II) ions and other competing ions present in environmental wastewater. Full article
Show Figures

Figure 1

36 pages, 4531 KB  
Review
Fascinating Frontier, Nanoarchitectonics, as Method for Everything in Materials Science
by Katsuhiko Ariga
Materials 2025, 18(22), 5196; https://doi.org/10.3390/ma18225196 - 15 Nov 2025
Cited by 1 | Viewed by 825
Abstract
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review [...] Read more.
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review paper highlights the broad scope of applications of the new concept of nanoarchitectonics, selecting and discussing recent papers that contain the term ‘nanoarchitectonics’ in their titles. Topics include controls of dopant atoms in solid electrolytes, transforming the framework of carbon materials, single-atom catalysts, nanorobots and microrobots, functional nanoparticles, nanotubular materials, 2D-organic nanosheets and MXene nanosheets, nanosheet assemblies, nitrogen-doped carbon, nanoporous and mesoporous materials, nanozymes, polymeric materials, covalent organic frameworks, vesicle structures from synthetic polymers, chirality- and topology-controlled structures, chiral helices, Langmuir monolayers, LB films, LbL assembly, nanocellulose, DNA, peptides bacterial cell components, biomimetic nanoparticles, lipid membranes of protocells, organization of living cells, and the encapsulation of living cells with exogenous substances. Not limited to these examples selected in this review article, the concept of nanoarchitectonics is applicable to diverse materials systems. Nanoarchitectonics represents a conceptual framework for creating materials at all levels and can be likened to a method for everything in materials science. Developing technology that can universally create materials with unexpected functions could represent the final frontier of materials science. Nanoarchitectonics will play a significant part in achieving this final frontier in materials science. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

23 pages, 41967 KB  
Article
Enhancing the Chloride Adsorption and Durability of Sulfate-Resistant Cement-Based Materials by Controlling the Calcination Temperature of CaFeAl-LDO
by Lei Yang, Xin Zhao, Shaonan Cai, Minqi Hua, Jijiang Liu, Hui Liu, Junyi Wu, Liming Pang and Xinyu Gui
Materials 2025, 18(21), 4884; https://doi.org/10.3390/ma18214884 - 24 Oct 2025
Viewed by 538
Abstract
Chloride-ion (Cl)-induced corrosion of steel bars is a major threat to the durability of marine concrete structures. To address this, a type of calcined CaFeAl-layered double oxide (LDO-CFA) with different calcination temperatures was used to enhanced the Cl adsorption, compressive [...] Read more.
Chloride-ion (Cl)-induced corrosion of steel bars is a major threat to the durability of marine concrete structures. To address this, a type of calcined CaFeAl-layered double oxide (LDO-CFA) with different calcination temperatures was used to enhanced the Cl adsorption, compressive strength, and corrosion resistance of sulphate-resistant Portland cement (SRPC)-based materials. Experimental results demonstrated that LDO-CFA exhibited high Cl adsorption capacity in both CPSs and cement-based materials. Specifically, LDO-750-CFA reached 1.98 mmol/g in CPSs—60.1% higher than LDHs-CFA—and followed the Langmuir model, indicating monolayer adsorption. It also reduced the free Cl content of SRPC paste to 0.255–0.293% after 28 days, confirming its sustained adsorption over extended curing. Furthermore, LDO-CFA positively influenced the compressive strength at all curing ages. At an optimal dosage of 0.8 wt.%, LDO-750-CFA paste significantly improved the compressive strength, increasing it by 22.1% at 7 days and 15.6% at 28 days compared to the control. Electrochemical analysis confirmed the superior corrosion resistance of the LDO-750-CFA system. The property enhancement originated from LDO-750-CFA’s synergistic effects, which included pore refinement, increased tortuosity, Cl adsorption by structural memory, a PVP-induced passive film, and PVP-improved dispersion. Overall, this work provides a framework for developing LDO-750-CFA-based composites, paving the way for more durable marine concrete. Full article
Show Figures

Figure 1

17 pages, 3013 KB  
Article
Synthesis and Characterization of Rosa Canina-Fe3O4/Chitosan Nanocomposite and Treatment of Safranin O Dye from Wastewater
by Tugba Ceylan, İlknur Tosun Satır and Bediha Akmeşe
Water 2025, 17(19), 2894; https://doi.org/10.3390/w17192894 - 5 Oct 2025
Viewed by 606
Abstract
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in [...] Read more.
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in textile effluents. The synthesized material was characterized using Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and zeta potential analyses to reveal its surface morphology, pore structure, functional groups, crystallinity, and colloidal stability. Adsorption performance was systematically tested under various conditions, including pH, adsorbent dose, contact time, ionic strength, and initial dye concentration. Kinetic analyses revealed that the adsorption process of Safranin O dye mainly obeys pseudo-second-order kinetics, but intraparticle and film diffusion also contribute to the process. As a result of the Isotherm analysis, it was found that the adsorption process conformed to the Langmuir model. Testing on real textile wastewater samples demonstrated a removal efficiency of 75.09% under optimized conditions. Reusability experiments further revealed that the material maintained high adsorption–desorption performance for up to five cycles, emphasizing its potential for practical use. These findings suggest that m-ECH-RC is a viable and sustainable adsorbent for treating dye-laden industrial effluents. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 3443 KB  
Article
Comparison of Quadratic vs. Langmuir–Hinshelwood Kinetics for Formic Acid Mineralization in a Photocatalytic Film
by Giovanni Camera-Roda, Maria Papallo, Francesco Parrino, Vittorio Loddo and Leonardo Palmisano
Catalysts 2025, 15(9), 887; https://doi.org/10.3390/catal15090887 - 15 Sep 2025
Cited by 1 | Viewed by 1131
Abstract
A plane reactor illuminated by LEDs was used to study the kinetics of the photocatalytic mineralization of formic acid in a TiO2 film. Two of the most widespread types of kinetics were considered to see if their popularity is deserved. More specifically, [...] Read more.
A plane reactor illuminated by LEDs was used to study the kinetics of the photocatalytic mineralization of formic acid in a TiO2 film. Two of the most widespread types of kinetics were considered to see if their popularity is deserved. More specifically, one-parameter quadratic-type and Langmuir–Hinshelwood-type kinetics were compared against the concentration–time experimental data at different levels of illumination. Closed-form solutions, which allow for the calculation of substrate concentration over time, were derived for the application of the integral method of kinetic analysis. The considered factors, which affect the reaction rate, were the substrate concentration and the rate of photon absorption (RPA) and were varied in order to investigate most of the possible kinetic regimes. The possible onset of limitations due to external and internal mass transfer and transport of the photons was analyzed and discussed. Thanks to the absence of such limitations in the system under examination, it was possible to appraise the “intrinsic” kinetics directly. Both the models were apt to fit the observed decrease in the substrate concentration with time, even if with different soundness. However, substantial differences between the two models were evidenced in the capabilities to reliably reproduce the effects of the RPA. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

13 pages, 3321 KB  
Article
Plasma Controlled Growth Dynamics and Electrical Properties of Ag Nanofilms via RF Magnetron Sputtering
by Jiali Chen, Yanyan Wang, Tianyuan Huang, Peiyu Ji and Xuemei Wu
Coatings 2025, 15(9), 1062; https://doi.org/10.3390/coatings15091062 - 10 Sep 2025
Viewed by 548
Abstract
Silver thin films are widely utilized in plasmonic, electronic, and catalytic devices due to their excellent conductivity, optical properties, and surface activity. However, the nanostructure and performance of Ag films are highly dependent on deposition parameters, particularly during radio-frequency magnetron sputtering (RF-MS). In [...] Read more.
Silver thin films are widely utilized in plasmonic, electronic, and catalytic devices due to their excellent conductivity, optical properties, and surface activity. However, the nanostructure and performance of Ag films are highly dependent on deposition parameters, particularly during radio-frequency magnetron sputtering (RF-MS). In this study, we systematically investigate the effects of RF power, sputtering time, and substrate type on the growth behavior, crystallinity, and electrical conductivity of Ag films. Optical emission spectroscopy (OES) and Langmuir probe diagnostics were employed to analyze the plasma environment, revealing the evolution of electron temperature and plasma density with varying RF powers. Structural characterizations using XRD, SEM, and AFM demonstrate that higher RF power results in reduced grain size, increased film density, and improved crystallinity, while deposition time influences film thickness and grain coalescence. Substrate material also plays a key role, with Cu substrates promoting better crystallinity due to improved lattice matching. Electrical measurements show that denser films with larger grains exhibit lower sheet resistance. These findings provide a comprehensive understanding of the plasma–film interplay and offer strategic insights for optimizing silver nanofilms in high-performance optoelectronic and catalytic systems. Full article
Show Figures

Figure 1

13 pages, 954 KB  
Article
Interfacial Adhesion of Mouthrinses to Orthodontic Metal Wires: Surface Film Viscoelasticity Effect
by Stanisław Pogorzelski, Krzysztof Dorywalski, Katarzyna Boniewicz-Szmyt and Paweł Rochowski
Materials 2025, 18(17), 4065; https://doi.org/10.3390/ma18174065 - 29 Aug 2025
Viewed by 748
Abstract
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from [...] Read more.
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from the original drop on a vertical filament method. Young, advancing, receding CA apart from adhesive film pressure, surface energy, work of adhesion, etc. were chosen as interfacial interaction indicators, allowing for the optimal concentration and placement of the key component(s) accumulation to be predicted for effective antibacterial activity to eliminate plaque formation on the prosthetic materials. Surfactant compounds when adsorb at interfaces confer rheological properties to the surfaces, leading to surface relaxation, which depends on the timescale of the deformation. The surface dilatational complex modulus E, with compression elasticity Ed and viscosity Ei parts, determined in the stress–relaxation Langmuir trough measurements, exhibited the viscoelastic surface film behavior with the relaxation times (0.41–3.13 s), pointing to the vertically segregated film structure as distinct, stratified layers with the most insoluble compound on the system top (as indicated with the 2D polymer film scaling theory exponent y = 12.9–15.5). Kinetic rheology parameters could affect the wettability, adhesion, and spreading characteristics of mouthrinse liquids. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

Back to TopTop