Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = Lab-on-Chip (LoC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1765 KiB  
Article
Microfluidic System Based on Flexible Structures for Point-of-Care Device Diagnostics with Electrochemical Detection
by Kasper Marchlewicz, Robert Ziółkowski, Kamil Żukowski, Jakub Krzemiński and Elżbieta Malinowska
Biosensors 2025, 15(8), 483; https://doi.org/10.3390/bios15080483 - 24 Jul 2025
Viewed by 332
Abstract
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the [...] Read more.
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the pathogen responsible for diphtheria. The system comprises a microfluidic polymerase chain reaction (micro-PCR) device and an electrochemical DNA biosensor, both fabricated on flexible substrates. The micro-PCR platform offers rapid DNA amplification overcoming the time limitations of conventional thermocyclers. The biosensor utilizes specific molecular recognition and an electrochemical transducer to detect the amplified DNA fragment, providing a clear and direct indication of the pathogen’s presence. The combined system demonstrates the effective amplification and detection of a gene fragment from a toxic strain of C. diphtheriae, chosen due to its increasing incidence. The design leverages lab-on-a-chip (LOC) and microfluidic technologies to minimize reagent use, reduce cost, and support portability. Key challenges in microsystem design—such as flow control, material selection, and reagent compatibility—were addressed through optimized fabrication techniques and system integration. This work highlights the feasibility of using flexible, integrated microfluidic and biosensor platforms for the rapid, on-site detection of infectious agents. The modular and scalable nature of the system suggests potential for adaptation to a wide range of pathogens, supporting broader applications in global health diagnostics. The approach provides a promising foundation for next-generation POC diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
Show Figures

Figure 1

17 pages, 1972 KiB  
Article
On the Effects of 3D Printed Mold Material, Curing Temperature, and Duration on Polydimethylsiloxane (PDMS) Curing Characteristics for Lab-on-a-Chip Applications
by Rabia Mercimek, Ünal Akar, Gökmen Tamer Şanlı, Beyzanur Özogul, Süleyman Çelik, Omid Moradi, Morteza Ghorbani and Ali Koşar
Micromachines 2025, 16(6), 684; https://doi.org/10.3390/mi16060684 - 5 Jun 2025
Viewed by 985
Abstract
Soft lithography with microfabricated molds is a widely used manufacturing method. Recent advancements in 3D printing technologies have enabled microscale feature resolution, providing a promising alternative for mold fabrication. It is well established that the curing of PDMS is influenced by parameters such [...] Read more.
Soft lithography with microfabricated molds is a widely used manufacturing method. Recent advancements in 3D printing technologies have enabled microscale feature resolution, providing a promising alternative for mold fabrication. It is well established that the curing of PDMS is influenced by parameters such as temperature, time, and curing agent ratio. This study was conducted to address inconsistencies in PDMS curing observed when using different 3D-printed mold materials during the development of a Lab-on-a-Chip (LoC) system, which is typically employed for investigating the effect of hydrodynamic cavitation on blood clot disintegration. To evaluate the impact of mold material on PDMS curing behavior, PDMS was cast into molds made from polylactic acid (PLA), polyethylene terephthalate (PET), resin, and aluminum, and cured at controlled temperatures (55, 65, and 75 °C) for various durations (2, 6, and 12 h). Curing performance was assessed using Soxhlet extraction, Young’s modulus calculations derived from Atomic Force Microscopy (AFM), and complementary characterization methods. The results indicate that the mold material significantly affects PDMS curing kinetics due to differences in thermal conductivity and surface interactions. Notably, at 65 °C, PDMS cured in aluminum molds had a higher Young’s modulus (~1.84 MPa) compared to PLA (~1.23 MPa) and PET (~1.17 MPa), demonstrating that the mold material can be leveraged to tailor the mechanical properties. These effects were especially pronounced at lower curing temperatures, where PLA and PET molds offered better control over PDMS elasticity, making them suitable for applications requiring flexible LoC devices. Based on these findings, 3D-printed PLA molds show strong potential for PDMS-based microdevice fabrication. Full article
Show Figures

Figure 1

21 pages, 5078 KiB  
Article
Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring
by Samuele Moscato, Emanuela Cutuli, Massimo Camarda and Maide Bucolo
Micromachines 2025, 16(5), 586; https://doi.org/10.3390/mi16050586 - 17 May 2025
Cited by 1 | Viewed by 434
Abstract
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an [...] Read more.
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an on-chip experimental method for estimating the slug-flow velocity in microchannels through in situ optical monitoring. Slug flow involving two immiscible fluids was investigated under both liquid–liquid and gas–liquid conditions via an extensive experimental campaign. The measured velocities were used to determine the slug length and key dimensionless parameters, including the Reynolds number and Capillary number. A comparison with analytical models and CFD simulations revealed significant discrepancies, particularly in gas–liquid flows. These differences are mainly attributed to factors such as gas compressibility, pressure fluctuations, the presence of a liquid film, and leakage flows, all of which substantially affect flow dynamics. Notably, the percentage error in liquid–liquid flows was lower than that in gas–liquid flows, largely due to the incompressibility assumption inherent in the model. The high-frequency monitoring capability of the proposed method enables in situ mapping of evolving multiphase structures, offering valuable insights into slug-flow dynamics and transient phenomena that are often difficult to capture using conventional measurement techniques. Full article
(This article belongs to the Special Issue Complex Fluid Flows in Microfluidics)
Show Figures

Figure 1

20 pages, 5758 KiB  
Review
Innovative Microfluidic Technologies for Rapid Heavy Metal Ion Detection
by Muhammad Furqan Rauf, Zhenda Lin, Muhammad Kamran Rauf and Jin-Ming Lin
Chemosensors 2025, 13(4), 149; https://doi.org/10.3390/chemosensors13040149 - 18 Apr 2025
Viewed by 1454
Abstract
Heavy metal ion (HMI) contamination poses significant threats to public health and environmental safety, necessitating advanced detection technologies that are rapid, sensitive, and field-deployable. While conventional methods like atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS) remain prevalent, their limitations—including [...] Read more.
Heavy metal ion (HMI) contamination poses significant threats to public health and environmental safety, necessitating advanced detection technologies that are rapid, sensitive, and field-deployable. While conventional methods like atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS) remain prevalent, their limitations—including high costs, complex workflows, and lack of portability—underscore the urgent need for innovative alternatives. This review consolidates advancements in the last five years in microfluidic technologies for HMI detection, emphasizing their transformative potential through miniaturization, integration, and automation. We critically evaluate the synergy of microfluidics with cutting-edge materials (e.g., graphene and quantum dots) and detection mechanisms (electrochemical, optical, and colorimetric), enabling ultra-trace detection at parts-per-billion (ppb) levels. We highlight novel device architectures, such as polydimethylsiloxane (PDMS)-based labs-on-chip (LOCs), paper-based microfluidics, 3D-printed systems, and digital microfluidics (DMF), which offer unparalleled portability, cost-effectiveness, and multiplexing capabilities. Additionally, we address persistent challenges (e.g., selectivity and scalability) and propose future directions, including AI integration and sustainable fabrication. By bridging gaps between laboratory research and practical deployment, this review provides a roadmap for next-generation microfluidic solutions, positioning them as indispensable tools for global HMI monitoring. Full article
Show Figures

Figure 1

28 pages, 16516 KiB  
Review
Recent Advances in Microfluidics-Based Monitoring of Waterborne Pathogens: From Isolation to Detection
by Guohao Xu, Gaozhe Cai, Lijuan Liang, Jianxin Cheng, Lujie Song, Rui Sun, Feng Shen, Bo Liu, Shilun Feng and Jin Zhang
Micromachines 2025, 16(4), 462; https://doi.org/10.3390/mi16040462 - 14 Apr 2025
Viewed by 1119
Abstract
Waterborne pathogens seriously threaten human life and can cause diarrhea, gastrointestinal disorders, and more serious systemic infections. These pathogens are usually caused by contaminated water sources that contain disease-causing microorganisms, such as bacteria, viruses, and parasites, which cause infection and disease when they [...] Read more.
Waterborne pathogens seriously threaten human life and can cause diarrhea, gastrointestinal disorders, and more serious systemic infections. These pathogens are usually caused by contaminated water sources that contain disease-causing microorganisms, such as bacteria, viruses, and parasites, which cause infection and disease when they enter the human body through drinking water or other means. Due to the wide range of transmission routes and the high potential risk of waterborne pathogens, there is an urgent need for an ultrasensitive, rapid, and specific pathogenic microorganism monitoring platform to meet the critical monitoring needs of some water bodies’ collection points daily monitoring needs. Microfluidics-based pathogen surveillance methods are an important stage towards automated detection through real-time and multi-targeted monitoring, thus enabling a comprehensive assessment of the risk of exposure to waterborne pathogens and even emerging microbial contaminants, and thus better protection of public health. Therefore, this paper reviews the latest research results on the isolation and detection of waterborne pathogens based on microfluidic methods. First, we introduce the traditional methods for isolation and detection of pathogens. Then, we compare some existing microfluidic pathogen isolation and detection methods and finally look forward to some future research directions and applications of microfluidic technology in waterborne pathogens monitoring. Full article
(This article belongs to the Special Issue Integrated Optical, Electrochemical, and Electrical Biomicrofluidics)
Show Figures

Figure 1

21 pages, 3013 KiB  
Review
Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety
by Inae Lee and Hae-Yeong Kim
Micromachines 2024, 15(12), 1524; https://doi.org/10.3390/mi15121524 - 21 Dec 2024
Cited by 2 | Viewed by 2569
Abstract
Lab-on-a-chip (LOC) devices have been developed for nucleic acid analysis by integrating complex laboratory functions onto a miniaturized chip, enabling rapid, cost-effective, and highly sensitive on-site testing. This review examines the application of LOC technology in food safety, specifically in the context of [...] Read more.
Lab-on-a-chip (LOC) devices have been developed for nucleic acid analysis by integrating complex laboratory functions onto a miniaturized chip, enabling rapid, cost-effective, and highly sensitive on-site testing. This review examines the application of LOC technology in food safety, specifically in the context of nucleic acid-based analyses for detecting pathogens and contaminants. We focus on microfluidic-based LOC devices that optimize nucleic acid extraction and purification on the chip or amplification and detection processes based on isothermal amplification and polymerase chain reaction. We also explore advancements in integrated LOC devices that combine nucleic acid extraction, amplification, and detection processes within a single chip to minimize sample preparation time and enhance testing accuracy. The review concludes with insights into future trends, particularly the development of portable LOC technologies for rapid and efficient nucleic acid testing in food safety. Full article
Show Figures

Figure 1

16 pages, 2473 KiB  
Article
In Vitro and In Vivo Digestibility of Putative Nutraceutical Common-Bean-Derived Alpha-Amylase Inhibitors
by Krisztina Takács, András Nagy, Anna Jánosi, István Dalmadi and Anita Maczó
Appl. Sci. 2024, 14(23), 10935; https://doi.org/10.3390/app142310935 - 25 Nov 2024
Cited by 1 | Viewed by 1362
Abstract
The inhibition of the alpha-amylase digestive enzyme impedes starch digestion by blocking access to the active site of the enzyme, thereby playing a role in the prevention of obesity and type 2 diabetes. Plant-derived alpha-amylase inhibitors (αAIs) are promising nonpharmacological alternatives for the [...] Read more.
The inhibition of the alpha-amylase digestive enzyme impedes starch digestion by blocking access to the active site of the enzyme, thereby playing a role in the prevention of obesity and type 2 diabetes. Plant-derived alpha-amylase inhibitors (αAIs) are promising nonpharmacological alternatives for the prevention of these diseases. Alpha-amylase inhibitor-1 (αAI-1) present in common bean (Phaseolus vulgaris) is derived from a precursor protein. In this study, the effect of digestion on the digestibility, immune reactivity, and bioactivity of αAI-1 was assessed from four varieties of Hungarian common bean (Phaseolus vulgaris), with special regard to the precursor protein. For this purpose, αAI-1 was tested in both matrix (native flour and cooked flour) and purified forms under in vitro and acute rat in vivo digestion experiments. The effect of digestion on αAI-1s was monitored by lab-on-a-chip (LOC) electrophoresis, SDS-PAGE/immunoblot, and inhibitory activity analyses by native PAGE. After both in vitro and in vivo digestion, we established that αAI-1 was not degraded even after 60 min gastric digestion and showed immune-reactive properties as well. Although the activity of the purified αAI-1 was lost, that of αAI-1 in the flour matrix (noncooked and cooked) was retained in the stomach. Presumably, in the beans, αAI-1 polypeptides became active due to the pepsin digestion of the precursor protein. The latter samples were also tested in vivo in the small intestine and their resistance and immune reactivity were observed, but αAI-1 did not show activity, as αAI-1 polypeptides were probably complexed by pancreatic amylases. From these results, we can assume that the αAI-1-rich bean protein preparation can affect the carbohydrate metabolism; thus, it could be a promising ingredient for weight loss purposes. Full article
(This article belongs to the Special Issue Advances in Food Metabolomics)
Show Figures

Figure 1

12 pages, 3108 KiB  
Article
A Microfluidic-Based Sensing Platform for Rapid Quality Control on Target Cells from Bioreactors
by Alessia Foscarini, Fabio Romano, Valeria Garzarelli, Antonio Turco, Alessandro Paolo Bramanti, Iolena Tarantini, Francesco Ferrara, Paolo Visconti, Giuseppe Gigli and Maria Serena Chiriacò
Sensors 2024, 24(22), 7329; https://doi.org/10.3390/s24227329 - 16 Nov 2024
Cited by 1 | Viewed by 1653
Abstract
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In [...] Read more.
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In recent years, it has emerged as a promising strategy for personalized cancer treatment. However, it requires bioreactor-based cell culture expansion and manual quality control (QC) of the modified cells, which is time-consuming, labour-intensive, and prone to errors. The miniaturized LoC device for automated QC demonstrated here is simple, has a low cost, and is reliable. Its final target is to become one of the building blocks of an LoC for immunotherapy, which would take the place of present labs and manual procedures to the benefit of throughput and affordability. The core of the system is a commercial, on-chip-integrated capacitive sensor managed by a microcontroller capable of sensing cells as accurately measured charge variations. The hardware is based on standardized components, which makes it suitable for mass manufacturing. Moreover, unlike in other cell detection solutions, no external AC source is required. The device has been characterized with a cell line model selectively labelled with gold nanoparticles to simulate its future use in bioreactors in which labelling can apply to successfully engineered CAR-T-cells. Experiments were run both in the air—free drop with no microfluidics—and in the channel, where the fluid volume was considerably lower than in the drop. The device showed good sensitivity even with a low number of cells—around 120, compared with the 107 to 108 needed per kilogram of body weight—which is desirable for a good outcome of the expansion process. Since cell detection is needed in several contexts other than immunotherapy, the usefulness of this LoC goes potentially beyond the scope considered here. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 2090 KiB  
Article
Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors
by Guillermo Garcia-Torales, Hector Hugo Torres-Ortega, Ruben Estrada-Marmolejo, Anuar B. Beltran-Gonzalez and Marija Strojnik
Sensors 2024, 24(21), 7050; https://doi.org/10.3390/s24217050 - 31 Oct 2024
Viewed by 1191
Abstract
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, [...] Read more.
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed’s performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system’s potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

40 pages, 3495 KiB  
Review
Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors
by Reza Abbasi, Xinyue Hu, Alain Zhang, Isabelle Dummer and Sebastian Wachsmann-Hogiu
Bioengineering 2024, 11(9), 912; https://doi.org/10.3390/bioengineering11090912 - 12 Sep 2024
Cited by 6 | Viewed by 3282
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, [...] Read more.
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal–oxide–semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications. Full article
Show Figures

Figure 1

18 pages, 7591 KiB  
Article
3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics
by Julia K. Hoskins and Min Zou
Nanomanufacturing 2024, 4(3), 120-137; https://doi.org/10.3390/nanomanufacturing4030009 - 27 Jun 2024
Cited by 5 | Viewed by 2069
Abstract
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development [...] Read more.
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development of fabrication techniques and printed membranes that can be adapted to various lab-on-a-chip (LOC) devices. Membranes were fabricated with pore diameters as small as 0.57 µm and porosities of 4.5%, as well as with larger pores of approximately 3.73 µm in diameter and very high porosities that reached up to 60%. Direct 3D printing of membranes offers a pathway for fabricating structures tailored to specific applications in microfluidics, enabling more efficient separation processes at miniature scales. This research represents a significant step towards bridging the gap between membrane technology and microfluidics, promising enhanced capabilities for a wide array of applications in biotechnology, chemical analysis, and beyond. Full article
Show Figures

Figure 1

11 pages, 1714 KiB  
Article
Towards a Point-of-Care Test of CD4+ T Lymphocyte Concentrations for Immune Status Monitoring with Magnetic Flow Cytometry
by Moritz Leuthner, Mathias Reisbeck, Michael Helou and Oliver Hayden
Micromachines 2024, 15(4), 520; https://doi.org/10.3390/mi15040520 - 13 Apr 2024
Cited by 1 | Viewed by 4993
Abstract
For the treatment of human immunodeficiency virus (HIV)-infected patients, the regular assessment of the immune status is indispensable. The quantification of CD4+ T lymphocytes in blood by gold standard optical flow cytometry is not point-of-care testing (POCT) compatible. This incompatibility is due [...] Read more.
For the treatment of human immunodeficiency virus (HIV)-infected patients, the regular assessment of the immune status is indispensable. The quantification of CD4+ T lymphocytes in blood by gold standard optical flow cytometry is not point-of-care testing (POCT) compatible. This incompatibility is due to unavoidable pre-analytics, expensive and bulky optics with limited portability, and complex workflow integration. Here, we propose a non-optical, magnetic flow cytometry (MFC) workflow that offers effortless integration opportunities, including minimal user interaction, integrated sample preparation and up-concentration, and miniaturization. Furthermore, we demonstrate immunomagnetic CD4+ T lymphocyte labeling in whole blood with subsequent quantification using sheath-less MFC. Showing linearity over two log scales and being largely unimpaired by hematocrit, evidence is provided for POCT capabilities of HIV patients. Full article
(This article belongs to the Special Issue μ-TAS: A Themed Issue in Honor of Professor Andreas Manz)
Show Figures

Figure 1

15 pages, 4663 KiB  
Article
Photocatalytic Oxidization Based on TiO2/Au Nanocomposite Film for the Pretreatment of Total Phosphorus (TP)
by Jiajie Wang, Seung-Deok Kim, Jae-Yong Lee, June-Soo Kim, Noah Jang, Hyunjun Kim, Da-Ye Kim, Yujin Nam, Maeum Han and Seong-Ho Kong
Appl. Sci. 2024, 14(5), 1774; https://doi.org/10.3390/app14051774 - 22 Feb 2024
Cited by 2 | Viewed by 1743
Abstract
Phosphorus, an essential rare element in aquatic ecosystems, plays a key role in maintaining ecosystem balance. However, excess phosphorus leads to eutrophication and algal proliferation. To prevent eutrophication, the pretreatment and measuring of the concentration of total phosphorus (TP) is crucial. Compared to [...] Read more.
Phosphorus, an essential rare element in aquatic ecosystems, plays a key role in maintaining ecosystem balance. However, excess phosphorus leads to eutrophication and algal proliferation. To prevent eutrophication, the pretreatment and measuring of the concentration of total phosphorus (TP) is crucial. Compared to conventional TP pretreatment equipment (autoclave), a lab-on-a-chip detection device fabricated using micro-electromechanical system technology and titania (TiO2) as a photocatalyst is more convenient, efficient, and cost-effective. However, the wide bandgap of TiO2 (3.2 eV) limits photocatalytic activity. To address this problem, this paper describes the preparation of a TiO2/Au nanocomposite film using electron-beam evaporation and atomic-layer deposition, based on the introduction of gold film and TiO2 to a quartz substrate. The photocatalytic degradation properties of TiO2/Au nanocomposite films with thicknesses of 1, 2, 3, and 4 nm were assessed using rhodamine B as a pollutant. The experimental results demonstrate that the deposition of gold films with different thicknesses can enhance photocatalytic degradation efficiency through synergetic reactions in the charge separation process on the surface. The optimal photocatalytic efficiency is achieved when the deposition thickness is 2 nm, and it decreases with further increase in the thickness. When the photocatalytic reaction time is 15 min, the lab-on-a-chip (LOC) device with a 2-nm-thick gold layer and autoclave exhibits a similar TP pretreatment performance. Therefore, the proposed LOC device based on photocatalytic technology can address the limitations of conventional autoclave equipment, such as large volumes, long processing times, and high costs, thereby satisfying the growing demand for on-site evaluation. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

16 pages, 2767 KiB  
Article
Optimizing Optical Dielectrophoretic (ODEP) Performance: Position- and Size-Dependent Droplet Manipulation in an Open-Chamber Oil Medium
by Md Aminul Islam and Sung-Yong Park
Micromachines 2024, 15(1), 119; https://doi.org/10.3390/mi15010119 - 11 Jan 2024
Cited by 1 | Viewed by 2357
Abstract
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the [...] Read more.
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the maximum ODEP force. Numerical simulations identified the characteristic length (Lc) of the electric field as a pivotal factor, representing the location of peak field strength. Utilizing 3D finite element simulations, the ODEP force is calculated through the Maxwell stress tensor by integrating the electric field strength over the droplet’s surface and then analyzed as a function of the droplet’s position and size normalized to Lc. Our findings reveal that the optimal position is xopt= Lc+ r, (with r being the droplet radius), while the optimal droplet size is ropt = 5Lc, maximizing light-induced field perturbation around the droplet. Experimental validations involving the tracking of droplet dynamics corroborated these findings. Especially, a droplet sized at r = 5Lc demonstrated the greatest optical actuation by performing the longest travel distance of 13.5 mm with its highest moving speed of 6.15 mm/s, when it was initially positioned at x0= Lc+ r = 6Lc from the light’s center. These results align well with our simulations, confirming the criticality of both the position (xopt) and size (ropt) for maximizing ODEP force. This study not only provides a deeper understanding of the position- and size-dependent parameters for effective droplet manipulation in FEOET systems, but also advances the development of low-cost, disposable, lab-on-a-chip (LOC) devices for multiplexed biological and biochemical analyses. Full article
(This article belongs to the Collection Micro/Nanoscale Electrokinetics)
Show Figures

Figure 1

13 pages, 609 KiB  
Systematic Review
The Potential Clinical Applications of a Microfluidic Lab-on-a-Chip for the Identification and Antibiotic Susceptibility Testing of Enterococcus faecalis-Associated Endodontic Infections: A Systematic Review
by Carlos M. Ardila, Gustavo A. Jiménez-Arbeláez and Annie Marcela Vivares-Builes
Dent. J. 2024, 12(1), 5; https://doi.org/10.3390/dj12010005 - 26 Dec 2023
Cited by 7 | Viewed by 2656
Abstract
This systematic review evaluated the potential clinical use of microfluidic lab-on-a-chip (LOC) technology in the identification and antibiotic susceptibility testing of E. faecalis in endodontic infections. The search methodology employed in this review adhered to the PRISMA guidelines. Multiple scientific databases, including PubMed/MEDLINE, [...] Read more.
This systematic review evaluated the potential clinical use of microfluidic lab-on-a-chip (LOC) technology in the identification and antibiotic susceptibility testing of E. faecalis in endodontic infections. The search methodology employed in this review adhered to the PRISMA guidelines. Multiple scientific databases, including PubMed/MEDLINE, SCOPUS, and SCIELO, were utilized, along with exploration of grey literature sources. Up to September 2023, these resources were searched using specific keywords and MeSH terms. An initial comprehensive search yielded 202 articles. Ultimately, this systematic review incorporated 12 studies. Out of these, seven aimed to identify E. faecalis, while the remaining five evaluated its susceptibility to different antibiotics. All studies observed that the newly developed microfluidic chip significantly reduces detection time compared to traditional methods. This enhanced speed is accompanied by a high degree of accuracy, efficiency, and sensitivity. Most research findings indicated that the entire process took anywhere from less than an hour to five hours. It is important to note that this approach bypasses the need for minimum inhibitory concentration measurements, as it does not rely on traditional methodologies. Microfluidic devices enable the rapid identification and accurate antimicrobial susceptibility testing of E. faecalis, which are crucial for timely diagnosis and treatment in endodontic infections. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Figure 1

Back to TopTop