3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Material and Fabrication Method
2.2. 3D Printing Parameter Sweeps for Optimizing Membrane Fabrication
2.3. Membrane Characterization
2.3.1. Imaging
2.3.2. Membrane Thickness
2.3.3. Membrane Image Analysis
2.3.4. Membrane Porosity
2.3.5. Pore Size
2.3.6. Pore Distribution
3. Results
3.1. Overview of the Printed Membrane Tables
3.2. Membrane Thickness
3.3. Membrane Tailorability
3.4. Effects of Hatching Pitch and Angle on Pore Count and Diameter
3.5. Influence of Laser Exposure Time on Pore size and Pore Size Distribution
3.6. Membrane Porosity Analysis
3.7. Membrane Quality Check Criterion
3.8. Implementation of Quality Criterion on 2 µm Pitch Membranes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MEMS | Micro-electromechanical system |
LOC | Lab on a chip |
FDM | Fused deposition modeling |
SLA | Stereo lithography |
DLP | Digital light processing |
2PL | Two-photon lithography |
SEM | Scanning electron microscopy |
References
- Chen, X.; Shen, J. Review of membranes in microfluidics. J. Chem. Technol. Biotechnol. 2016, 92, 271–282. [Google Scholar] [CrossRef]
- Lüken, A.; Linkhorst, J.; Fröhlingsdorf, R.; Lippert, L.; Rommel, D.; De Laporte, L.; Wessling, M. Unravelling colloid filter cake motions in membrane cleaning procedures. Sci. Rep. 2020, 10, 20043. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, J.; Nasir, A.M. Grand Challenge in membrane fabrication: Membrane Science and Technology. Front. Membr. Sci. Technol. 2022, 1, 883913. [Google Scholar] [CrossRef]
- Waheed, A.; Baig, U. Exploiting phase inversion for penta-amine impregnation of ultrafiltration support matrix for rapid fabrication of a hyper-cross-linked polyamide membrane for organic solvent nanofiltration. Process Saf. Environ. Prot. 2023, 169, 24–33. [Google Scholar]
- Ivanova, N.M.; Filippova, E.O.; Tverdokhlebov, S.I.; Levkovich, N.V.; Apel, P.Y. Preparation, Structure, and Properties of Track-Etched Membranes Based on Polylactic Acid. Membr. Membr. Technol. 2021, 3, 282–290. [Google Scholar] [CrossRef]
- Nadaf, A.; Gupta, A.; Hasan, N.; Fauziya; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Adv. 2022, 12, 23808–23828. [Google Scholar] [CrossRef] [PubMed]
- Thiam, B.G.; El Magri, A.; Vanaei, H.R.; Vaudreuil, S. 3D Printed and Conventional Membranes—A Review. Polymers 2022, 14, 1023. [Google Scholar] [CrossRef] [PubMed]
- Chueh, B.; Huh, D.; Kyrtsos, C.R.; Houssin, T.; Futai, N.; Takayama, S. Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 2007, 79, 3504–3508. [Google Scholar] [CrossRef] [PubMed]
- Kumeria, T.; Kurkuri, M.; Diener, K.; Zhang, C.; Parkinson, L.; Losic, D. Reflectometric interference biosensing using nanopores: Integration into microfluidics. Proc. SPIE 2011, 8204, 503–513. [Google Scholar]
- Xiu, X.; Ma, S.; Li, Z.; Li, Z.; Li, X.; Ruan, Y.; Li, D.; Wang, J.; Ma, F. Novel 3D integrated microfluidic device: Design, construction, and application to the preparation of liposomes for vaccine delivery. J. Drug Deliv. Sci. Technol. 2024, 91, 105191. [Google Scholar] [CrossRef]
- Quirós-Solano, W.F.; Gaio, N.; Stassen, O.M.J.A.; Arik, Y.B.; Silvestri, C.; Van Engeland, N.C.A.; Van der Meer, A.; Passier, R.; Sahlgren, C.M.; Bouten, C.V.C.; et al. Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips. Sci. Rep. 2018, 8, 13524. [Google Scholar] [CrossRef]
- Balakrishnan, H.K.; Doeven, E.H.; Merenda, A.; Dumée, L.F.; Guijt, R.M. 3D printing for the integration of porous materials into miniaturised Fluidic Devices: A Review. Anal. Chim. Acta 2021, 1185, 338796. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Bahani, A.; Ogata, T.; Madou, M. 3D Printing of Elastic Membranes for Fluidic Pumping and Demonstration of Reciprocation Inserts on the Microfluidic Disc. Micromachines 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meyer, C.; Guibert, E.; Homsy, A.; Whitlow, H.J. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique. NIM-B 2017, 404, 224–227. [Google Scholar] [CrossRef]
- Hirschwald, L.T.; Brosch, S.; Linz, G.; Linkhorst, J.; Wessling, M. Freeform membranes with tunable permeability in microfluidics. Adv. Mater. Technol. 2017, 8, 2201857. [Google Scholar] [CrossRef]
- Duarte, L.C.; Figueredo, F.; Chagas, C.L.S.; Cortón, E.; Coltro, W.K.T. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal. Chim. Acta 2024, 1299, 342429. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.R.; Steffes, J.; Huey, B.D.; McCutcheon, J.R. 3D printed polyamide membranes for desalination. Science 2018, 361, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.J.; Garg, T.; Rankin, K.E.; Bradshaw, D.; Nightingale, A.M. 3D printed filtration and separation devices with integrated membranes and no post-printing assembly. React. Chem. Eng. 2024, 9, 251–259. [Google Scholar] [CrossRef]
- Mayoussi, F.; Doeven, E.H.; Kick, A.; Goralczyk, A.; Thomann, Y.; Risch, P.; Guijt, R.M.; Kotz, F.; Helmer, D.; Rapp, B.E. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. J. Mater. Chem. A 2021, 9, 21379–21386. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, N.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Hernandez, H.; Abu Al-Rub, R.K.; Arafat, H.A. 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination 2018, 425, 12–21. [Google Scholar] [CrossRef]
- Song, Q.; Hamza, A.; Li, C.; Sedeky, A.S.; Chen, Y.; Zhu, M.; Goralczyk, A.; Mayoussi, F.; Zhu, P.; Hou, P.; et al. 3D printed elastic fluoropolymer with high stretchability and enhanced chemical resistance for microfluidic applications. Addit Manuf. 2024, 81, 103991. [Google Scholar] [CrossRef]
- Ly, K.L.; Raub, C.B.; Luo, X. Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates. J. Mater. Adv. 2020, 1, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Fallahianbijan, F.; Emami, P.; Hillsley, J.M.; Motevalian, S.P.; Conde, C.; Reilly, K.; Zydney, A.L. Effect of membrane pore structure on fouling behavior of glycoconjugate vaccines. J. Membr. Sci 2021, 619, 118797. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Ladika, D.; Yu, H.; Gailevičius, D.; Wang, H.; Pan, C.; Nair, P.V.S.; Ke, Y.; Mori, T.; et al. Two-photon polymerization lithography for optics and Photonics: Fundamentals, materials, technologies, and applications. Adv. Funct. Mat. 2023, 33, 2214211. [Google Scholar] [CrossRef]
- Sun, H.; Tanaka, T.; Kawata, S. Three-dimensional focal spot related to two photon excitation. Appl. Phys. Let. 2002, 80, 3673–3675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoskins, J.K.; Zou, M. 3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics. Nanomanufacturing 2024, 4, 120-137. https://doi.org/10.3390/nanomanufacturing4030009
Hoskins JK, Zou M. 3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics. Nanomanufacturing. 2024; 4(3):120-137. https://doi.org/10.3390/nanomanufacturing4030009
Chicago/Turabian StyleHoskins, Julia K., and Min Zou. 2024. "3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics" Nanomanufacturing 4, no. 3: 120-137. https://doi.org/10.3390/nanomanufacturing4030009